БИОХИМИЯ, 2023, том 88, вып. 2, с. 311–323

УДК 577.21;577.322.63

Узнавание γ‑субъединицы β‑субъединицей. Стабилизация GTP‑связанного состояния фактора инициации трансляции 2 архей и эукариот

© 2023 О.С. Никонов *alik@vega.protres.ru, Е.Ю. Никонова, А.Г. Тарабарова, А.О. Михайлина, О.В. Кравченко, Н.А. Невская, С.В. Никонов

Институт белка РАН, 142290 Пущино, Московская обл., Россия

Поступила в редакцию 26.10.2022
После доработки 27.01.2023
Принята к публикации 28.01.2023

DOI: 10.31857/S0320972523020100

КЛЮЧЕВЫЕ СЛОВА: фактор инициации трансляции 2, структура, βγ‑узнавание.

Аннотация

Фактор инициации трансляции 2 эукариот и архей (e/aIF2) функционирует как гетеротримерный комплекс. Он состоит из трех субъединиц (α, β, γ). Субъединицы α и β связаны с γ‑субъединицей водородными связями и Ван‑дер‑ваальсовыми взаимодействиями, но не контактируют друг с другом. Хотя основные функции фактора выполняет γ‑субъединица, надежное формирование αγ‑ и βγ‑комплексов необходимо для его правильного функционирования. В представленной работе мы внесли замены в структуру узнающей части βγ‑интерфейса и показали, что как у эукариот, так и у архей определяющую роль в узнавании субъединиц играет гидрофобный эффект. Форма и свойства ложбины на поверхности γ‑субъединицы способствуют переходу неупорядоченной узнающей части β‑субъединицы в α‑спираль, содержащую примерно одинаковое число остатков у архей и эукариот. Кроме того, на основании вновь полученных данных был сделан вывод, что для архей и эукариот переход γ‑субъединицы в активное состояние ведет к дополнительному контакту между ее переключателем 1 и С‑концевой частью β‑субъединицы, который стабилизирует спиральную конформацию переключателя.

Текст статьи

Пожалуйста, введите код, чтобы получить PDF файл с полным текстом статьи:

captcha

Сноски

* Адресат для корреспонденции.

Финансирование

Исследование было выполнено в рамках ГЗ ИБ РАН № АААА‑А19‑119122490038‑8.

Благодарности

Авторы благодарят Столбоушкину Е.А. за предоставление плазмид pET‑11a с геном, кодирующим гамма-субъединицу фактора инициации трансляции 2 археи S. solfataricus дикого типа, pET‑11a с геном гамма-субъединицы фактора инициации трансляции 2 археи S. solfataricus, мутантной по 181‑положению, а также pET‑11c с геном EIF2S2; Джус У.Ф. – за предоставление препарата белка SceIF2β; Габдулхакова А.Г. – за сбор дифракционных данных. Выражаем благодарность Пермякову С.Е. за возможность проводить эксперименты на приборе ProteOn XPR36 в Институте биологического приборостроения РАН.

Вклад авторов

С.В. Никонов – руководство работой; Е.Ю. Никонова, А.Г. Тарабарова, О.С. Никонов – проведение экспериментов; А.О. Михайлина – проведение SPR‑измерений; О.С. Никонов, Н.А. Невская, С.В. Никонов – обсуждение результатов исследования; О.С. Никонов – оформление рисунков; С.В. Никонов, Н.А. Невская – написание и редактирование текста статьи.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических норм

Настоящая статья не содержит описания выполненных авторами исследований с участием людей или использованием животных в качестве объектов.

Список литературы

1. Algire, M. A., Maag, D., and Lorsch, J. R. (2005) Pi release from eIF2, not GTP hydrolysis, is the step controlled by start-site selection during eukaryotic translation initiation, Mol. Cell, 20, 251-262, doi: 10.1016/j.molcel.2005.09.08.

2. Kapp, L. D., and Lorsch, J. R. (2004) The molecular mechanisms of eukaryotic translation, Annu. Rev. Biochem., 73, 657-704, doi: 10.1146/annurev.biochem.73.030403.080419.

3. Jackson, R. J., Hellen, C. U., and Pestova, T. V. (2010) The mechanism of eukaryotic translation initiation and principles of its regulation, Nat. Rev. Mol. Cell Biol., 11, 113-127, doi: 10.1038/nrm2838.

4. Sokabe, M., Yao, M., Sakai, N., Toya, S., and Tanaka, I. (2006) Structure of archaeal translational initiation factor 2bg-GDP reveals significant conformational change of the b-subunit and switch 1 region, Proc. Natl. Acad. Sci. USA, 103, 13016-13021, doi: 10.1073/pnas.0604165103.

5. Yatime, L., Mechulam, Y., Blanquet, S., and Schmitt, E. (2007) Structure of an archaeal heterotrimeric initiation factor 2 reveals a nucleotide state between the GTP and the GDP states, Proc. Natl. Acad. Sci. USA, 104, 18445-18450, doi: 10.1073/pnas.0706784104.

6. Stolboushkina, E., Nikonov, S., Nikulin, A., Bläsi, U., Manstein, D. J., Fedorov, R., Garber, M., and Nikonov, O. (2008) Crystal structure of the intact archaeal translation initiation factor 2 demonstrates very high conformational flexibility in the α- and β-subunits, J. Mol. Biol., 382, 680-691, doi: 10.1016/j.jmb.2008.07.039.

7. Adomavicius, T., Guaita, M., Zhou, Y., Jennings, M. D., Latif, Z., Roseman, A. M., and Pavitt, G. D. (2019) The structural basis of translational control by eIF2 phosphorylation, Nat. Commun., 10, 2136-2146, doi: 10.1038/s41467-019-10167-3.

8. Querido, J., Sokabe, M., Kraatz, S., Gordiyenko, Y., Skehel, J. M., Fraser, C., and Ramakrishnan, V. (2020) Structure of a human 48S translational initiation complex, Science, 369, 1220-1227, doi: 10.1126/science.aba4904.

9. Thoms, M., Buschauer, R., Ameismeier, M., Koepke, L., Denk, T., Hirschenberger, M., Kratzat, H., Hyan, M., Mackens-Kiani, T., Cheng, J., Straub, J. H., Sturzel, C. M., Frohlich, T., Berninghausen, O., Becker, T., Kirchhoff, F., Sparrer, K. M. J., and Beckmann, R. (2020) Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2, Science, 369, 1249-1255, doi: 10.1126/science.abc8665.

10. Thompson, G. M., Pacheco, E., Melo, E. O., and Castilho, B. A. (2000) Conserved sequences in the β subunit of archaeal and eukaryal translation initiation factor 2 (eIF2), absent from eIF5, mediate interaction with eIF2γ, Biochem. J., 347, 703-709, doi: 10.1042/bj3470703.

11. Kashiwagi, K., Yokoyama, T., Nishimoto, M., Takahashi, M., Sakamoto, A., Yonemochi, M., Shirouzu, M., and Ito, T. (2019) Structural basis for eIF2B inhibition in integrated stress response, Science, 364, 495-499, doi: 10.1126/science.AAW4104.

12. Laurino, J. P., Thompson, G. M., Pacheco, E., and Castilho, B. A. (1999) The β subunit of eukaryotic translation initiation factor 2 binds mRNA through the lysine repeats and a region comprising the C2-C2 motif, Mol. Cell. Biol., 19, 173-181, doi: 10.1128/mcb.19.1.173.

13. Hashimoto, N. N., Carnevalli, L. S., and Castilho, B. A. (2002) Translation initiation at non-AUG codons mediated by a weakened association of eukaryotic initiation factor (eIF) 2 subunits, Biochem. J., 367, 359-368, doi: 10.1042/bj20020556.

14. Huang, H. K., Yoon, H., Hanning, E. M., and Donahue, T. F. (1997) GTP hydrolysis controls stringent selection of the AUG start codon during translation initiation in Saccharomyces cerevisiae, Genes Dev., 11, 2396-2413, doi: 10.1101/gad.11.18.2396.

15. Donahue, T. F., Cigan, A. M., Pabich, E. K., and Valavicius, B. C. (1988) Mutations at a Zn(II) finger motif in the yeast eIF-2 β gene alter ribosomal start-site selection during the scanning process, Cell, 54, 621-632, doi: 10.1016/s0092-8674(88)80006-0.

16. Castilho-Valavicius, B., Thompson, G. M., and Donahue, T. F. (1992) Mutation analysis of the Cys-X2-Cys-X19-Cys-X2-Cys motif in the β subunit of eukaryotic translation initiation factor 2, Gene Expr., 2, 297-309.

17. Borck, G., Shin, B.-S., Stiller, B., Mimouni-Bloch, A., Thiele, H., Kim, J.-R., Thakur, M., Skinner, C., Aschenbach, L., Smirin-Yosef, P., Har-Zabav, A., Nurnberg, G., Altmuller, J., Frommolt, P., Hofmann, K., Konen, O., Nurnberg, P., Munnich, A., Schwartz, C. E., Gothelf, D., Colleaus, L., Dever, T. E., Kubisch, C., and Basel-Vanagaite, L. (2012) eIF2γ mutation that disrupts eIF2 complex integrity links intellectual disability to impaired translation initiation, Mol. Cell, 48, 641-646, doi: 10.1016/j.molcel.2012.09.005.

18. Никонов О. С., Кравченко О. В., Невская Н. А., Столбоушкина Е. А., Гарбер М. Б., Никонов С. В. (2021) Влияние миссенс-мутации Ile222Thr в SsoIF2 на сродство γ- и β-субъединиц aIF2, Кристаллография, 66, 772-776, doi: 10.31857/S0023476121050155.

19. Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., and Steinegger, M. (2022) ColabFold: making protein folding accessible to all, Nat. Methods, 19, 679-682, doi: 10.1038/s41592-022-01488-1.

20. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Ží-dek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli, P., and Hassabis, D. (2021) Highly accurate protein structure prediction with AlphaFold, Nature, 596, 583-589, doi: 10.1038/s41586-021-03819-2.

21. Mirdita, M., Steinegger, M., and Söding, J. (2019) MMseqs2 desktop and local web server app for fast, interactive sequence searches, Bioinformatics, 35, 2856-2858, doi: 10.1093/bioinformatics/bty1057.

22. Steinegger, M., Meier, M., Mirdita, M., Vöhringer, H., Haunsberger, S. J., and Söding, J. (2019) HH-suite3 for fast remote homology detection and deep protein annotation, BMC Bioinformatics, 20, 473, doi: 10.1186/s12859-019-3019-7.

23. Eastman, P., Swails, J., Chodera, J. D., McGibbon, R. T., Zhao, Y., Beauchamp, K.A., Wang, L-P., Simmonett, A. C., Harrigan, M. P., Stern, C. D., Wiewiora, R. P., Brooks, B. R., and Pande, V. S. (2017) OpenMM 7: Rapid development of high performance algorithms for molecular dynamics, PLOS Comput. Biol., 13, e1005659, doi: 10.1371/journal.pcbi.1005659.

24. Emsley, P., Lohkamp, B., Scott, W., and Cowtan, K. (2010) Features and Development of Coot, Acta Crystallogr. Sec. D Biol. Crystallogr., 66, 486-501, doi: 10.1107/S0907444910007493.

25. Nikonov, O., Stolboushkina, E., Arkhipova, V., Kravchenko, O., Nikonov, S., and Garber, M. (2014) Conformational transitions in the γ subunit of the archaeal translation initiation factor 2, Acta Cryst., D70, 658-667, doi: 10.1107/S1399004713032240.

26. Dubiez, E., Aleksandrov, A., Lazennec-Schurdevin, C., Mechulam, Y., and Schmitt, E. (2015) Identification of a second GTP-bound magnesium ion in archaeal initiation factor 2, Nucleic Acids Res., 43, 2946-2957, doi: 10.1093/nar/gkv053.

27. Gutierrez, P., Osborne, M.J., Siddiqui, N., Trempe, J. F., Arrowsmith, C. and Gehring, K. (2004) Structure of the archaeal translation initiation factor aIF2β from Methanobacterium thermoautotrophicum: implications for translation initiation, Protein Sci., 13, 659-667, doi: 10.1110/ps.03506604.

28. Vasile, F., Pechkova, E., and Nicolini, C. (2008) Solution structure of the β-subunit of the translation initiation factor aIF2 from archaebacteria Sulfolobus solfataricus, Proteins, 70, 1112-1115, doi: 10.1002/Prot.21797.

29. Schmitt, E., Naveau, M., and Mechulam, Y. (2010) Eukaryotic and archaeal translation initiation factor 2: a heterotrimeric tRNA carrier, FEBS Lett., 584, 405-412, doi: 10.1016/j.febslet.2009.11.002.