БИОХИМИЯ, 2024, том 89, вып. 2, с. 352–368

УДК 591.526:612.6:577.24

Изучение смертности и старения человека с точки зрения теории надёжности

Обзор

© 2024 Л.А. Гаврилов 1,2*lagavril@yahoo.com, Н.С. Гаврилова 1,2

NORC at the University of Chicago, 60637 Chicago, IL, USA

Институт демографических исследований, ФНИСЦ РАН, 109028 Москва, Россия

Поступила в редакцию 14.12.2023
После доработки 27.01.2024
Принята к публикации 28.01.2024

DOI: 10.31857/S0320972524020117

КЛЮЧЕВЫЕ СЛОВА: старение, смертность, модель Гомперца, компенсационный эффект смертности, замедление смертности, надёжностная теория старения, эволюционные модели старения.

Аннотация

Важнейшим проявлением старения является повышение риска смерти с возрастом, что характеризуется эмпирическими закономерностями, известными как законы смертности. Мы выделяем три наиболее важных закономерности: закон Гомперца, компенсационный эффект смертности (КЭС) и замедление роста смертности в конце жизни, а также описываем новые разработки в этой области. Сделано предсказание, что КЭС приводит к снижению относительной вариабельности смертности в старших возрастах. Гипотеза фазы покоя о незначительном актуарном старении в более молодом возрасте проверена и опровергнута путём анализа смертности более современных когорт рождения. Для понимания механизмов старения очень важно объяснить наблюдаемые эмпирические закономерности смертности. В качестве наглядного примера моделирования, ориентированного на данные, и тех знаний, которые оно даёт, мы кратко описываем две различные надёжностные модели, применённые к смертности людей. Объяснение старения с помощью теории надёжности согласуется с эволюционными теориями старения, включая идею хронического феноптоза. Это соответствие обусловлено тем, что надёжностные модели сосредоточены на выяснении самого процесса деградации организма, а не на рассмотрении причин, по которым организмы не предназначены для вечного существования. Эта статья входит в специальный выпуск журнала, посвящённый наследию выдающегося российского учёного Владимира Петровича Скулачёва (1935–2023) и его смелым идеям об эволюции биологического старения и феноптозе.

Текст статьи

Пожалуйста, введите код, чтобы получить PDF файл с полным текстом статьи:

captcha

Сноски

* Адресат для корреспонденции.

Финансирование

Работа частично поддержана грантом Национального института здоровья (NIH R21AG054849).

Благодарности

Мы выражаем глубочайшую благодарность профессору Владимиру Петровичу Скулачёву (1935–2023), выдающемуся российскому учёному, который с 1970-х годов был нашим бесценным научным наставником и советником. Данная статья является частью специального выпуска журнала, посвящённого его памяти. Академик В.П. Скулачёв сыграл ключевую роль в написании нашей книги «Биология продолжительности жизни», которая упоминается в этой статье, научным редактором которой он был [2]. Более того, его поддержка привела к важному совместному с ним исследованию изменчивости характеристик жизненного цикла человека [101].

Вклад авторов

Л.Г. разрабатывал план статьи, подготавливал и редактировал рукопись. Н.Г. проводила статистический анализ данных и подготавливала рукопись.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов в финансовой или иной сфере.

Соблюдение этических норм

Данная статья не содержит описания каких-либо исследований с использованием людей и животных в качестве объектов изучения.

Список литературы

1. Cohen, A. A., Ferrucci, L., Fulop, T., Gravel, D., Hao, N., Kriete, A., Levine, M. E., Lipsitz, L. A., Rikkert, M., Rutenberg, A., Stroustrup, N., and Varadhan, R. (2022) A complex systems approach to aging biology, Nat. Aging, 2, 580-591, doi: 10.1038/s43587-022-00252-6.

2. Gavrilov, L. A., and Gavrilova, N. S. (1991) The Biology of Life Span: A Quantitative Approach, Harwood Academic Publisher, New York.

3. Kirkwood, T. B. L. (1999) Time of Our Lives: The Science of Human Aging, Weidenfeld & Nicolson, London, p. 40.

4. Kowald, A., and Kirkwood, T. B. L. (2016) Can aging be programmed? A critical literature review, Aging Cell, 15, 986-998, doi: 10.1111/acel.12510.

5. Skulachev, M. V., and Skulachev, V. P. (2017) Programmed aging of mammals: Proof of concept and prospects of biochemical approaches for anti-aging therapy, Biochemistry (Moscow), 82, 1403-1422, doi: 10.1134/s000629791712001x.

6. Skulachev, V. P. (1999) Phenoptosis: programmed death of an organism, Biochemistry (Moscow), 64, 1418-1426.

7. Skulachev, V. P. (2001) The programmed death phenomena, aging, and the Samurai law of biology, Exp. Gerontol., 36, 995-1024, doi: 10.1016/s0531-5565(01)00109-7.

8. Lidsky, P. V., and Andino, R. (2022) Could aging evolve as a pathogen control strategy? Trends Ecol. Evol., 37, 1046-1057, doi: 10.1016/j.tree.2022.08.003.

9. Gavrilov, L. A., and Gavrilova, N. S. (2006) Reliability Theory of Aging and Longevity in Handbook of the Biology of Aging (Masoro, E. J., and Austad, S. N., eds.), 6 Ed., Academic Press, San Diego, pp. 3-42.

10. Gaillard, J. M., and Lemaitre, J. F. (2017) The Williams’ legacy: A critical reappraisal of his nine predictions about the evolution of senescence, Evolution, 71, 2768-2785, doi: 10.1111/evo.13379.

11. Finch, C. E. (1990) Longevity, Senescence, and the Genome, The University of Chicago Press, Chicago.

12. Olshansky, S. J., and Carnes, B. A. (1997) Ever since Gompertz, Demography, 34, 1-15, doi: 10.2307/2061656.

13. Strehler, B. L. (1978) Time, Cells, and Aging, 2nd edition, Academic Press, New York and London.

14. Greenwood, M. (1928) “Laws” of mortality from the biological point of view, J. Hyg., 28, 267-294.

15. Kunstyr, I., and Leuenberger, H.-G. W. (1975) Gerontological data of C57BL/6J mice. I. Sex differences in survival curves, J. Gerontol., 30, 157-162, doi: 10.1093/geronj/30.2.157.

16. Bronikowski, A. M., Alberts, S. C., Altmann, J., Packer, C., Carey, K. D., and Tatar, M. (2002) The aging baboon: comparative demography in a non-human primate, Proc. Natl. Acad. Sci. USA, 99, 9591-9595.

17. Bronikowski, A. M., Altmann, J., Brockman, D. K., Cords, M., Fedigan, L. M., Pusey, A., Stoinski, T., Morris, W. F., Strier, K. B., and Alberts, S. C. (2011) Aging in the natural world: comparative data reveal similar mortality patterns across primates, Science, 331, 1325-1328, doi: 10.1126/science.1201571.

18. Gompertz, B. (1825) On the nature of the function expressive of the law of human mortality and on a new mode of determining life contingencies, Philos. Trans. R. Soc. Lond. A, 115, 513-585.

19. Makeham, W. M. (1860) On the law of mortality and the construction of annuity tables, J. Inst. Actuaries, 8, 301-310.

20. Golubev, A. (2004) Does Makeham make sense? Biogerontology, 5, 159-167, doi: 10.1023/b:bgen.0000031153.63563.58.

21. Horiuchi, S., and Wilmoth, J. R. (1998) Deceleration in the age pattern of mortality at older ages, Demography, 35, 391-412.

22. Carnes, B. A., and Olshansky, S. J. (1997) A biologically motivated partitioning of mortality, Exp. Gerontol., 32, 615-631, doi: 10.1016/s0531-5565(97)00056-9.

23. Golubev, A. (2009) How could the Gompertz-Makeham law evolve, J. Theor. Biol., 258, 1-17, doi: 10.1016/j.jtbi.2009.01.009.

24. Ricklefs, R. E., and Scheuerlein, A. (2002) Biological implications of the Weibull and Gompertz models of aging, J. Gerontol. Ser. A Biol. Sci. Med. Sci., 57, B69-B76.

25. Vanfleteren, J. R., De Vreese, A., and Braeckman, B. P. (1998) Two-parameter logistic and Weibull equations provide better fits to survival data from isogenic populations of Caenorhabditis elegans in axenic culture than does the Gompertz model, J. Gerontol. Ser. A Biol. Sci. Med. Sci., 53, B393-B403.

26. Stroustrup, N., Anthony, W. E., Nash, Z. M., Gowda, V., Gomez, A., Lopez-Moyado, I. F., Apfeld, J., and Fontana, W. (2016) The temporal scaling of Caenorhabditis elegans ageing, Nature, 530, 103-107, doi: 10.1038/nature16550.

27. Pakin, Y. V., and Hrisanov, S. M. (1984) Critical analysis of the applicability of the Gompertz-Makeham law in human populations, Gerontology, 30, 8-12, doi: 10.1159/000212600.

28. Horiuchi, S., and Wilmoth, J. R. (1997) Age patterns of the life table aging rate for major causes of death in Japan, 1951-1990, J. Gerontol. Ser. A Biol. Sci. Med. Sci., 52, B67-B77.

29. Li, T., Yang, Y. C., and Anderson, J. J. (2013) Mortality increase in late-middle and early-old age: heterogeneity in death processes as a new explanation, Demography, 50, 1563-1591, doi: 10.1007/s13524-013-0222-4.

30. Golubev, A. (2023) An underappreciated peculiarity of late-life human mortality kinetics assessed through the lens of a generalization of the Gompertz-Makeham law, Biogerontology, doi: 10.1007/s10522-10023-10079-10522.

31. Gavrilov, L. A., and Gavrilova, N. S. (2022) Trends in human species-specific lifespan and actuarial aging rate, Biochemistry (Moscow), 87, 1998-2011, doi: 1910.1134/S0006297922120173.

32. Gavrilov, L. A., and Gavrilova, N. S. (2023) Actuarial aging rates in human cohorts, Biochemistry (Moscow), 88, 1778-1785, doi: 1710.1134/S0006297923110093.

33. Gavrilov, L. A., and Gavrilova, N. S. (2001) The reliability theory of aging and longevity, J. Theor. Biol., 213, 527-545, doi: 10.1006/jtbi.2001.2430.

34. Strehler, B. L., and Mildvan, A. S. (1960) General theory of mortality and aging, Science, 132, 14-21, doi: 10.1126/science.132.3418.14.

35. Gavrilov, L. A., Gavrilova, N. S., and Yaguzhinsky, L. S. (1978) Main regularities of animal aging and death viewed in terms of reliability theory [In Russian], Zhurn. Obshch. Biol., 39, 734-742.

36. Golubev, A. (2019) A 2D analysis of correlations between the parameters of the Gompertz-Makeham model (or law?) of relationships between aging, mortality, and longevity, Biogerontology, 20, 799-821, doi: 10.1007/s10522-019-09828-z.

37. Shen, J., Landis, G. N., and Tower, J. (2017) Multiple metazoan life-span interventions exhibit a sex-specific Strehler-Mildvan inverse relationship between initial mortality rate and age-dependent mortality rate acceleration, J. Gerontol. Ser. A Biol. Sci. Med. Sci., 72, 44-53, doi: 10.1093/gerona/glw005.

38. Tarkhov, A. E., Menshikov, L. I., and Fedichev, P. O. (2017) Strehler-Mildvan correlation is a degenerate manifold of Gompertz fit, J. Theor. Biol., 416, 180-189, doi: 10.1016/j.jtbi.2017.01.017.

39. Economos, A. C. (1980) Kinetics of metazoan mortality, J. Soc. Biol. Struct., 3, 317-329, doi: 10.1016/0140-1750(80)90039-1.

40. Vaupel, J. W., Carey, J. R., Christensen, K., Johnson, T. E., Yashin, A. I., Holm, N. V., Iachine, I. A., Kannisto, V., Khazaeli, A. A., Liedo, P., Longo, V. D., Zeng, Y., Manton, K. G., and Curtsinger, J. W. (1998) Biodemographic trajectories of longevity, Science, 280, 855-860, doi: 10.1126/science.280.5365.855.

41. Greenwood, M., and Irwin, J. O. (1939) The biostatistics of senility, Hum. Biol., 11, 1-23.

42. Rose, M. R., Rauser, C. L., Mueller, L. D., and Benford, G. (2006) A revolution for aging research, Biogerontology, 7, 269-277, doi: 10.1007/s10522-006-9001-6.

43. Curtsinger, J. W., Fukui, H., Townsend, D., and Vaupel, J. W. (1992) Demography of genotypes: failure of the limited life-span paradigm in Drosophila melanogaster, Science, 258, 461-463, doi: 10.1126/science.1411541.

44. Economos, A. C. (1983) Rate of aging, rate of dying and the mechanism of mortality, Arch. Gerontol. Geriatr., 1, 3-27, doi: 10.1016/0167-4943(82)90003-6.

45. Gavrilov, L. A., and Gavrilova, N. S. (2011) Mortality measurement at advanced ages: a study of the social security administration death master file, North Am. Actuar. J., 15, 432-447, doi: 410.1080/10920277.10922011.10597629.

46. Gavrilova, N. S., and Gavrilov, L. A. (2015) Biodemography of old-age mortality in humans and rodents, J. Gerontol. Ser. A Biol. Sci. Med. Sci., 70, 1-9, doi: 10.1093/gerona/glu009.

47. Dang, L., Camarda, C., Ouellette, N., Mesle, F., Robine, J.-M., and Vallin, J. (2023) The question of the human mortality plateau: Contrasting insights by longevity pioneers, Demograph. Res., 48, 321-338, doi: 310.4054/DemRes.2023.4048.4011.

48. Bebbington, M., Green, R., Lai, C. D., and Zitikis, R. (2014) Beyond the Gompertz law: exploring the late-life mortality deceleration phenomenon, Scand. Actuar. J., 3, 189-207, doi: 110.1080/03461238.03462012.03676562.

49. Feehan, D. M. (2018) Separating the signal from the noise: evidence for deceleration in old-age death rates, Demography, 55, 2025-2044, doi: 10.1007/s13524-018-0728-x.

50. Gavrilov, L. A., and Gavrilova, N. S. (2019) New trend in old-age mortality: Gompertzialization of mortality trajectory, Gerontology, 65, 451-457, doi: 410.1159/000500141.

51. Gavrilov, L. A., and Gavrilova, N. S. (2023) Living to 100 in the time of COVID-19: A study of late-life mortality trajectories, in 2023 Living to 100 Compendium, Society of Actuaries, Shaumburg, IL, p. 26.

52. Economos, A. C. (1979) A non-gompertzian paradigm for mortality kinetics of metazoan animals and failure kinetics of manufactured products, Age, 2, 74-76.

53. Siler, W. (1979) Competing-risk model for animal mortality, Ecology, 60, 750-757, doi: 10.2307/1936612.

54. Engelman, M., Seplaki, C. L., and Varadhan, R. (2017) A quiescent phase in human mortality? Exploring the ages of least vulnerability, Demography, 54, 1097-1118, doi: 10.1007/s13524-017-0569-z.

55. Gavrilov, L. A., and Gavrilova, N. S. (2004) Early-life programming of aging and longevity – The idea of high initial damage load (the HIDL hypothesis), in Strategies for Engineered Negligible Senescence: Why Genuine Control of Aging May Be Foreseeable (DeGrey, A. D. N., ed.) New York Acad. Sci., New York, pp. 496-501.

56. Finch, C. E., and Kirkwood, T. B. L. (2000) Chance, Development, and Aging, Oxford University Press, New York, Oxford.

57. Roy, S., and Majumdar, S. (2022) Developmental noise and stability, in Noise and Randomness in Living System, Springer Singapore, Singapore, pp. 119-124.

58. Vaux, D. L., and Korsmeyer, S. J. (1999) Cell death in development, Cell, 96, 245-254, doi: 10.1016/s0092-8674(00)80564-4.

59. Kinzina, E. D., Podolskiy, D. I., Dmitriev, S. E., and Gladyshev, V. N. (2019) Patterns of Aging Biomarkers, Mortality, and Damaging Mutations Illuminate the Beginning of Aging and Causes of Early-Life Mortality, Cell Reports, 29, 4276-4284, doi: 10.1016/j.celrep.2019.11.091.

60. Gladyshev, V. N. (2016) Aging: progressive decline in fitness due to the rising deleteriome adjusted by genetic, environmental, and stochastic processes, Aging Cell, 15, 594-602, doi: 10.1111/acel.12480.

61. Gavrilov, L. A., and Gavrilova, N. S. (1997) Parental age at conception and offspring longevity, Rev. Clin. Gerontol., 7, 5-12.

62. Gavrilov, L. A., and Gavrilova, N. S. (2015) Predictors of exceptional longevity: Effects of early-life and midlife conditions, and familial longevity, North Am. Actuar. J., 19, 174-186, doi: 10.1080/10920277.2015.1018390.

63. Gavrilov, L. A., Gavrilova, N. S., Kroutko, V. N., Evdokushkina, G. N., Semyonova, V. G., Gavrilova, A. L., Lapshin, E. V., Evdokushkina, N. N., and Kushnareva, Y. E. (1997) Mutation load and human longevity, Mutat. Res., 377, 61-62, doi: 10.1016/s0027-5107(97)00058-4.

64. Doblhammer, G., and Vaupel, J. (2001) Lifespan depends on month of birth, Proc. Natl. Acad. Sci. USA, 98, 2934-2939, doi: 2910.1073/pnas.041431898.

65. Gavrilov, L. A., and Gavrilova, N. S. (2011) Season of birth and exceptional longevity: comparative study of american centenarians, their siblings, and spouses, J. Aging Res., 104616, doi: 104610.104061/102011/104616.

66. Jarry, V., Gagnon, A., and Bourbeau, R. (2013) Maternal age, birth order and other early-life factors: a family-level approach to exploring exceptional survival, Vienna Yearbook Populat. Res., 11, 263-284.

67. Barker, D. J. P. (1998) Mothers, Babies, and Disease in Later Life (2nd Edn), Churchill Livingstone, London.

68. Kuh, D., and Ben-Shlomo, B. (1997) A Life Course Approach to Chronic Disease Epidemiology, Oxford University Press, Oxford.

69. Gavrilov, L. A., and Gavrilova, N. S. (2003) Early-life factors modulating lifespan, in Modulating Aging and Longevity (Rattan, S. I. S. ed.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 27-50.

70. Vaiserman, A. M. (2019) Early Life Origins of Ageing and Longevity, Springer Cham.

71. Leake, D. W. (2022) Tracing slow phenoptosis to the prenatal stage in social vertebrates, Biochemistry (Moscow), 87, 1512-1527, doi: 1510.1134/S0006297922120094.

72. Richardson, R. B., Allan, D. S., and Le, Y. (2014) Greater organ involution in highly proliferative tissues associated with the early onset and acceleration of ageing in humans, Exp. Gerontol., 55, 80-91, doi: 10.1016/j.exger.2014.03.015.

73. Tower, J. (2015) Programmed cell death in aging, Ageing Res. Rev., 23, 90-100, doi: 10.1016/j.arr.2015.04.002.

74. Galkin, F., Zhang, B. H., Dmitriev, S. E., and Gladyshev, V. N. (2019) Reversibility of irreversible aging, Ageing Res. Rev., 49, 104-114, doi: 10.1016/j.arr.2018.11.008.

75. Wu, H. E. (2014) Cell Death. Mechanism and Disease, Springer New York, doi: 10.1007/978-1-4614-9302-0.

76. Denic, A., Lieske, J. C., Chakkera, H. A., Poggio, E. D., Alexander, M. P., Singh, P., Kremers, W. K., Lerman, L. O., and Rule, A. D. (2016) The substantial loss of nephrons in healthy human kidneys with aging, J. Am. Soc. Nephrol., 28, 313-320, doi: 10.1681/asn.2016020154.

77. Fricker, M., Tolkovsky, A. M., Borutaite, V., Coleman, M., and Brown, G. C. (2018) Neuronal cell death, Physiol. Rev., 98, 813-880, doi: 10.1152/physrev.00011.2017.

78. Buetow, D. E. (1971) Cellular content and cellular proliferation changes in the tissues and organs of the aging mammal, in Cellular and Molecular Renewal in the Mammalian Body (Cameron, I. L., and Thrasher, J. D., eds.), Academic Press, New York, pp. 87-107.

79. Clarke, G., Collins, R. A., Leavitt, B. R., Andrews, D. F., Hayden, M. R., Lumsden, C. J., and McInnes, R. R. (2000) A one-hit model of cell death in inherited neuronal degenerations, Nature, 406, 195-199, doi: 10.1038/35018098.

80. Clarke, G., and Lumsden, C. J. (2005) Scale-free neurodegeneration: cellular heterogeneity and the stretched exponential kinetics of cell death, J. Theor. Biol., 233, 515-525, doi: 10.1016/j.jtbi.2004.10.028.

81. Heintz, N. (2000) One-hit neuronal death, Nature, 406, 137-138, doi: 10.1038/35018196.

82. Clarke, G., Lumsden, C. J., and McInnes, R. R. (2001) Inherited neurodegenerative diseases: the one-hit model of neurodegeneration, Hum. Mol. Genet., 10, 2269-2275, doi: 10.1093/hmg/10.20.2269.

83. Holland, D., Desikan, R. S., Dale, A. M., and McEvoy, L. K. (2012) Rates of decline in Alzheimer’s disease decrease with age, PLoS One, 7, 12, doi: 10.1371/journal.pone.0042325.

84. Beard, R. E. (1959) Note on some mathematical mortality models, in The lifespan of Animals (Wolstenholme, E. W., and O’Connor, M. O., eds), Little, Brown and Company, Boston, pp. 302-311.

85. Beard, R. E. (1971) Some aspects of theories of mortality, cause of death analysis, forecasting and stochastic processes, in Biological Aspects of Demography (Brass, W., ed.), Taylor and Francis, London, pp. 57-68.

86. Vaupel, J. W., Manton, K. G., and Stallard, E. (1979) Impact of heterogeneity in individual frailty on the dynamics of mortality, Demography, 16, 439-454.

87. Yashin, A. I., Vaupel, J. W., and Iachine, I. A. (1994) A duality in aging – the equivalence of mortality models based on radically different concepts, Mech. Ageing Dev., 74, 1-14, doi: 10.1016/0047-6374(94)90094-9.

88. Skulachev, M. V., and Skulachev, V. P. (2014) New data on programmed aging – slow phenoptosis, Biochemistry (Moscow), 79, 977-993, doi: 10.1134/s0006297914100010.

89. Steinsaltz, D., and Evans, S. N. (2004) Markov mortality models: implications of quasistationarity and varying initial distributions, Theor. Popul. Biol., 65, 319-337, doi: 10.1016/j.tpb.2003.10.007.

90. Whittemore, K., Vera, E., Martínez-Nevado, E., Sanpera, C., and Blasco, M. A. (2019) Telomere shortening rate predicts species life span, Proc. Natl. Acad. Sci. USA, 116, 15122-15127, doi: 10.1073/pnas.1902452116.

91. Gavrilov, L. A. (1978) Mathematical model of aging of animals, Dokl. Akad. Nauk SSSR, 238, 490-492.

92. Avraam, D., de Magalhaes, J. P., and Vasiev, B. (2013) A mathematical model of mortality dynamics across the lifespan combining heterogeneity and stochastic effects, Exp. Gerontol., 48, 801-811, doi: 10.1016/j.exger.2013.05.054.

93. Milne, E. M. G. (2008) The natural distribution of survival, J. Theor. Biol., 255, 223-236, doi: 10.1016/j.jtbi.2008.07.021.

94. Laird, R. A., and Sherratt, T. N. (2010) The evolution of senescence in multi-component systems, Biosystems, 99, 130-139, doi: 10.1016/j.biosystems.2009.10.008.

95. Avraam, D., Arnold, S., Jones, D., and Vasiev, B. (2014) Time-evolution of age-dependent mortality patterns in mathematical model of heterogeneous human population, Exp. Gerontol., 60, 18-30, doi: 10.1016/j.exger.2014.09.006.

96. Boonekamp, J. J., Briga, M., and Verhulst, S. (2015) The heuristic value of redundancy models of aging, Exp. Gerontol., 71, 95-102, doi: 10.1016/j.exger.2015.09.005.

97. Charlesworth, B. (1994) Evolution in Age-structured Populations, 2nd Edn., Cambridge University Press, Cambridge.

98. Charlesworth, B. (2000) Fisher, Medawar, Hamilton and the evolution of aging, Genetics, 156, 927-931, doi: 10.1093/genetics/156.3.927.

99. Flatt, T., and Partridge, L. (2018) Horizons in the evolution of aging, BMC Biol., 16, 13, doi: 10.1186/s12915-018-0562-z.

100. Skulachev, V. P. (2011) Aging as a particular case of phenoptosis, the programmed death of an organism (A response to Kirkwood and Melov “On the programmed/non-programmed nature of ageing within the life history”), Aging, 3, 1120-1123, doi: 10.18632/aging.100403.

101. Gavrilova, N. S., Gavrilov, L. A., Severin, F. F., and Skulachev, V. P. (2012) Testing predictions of the programmed and stochastic theories of aging: comparison of variation in age at death, menopause, and sexual maturation, Biochemistry (Moscow), 77, 754-760, doi: 10.1134/S0006297912070085.