БИОХИМИЯ, 2023, том 88, вып. 8, с. 1412–1422

УДК 577.12

Защитные эффекты пероксиредоксина 6 при моделировании провоспалительного ответа с использованием макрофагов RAW 264.7

© 2023 С.Б. Парфенюк 1*lana_kras2@rambler.ru, О.В. Глушкова 1, М.Г. Шарапов 1, М.О. Хренов 1, С.М. Лунин 1, А.А. Кузекова 1, Э.К. Мубаракшина 1, Т.В. Новоселова 1, Д.А. Черенков 2, Е.Г. Новоселова 1

Институт биофизики клетки ФИЦ ПЦБНИ РАН, 142290 Пущино, Московская обл., Россия

ФГБОУ ВО Воронежский государственный университет инженерных технологий, 394036 Воронеж, Россия

Поступила в редакцию 05.06.2023
После доработки 14.07.2023
Принята к публикации 15.07.2023

DOI: 10.31857/S0320972523080092

КЛЮЧЕВЫЕ СЛОВА: пероксиредоксин 6, воспаление, цитокины, экспрессия генов, сигнальные каскады.

Аннотация

Целью работы было изучение действия пероксиредоксина 6 (PRDX6), рекомбинантного белка-антиоксиданта, на уровень провоспалительных ответов, вызванных воздействием эндотоксина на макрофаги RAW 264.7. Добавление липополисахаридов (ЛПС) в среду культивирования клеток RAW 264.7 ожидаемо увеличивало продукцию фактора некроза опухоли-альфа (TNF‑α), а добавление PRDX6 привело к достоверному снижению его продукции на 15–20%. Уровень продукции другого провоспалительного цитокина, IL‑1β, значительно повышенный эндотоксином, под воздействием PRDX6 полностью нормализовался. Кроме того, добавление PRDX6 снижало продукцию активных форм кислорода, индуцированную эндотоксином, а также препятствовало сверхэкспрессии гена Nos2 в клетках RAW 264.7. Результаты показали, что PRDX6 оказывает подавляющее действие на экспрессию гена Nfe2l2 и продукцию фактора транскрипции NRF‑2 в течение первых 6 ч культивирования клеток. Добавление эндотоксина вызывает активацию сигнальных каскадов NF‑κB и SAPK/JNK, при этом в присутствии PRDX6 происходит снижение активности этих сигнальных каскадов. Известно, что провоспалительный ответ клеток, вызванный бактериальным ЛПС, приводит к активации апоптоза и элиминации повреждённых клеток. Нашими исследованиями это подтверждается, поскольку ЛПС приводит к активации гена Trp53, маркера апоптоза. Добавление PRDX6 в первые часы развития острого провоспалительного ответа приводит к подавлению экспрессии гена Trp53, что указывает на защитный эффект PRDX6, снижающий апоптоз в макрофагах RAW 264.7.

Текст статьи

Пожалуйста, введите код, чтобы получить PDF файл с полным текстом статьи:

captcha

Сноски

* Адресат для корреспонденции.

Финансирование

Работа выполнена при поддержке Российского научного фонда, грант № 23‑24‑00041.

Благодарности

В работе использовали оборудование (планшет-ридер Infinite 200 («Tecan»)) центра коллективного пользования Пущинского научного центра.

Вклад авторов

С.Б. Парфенюк, Е.Г. Новоселова – концепция и руководство работой; С.Б. Парфенюк, О.В. Глушкова, М.Г. Шарапов, М.О. Хренов, Э.К. Мубаракшина, Т.В. Новоселова, А.А. Кузекова – проведение экспериментов; С.Б. Парфенюк, Е.Г. Новоселова, С.М. Лунин, О.В. Глушкова – обсуждение результатов исследования; С.Б. Парфенюк, Е.Г. Новоселова – написание текста; С.М. Лунин, Д.А. Черенков, О.В. Глушкова, М.Г. Шарапов – редактирование текста статьи.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических норм

Настоящая статья не содержит описания выполненных авторами исследований с участием людей или использованием животных в качестве объектов.

Список литературы

1. Barnes, P. J. (2017) Cellular and molecular mechanisms of asthma and COPD, Clin. Sci. (Lond), 13, 1541-1558, doi: 10.1042/CS20160487.

2. Joshi, N., Walter, J. M., and Misharin, A. V. (2018) Alveolar macrophages, Cell Immunol., 330, 86-90, doi: 10.1016/j.cellimm.2018.01.005.

3. Lu, X. J., Ning, Y. J., Liu, H., Nie, L., and Chen, J. (2018) A novel lipopolysaccharide recognition mechanism mediated by internalization in teleost macrophages, Front. Immunol., 9, 2758, doi: 10.3389/fimmu.2018.02758.

4. Челомбитько М. А. (2018) Роль активных форм кислорода в воспалении, Вестн. Моск. Унив., 73, 242-246.

5. Sharapov, M. G., Ravin, V. K., and Novoselov, V. I. (2014) Peroxyredoxins as multifunctional enzymes, Mol. Biol. (Mosk), 48, 600-628, doi: 10.1134/S0026893314040128.

6. Hanschmann, E. M., Godoy, J. R., Berndt, C., Hudemann, C., and Lillig, C. H. (2013) Thioredoxins, glutaredoxins, and peroxiredoxins – molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling, Antioxid. Redox Signal., 19, 1539-1605, doi: 10.1089/ars.2012.4599.

7. Arevalo, J. A., and Vázquez-Medina, J. P. (2018) The role of peroxiredoxin 6 in cell signaling, Antioxidants (Basel), 7, 172, doi: 10.3390/antiox7120172.

8. Sharapov, M. G., Goncharov, R. G., Parfenyuk, S. B., Glushkova, O. V., and Novoselov, V. I. (2022) The role of phospholipase activity of peroxiredoxin 6 in its transmembrane transport and protective properties, Int. J. Mol. Sci., 23, 152-165, doi: 10.3390/ijms232315265.

9. Chuchalin, A. G., Novoselov, V. I., Shifrina, O. N., Soodaeva, S. K., Yanin, V. A., et al. (2003) Peroxiredoxin VI in human respiratory system, Respir. Med., 97, 147-151, doi: 10.1053/rmed.2003.1429.

10. Kümin, A., Huber, C., Rülicke, T., Wolf, E., and Werner, S. (2006) Peroxiredoxin 6 is a potent cytoprotective enzyme in the epidermis, Am. J. Pathol., 169, 1194-1205, doi: 10.2353/ajpath.2006.060119.

11. Kümin, A., Schäfer, M., Epp, N., Bugnon, P., Born-Berclaz, C., et al. (2007) Peroxiredoxin 6 is required for blood vessel integrity in wounded skin, J. Cell. Biol., 179, 747-760, doi: 10.1083/jcb.200706090.

12. Sundar, I. K., Chung, S., Hwang, J. W., Arunachalam, G., Cook, S., et al. (2010) Peroxiredoxin 6 differentially regulates acute and chronic cigarette smoke-mediated lung inflammatory response and injury, Exp. Lung Res., 36, 451-462, doi: 10.3109/01902141003754128.

13. Fisher, A. B. (2011) Peroxiredoxin 6: a bifunctional enzyme with glutathione peroxidase and phospholipase A2 activities, Antioxid. Redox Signal., 15, 831-844, doi: 10.1089/ars.2010.3412.

14. Power, J. H., Asad, S., Chataway, T. K., Chegini, F., Manavis, J., et al. (2008) Peroxiredoxin 6 in human brain: molecular forms, cellular distribution and association with Alzheimer’s disease pathology, Acta Neuropathol., 115, 611-622, doi: 10.1007/s00401-008-0373-3.

15. Novoselova, E. G., Glushkova, O. V., Parfenuyk, S. B., Khrenov, M. O., Lunin, S. M., et al. (2019) Protective effect of peroxiredoxin 6 against toxic effects of glucose and cytokines in pancreatic RIN-m5F β-cells, Biochemistry (Moscow), 84, 637-643, doi: 10.1134/S0006297919060063.

16. Chen, S., Hu, Y., Zhang, J., and Zhang, P. (2021) Anti-inflammatory effect of salusinβ knockdown on LPS-activated alveolar macrophages via NF-κB inhibition and HO-1 activation, Mol. Med. Rep., 23, 127, doi: 10.3892/mmr.2020.11766.

17. Sharapov, M. G., Novoselov, V. I., and Ravin, V. K. (2009) Cloning, expression and comparative analysis of peroxiredoxine 6 from different species, Mol. Biol. (Mosk), 43, 505-511, doi: 10.1134/s0026893309030194.

18. Wu, D., and Yotnda, P. (2011) Production and detection of reactive oxygen species (ROS) in cancers, J. Vis. Exp., 57, 3357, doi: 10.3791/3357.

19. Glushkova, O. V., Khrenov, M. O., Novoselova, T. V., Lunin, S. M., Parfenyuk, S. B., et al. (2015) The role of the NF-κB, SAPK/JNK, and TLR4 signalling pathways in the responses of RAW 264.7 cells to extremely low intensity microwaves, Int. J. Radiat. Biol., 91, 321-328, doi: 10.3109/09553002.2014.996261.

20. Sharapov, M. G., Novoselov, V. I., and Gudkov, S. V. (2019) Radioprotective role of peroxiredoxin 6, Antioxidants (Basel), 8, 15, doi: 10.3390/antiox8010015.

21. Новоселов В. И. (2012) Роль пероксиредоксинов при окислительном стрессе в органах дыхания, Пульмонология, 83-87.

22. Ross, E. A., Devitt, A., and Johnson, J. R. (2021) Macrophages: the good, the bad, and the gluttony, Front. Immunol., 12, 708186, doi: 10.3389/fimmu.2021.708186.

23. Fukai, T., and Ushio-Fukai, M. (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases, Antioxid. Redox. Signal., 15, 1583-1606, doi: 10.1089/ars.2011.3999.

24. Zhang, X., Yu, Y., Lei, H., Cai, Y., Shen, J., et al. (2020) The Nrf-2/HO-1 signaling axis: a ray of hope in cardiovascular diseases, Cardiol. Res. Pract., 30, 5695-5723, doi: 10.1155/2020/5695723.

25. Park, M. H., Jo, M., Kim, Y. R., Lee, C. K., and Hong, J. T. (2016) Roles of peroxiredoxins in cancer, neurodegenerative diseases and inflammatory diseases, Pharmacol. Ther., 163, 1-23, doi: 10.1016/j.pharmthera.2016.03.018.

26. Webster, J. M., Kempen, L. J. A. P., Hardy, R. S., and Langen, R. C. J. (2020) Inflammation and skeletal muscle wasting during cachexia, Front. Physiol., 11, 597-675, doi: 10.3389/fphys.2020.597675.

27. Zhao, L. X., Du, J. R., Zhou, H. J., Liu, D. L., Gu, M. X., et al. (2016) Differences in proinflammatory property of six subtypes of peroxiredoxins and anti-inflammatory effect of ligustilide in macrophages, PLoS One, 11, e0164586, doi: 10.1371/journal.pone.0164586.

28. Yuan, F., Liu, R., Hu, M., Rong, X., Bai, L., et al. (2019) JAX2, an ethanol extract of Hyssopus cuspidatus Boriss, can prevent bronchial asthma by inhibiting MAPK/NF-κB inflammatory signaling, Phytomedicine, 57, 305-314, doi: 10.1016/j.phymed.2018.12.043.

29. Sharapov, M. G., Glushkova, O. V., Parfenyuk, S. B., Gudkov, S. V., Lunin, S. M., et al. (2021) The role of TLR4/NF-κB signaling in the radioprotective effects of exogenous PRDX6, Arch. Biochem. Biophys., 15, 108830, doi: 10.1016/j.abb.2021.108830.

30. Zhang, Y., Xia, G., Zhang, Y., Liu, J., Liu, X., et al. (2017) Palmitate induces VSMC apoptosis via toll like receptor (TLR)4/ROS/p53 pathway, Atherosclerosis, 263, 74-81, doi: 10.1016/j.atherosclerosis.2017.06.002.

31. Duran, X., Vilahur, G., and Badimon, L. (2009) Exogenous in vivo NO-donor treatment preserves p53 levels and protects vascular cells from apoptosis, Atherosclerosis, 205, 101-106, doi: 10.1016/j.atherosclerosis.2008.11.016.

32. Lee, M., Rey, K., Besler, K., Wang, C., and Choy, J. (2017) Immunobiology of nitric oxide and regulation of inducible nitric oxide synthase, Results. Probl. Cell Differ., 62, 181-207, doi: 10.1007/978-3-319-54090-0_8.

33. Dubey, M., Nagarkoti, S., Awasthi, D., Singh, A. K., Chandra, T., et al. (2016) Nitric oxide-mediated apoptosis of neutrophils through caspase-8 and caspase-3-dependent mechanism, Cell Death Dis., 7, e2348, doi: 10.1038/cddis.2016.248.