БИОХИМИЯ, 2022, том 87, вып. 11, с. 1533–1553
УДК 615.033.1
Биохимические основы селективного накопления и таргетной доставки фотосенсибилизаторов в опухолевые ткани
Обзор
Российский университет дружбы народов (РУДН), 117198 Москва, Россия
Поступила в редакцию 01.06.2022
После доработки 17.08.2022
Принята к публикации 06.09.2022
DOI: 10.31857/S032097252211001X
КЛЮЧЕВЫЕ СЛОВА: фотодинамическая терапия, фотосенсибилизатор, таргетная доставка, селективность, хлорин, аминолевулиновая кислота.
Аннотация
Одним из ключевых параметров фотодинамической терапии злокачественных новообразований является селективность накопления фотосенсибилизаторов в опухолевой ткани. Недостаточная избирательность фотосенсибилизаторов по отношению к патологически измененным тканям и генерализованное распространение по организму приводит к развитию тяжелых токсических эффектов, в том числе кожной фототоксичности. Механизмы селективности фотосенсибилизаторов в отношении опухолевой ткани включают избирательное связывание с белками и липопротеинами крови, количество рецепторов к которым увеличено на мембранах опухолевых клеток, поглощение макрофагами в опухоли, лучшую растворимость при низком рН, характерном для опухолевых клеток, и другие механизмы. В настоящее время повышение эффективности фотодинамической терапии во многом связывают с дополнительным нацеливанием фотосенсибилизаторов на ткани опухоли. Стратегии таргетной доставки основываются на различиях в метаболизме и профилях экспрессии опухолевых и здоровых клеток. В этих клетках могут по-разному экспрессироваться рецепторы, протеазы или трансмембранные переносчики. В частности, ускоренный метаболизм у многих типов опухолей приводит к гиперэкспрессии рецепторов эпидермального фактора роста, фолиевой килоты, трансферрина и ряда других соединений. В настоящем обзоре рассмотрены биохимические основы избирательного накопления в опухолях фотосенсибилизаторов разных классов (хлорины, фталоцианины, производные 5‑аминолевулиновой кислоты и др.) и обсуждаются различные стратегии таргетной доставки с акцентом на конъюгацию фотосенсибилизаторов с лигандами рецепторов, гиперэкспрессируемых в опухолевых клетках.
Текст статьи
Конфликт интересов
Автор заявляет об отсутствии конфликта интересов.
Соблюдение этических норм
Настоящая статья не содержит описания каких-либо исследований с участием людей или животных в качестве объектов.
Список литературы
1. Schneider, R., Tirand, L., Frochot, C., Vanderesse, R., Thomas, N., et al. (2006) Recent improvements in the use of synthetic peptides for a selective photodynamic therapy, Curr. Med. Chem. Anti Cancer Agents, 6, 469-488, doi: 10.2174/187152006778226503.
2. Ulfo, L., Costantini, P. E., Di Giosia, M., Danielli, A., and Calvaresi, M. (2022) EGFR-targeted photodynamic therapy, Pharmaceutics, 14, 241, doi: 10.3390/pharmaceutics14020241.
3. Schmitt, F., and Juillerat-Jeanneret, L. (2012) Drug targeting strategies for photodynamic therapy, Anticancer Agents Med Chem., 12, 500-525, doi: 10.2174/187152012800617830.
4. Sharma, S., Jajoo, A., and Dube, A. (2007) 5-Aminolevulinic acid-induced protoporphyrin-IX accumulation and associated phototoxicity in macrophages and oral cancer cell lines, J. Photochem. Photobiol. B, 88, 156-162, doi: 10.1016/j.jphotobiol.2007.07.005.
5. Castano, A. P., Demidova, T. N., and Hamblin, M. R. (2004) Mechanisms in photodynamic therapy: part one – photosensitizers, photochemistry and cellular localization, Photodiag. Photodynam. Ther., 1, 279-293, doi: 10.1016/S1572-1000(05)00007-4.
6. Chilakamarthi, U., and Giribabu, L. (2017) Photodynamic therapy: past, present and future, Chem Rec., 17, 775-802, doi: 10.1002/tcr.201600121.
7. Филоненко Е. В., Серова Л. Г. (2016) Фотодинамическая терапия в клинической практике, Biomed. Photonics, 5, 26-37.
8. Kwiatkowski, S., Knap, B., Przystupski, D., Saczko, J., Kędzierska, E., et al. (2018) Photodynamic therapy – mechanisms, photosensitizers and combinations, Biomed. Pharmacother., 106, 1098-1107, doi: 10.1016/j.biopha.2018.07.049.
9. Juzeniene, A., and Moan, J. (2007) The history of PDT in Norway/Part one: identification of basic mechanisms of general PDT, Photodiag. Photodynam. Ther., 4, 3-11, doi: 10.1016/j.pdpdt.2006.11.002.
10. Мачинская Е. А., Иванова-Радкевич В. И. (2013) Обзор механизмов селективного накопления фотосенсибилизаторов различной химической структуры в опухолевой ткани, Фотодинамическая терапия и фотодиагностика, 2, 28-32.
11. Maziere, J. C., Morliere, P., and Santus, R. (1991) The role of the low density lipoprotein receptor pathway in the delivery of lipophilic photosensitizers in the photodynamic therapy of tumours, J. Photochem. Photobiol. B Biol., 8, 351-360, doi: 10.1016/1011-1344(91)80111-t.
12. Niamien Konan, Y., Gurny, R., and Allemann, E. (2002) State of the art in the delivery of photosensitizers for photodynamic therapy, J. Photochem. Photobiol. B Biol., 66, 89-106, doi: 10.1016/s1011-1344(01)00267-6.
13. Jones, H. J., Vernon, D. I., and Brown, S. B. (2003) Photodynamic therapy effect of m-THPC (Foscan) in vivo: correlation with pharmacokinetics, Br. J. Cancer, 89, 398-404, doi: 10.1038/sj.bjc.6601101.
14. Moan, J., and Berg, K. (1991) The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen, Photochem. Photobiol., 53, 549-553, doi: 10.1111/j.1751-1097.1991.tb03669.x.
15. Lukyanets, E. A. (1999) Phthalocyanines as photosensitizers in the photodynamic therapy of cancer, J. Porphyrins Phthalocyanines, 3, 424-432, doi: 10.1002/(SICI)1099-1409(199908/10)3:6/7<424::AID-JPP151>3.0.CO;2-K.
16. Zheng, G., Li, H., Zhang, M., Lund-Katz, S., Chance, B., et al. (2002) Low-density lipoprotein reconstituted by pyropheophorbide cholesteryl oleate as target specific photosensizer, Bioconj. Chem., 13, 392-396, doi: 10.1021/bc025516h.
17. Nowis, D., Makowski, M., Stokłosa, T., Legat, M., Issat, T., et al. (2005) Direct tumor damage mechanisms of photodynamic therapy, Acta Biochim. Pol., 52, 339-352.
18. Tang, Y., Liu, Y., Wang, S., Tian, Y., Li, Y., et al. (2019) Depletion of collagen by losartan to improve tumor accumulation and therapeutic efficacy of photodynamic nanoplatforms, Drug Deliv. Transl. Res., 9, 615-624, doi: 10.1007/s13346-018-00610-1.
19. Moan, J., and Peng, Q. (2003) An outline of the history of PDT, in Photodynamic Therapy. Comprehensive series in Photochem. Photobiol. Sci. Ed. T. Patrice, The Royal Society of Chemistry, London, pp. 3-17.
20. Pottier, R., and Kennedy, J. C. (1990) The possible role of ionic species in selective biodistribution of photochemotherapeutic agents toward neoplastic tissue, J. Photochem. Photobiol. B Biol., 8, 1-16, doi: 10.1016/1011-1344(90)85183-w.
21. Solban, N., Rizvi, I., and Hasan, T. (2006) Targeted photodynamic therapy, Lasers Surg. Med., 38, 522-531, doi: 10.1002/lsm.20345.
22. Wiedmann, M. W., and Caca, K. (2004) General principles of photodynamic therapy (PDT) and gastrointestinal applications, Curr. Pharmaceut. Biotechnol., 5, 397-408, doi: 10.2174/1389201043376805.
23. Dougherty, T. J., Potter, W. R., and Weishaupt, K. R. (1984) Porphyrin Localization and Treatment of Tumors (Liss, A. R. ed) pp. 301-314.
24. Filonenko, E. V., Kaprin, A. D., Alekseev, B. Ya., Apolikhin, O. I., Slovokhodov, E. K., et al. (2016) 5-aminolevulinic acid in intraoperative photodynamic therapy of bladder cancer (results of multicenter trial), Photodiagnosis Photodyn. Ther., 16, 106-109, doi: 10.1016/j.pdpdt.2016.09.009.
25. Filonenko, E., Kaprin, A., Urlova, A., Grigorievykh, N., and Ivanova-Radkevich, V. (2020) Topical 5-aminolevulinic acid-mediated photodynamic therapy for basal cell carcinoma, Photodiagnosis Photodyn. Ther., 30, 101644, doi: 10.1016/j.pdpdt.2019.101644.
26. Kloek, J., Akkermans, W., and Beijersbergen van Henegouwen, G. M. (1998) Derivatives of 5-aminolevulinic acid for photodynamic therapy: enzymatic conversion into protoporphyrin, Photochem. Photobiol., 67, 150-154, doi: 10.1111/j.1751-1097.1998.tb05178.x.
27. Каприн А. Д., Трушин А. А., Головащенко М. П., Иванова-Радкевич В. И., Чиссов В. И., и др. (2019) Повышение эффективности диагностики рака мочевого пузыря при использовании цистоскопии с гексиловым эфиром 5-АЛК, Biomedical Photonics, 8, 29-37, doi: 10.24931/2413-9432-2019-8-1-29-37.
28. Якубовская Р. И., Панкратов А. А., Филоненко Е. В., Лукьянец Е. А., Иванова-Радкевич В. И., и др. (2018) Сравнительное экспериментальное исследование специфической активности 5-АЛК и гексилового эфира 5-АЛК, Biomedical Photonics, 7, 43-46, doi: 10.24931/2413-9432-2018-7-3-43-46.
29. Lopez, R. F., Lange, N., Guy, R., and Bentley, M. V. (2004) Photodynamic therapy of skin cancer: controlled drug delivery of 5-ALA and its esters, Adv. Drug. Deliv. Rev., 56, 77-94, doi: 10.1016/j.addr.2003.09.002.
30. Malik, Z., Kostenich, G., Roitman, L., Ehrenberg, B., and Orenstein, A. (1995) Topical application of 5-aminolevulinic acid, DMSO and EDTA: protoporphyrin IX accumulation in skin and tumours of mice, J. Photochem. Photobiol. B Biol., 28, 213-218, doi: 10.1016/1011-1344(95)07117-k.
31. Fukuda, H., Paredes, S., and Batlle, A. M. (1992) Tumour-localizing properties of porphyrins. In vivo studies using free and liposome encapsulated aminolevulinic acid, Comp. Biochem. Physiol. B, 102, 433-436, doi: 10.1016/0305-0491(92)90147-j.
32. Peng, Q., Warloe, T., Moan, J., Heyerdahl, H., Steen, H. B., et al. (1995) Distribution of 5-aminolevulinic acid-induced porphyrins in noduloulcerative basal cell carcinoma, Photochem. Photobiol., 62, 906-913, doi: 10.1111/j.1751-1097.1995.tb09154.x.
33. Kloek, J., and Beijersbergen van Henegouwen, G. M. (1996) Prodrugs of 5-aminolevulinic acid for photodynamic therapy, Photochem. Photobiol., 64, 994-1000, doi: 10.1111/j.1751-1097.1996.tb01868.x.
34. Филоненко Е. В., Каприн А. Д., Алексеев Б. Я., Иванова-Радкевич В. И., Словоходов Е. К., и др. (2017) Флуоресцентная диагностика рака мочевого пузыря с препаратом гексасенс – результаты многоцентрового клинического исследования, Biomedical Photonics, 6, 20-27, doi: 10.24931/2413-9432-2017-6-1-20-27.
35. Slovokhodov, E. K., Ivanova-Radkevich, V. I., and Brodsky, I. B. (2017) Fluorescent diagnosis of bladder cancer by hexasens as a drug, J. Biol. Today’s World, 6, 123-128, doi: 10.15412/J.JBTW.01060701.
36. Ivanova-Radkevich, V. I., Smirnova, I. P., Kuznetsova, O. M., Lobaeva, T. A., Gushchina, Yu. Sh., et al. (2016) Organization of clinical trials of photosensitizer based on 5-aminolevulinic acid hexyl ester, Ind. J. Sci. Technol., 9, 1-7, doi: 10.17485/ijst/2016/v9i18/93759.
37. Shen, Y., Li, X., Dong, D., Zhang, B., Xue, Y., and Shang, P. (2018) Transferrin receptor 1 in cancer: a new sight for cancer therapy, Am. J. Cancer Res., 8, 916-931.
38. Cavanaugh, P. G. (2002) Synthesis of chlorin e6-transferrin and demonstration of its light-dependent in vitro breast cancer cell killing ability, Breast Cancer Res. Treat., 72, 117-130, doi: 10.1023/a:1014811915564.
39. Gijsens, A., Derycke, A. S., Missiaen, L., De Vos, D., Huwyler, J., et al. (2002) Targeting of the photocytotoxic compound AlPcS4 to Hela cells by transferrin conjugated PEG-liposomes, Int. J. Cancer, 101, 78-85, doi: 10.1002/ijc.10548.
40. Derycke, A. S., Kamuhabwa, A., Gijsens, A., Roskams, T., De Vos, D., et al. (2004) Transferrin-conjugated liposome targeting of photosensitizer AlPcS4 to rat bladder carcinoma cells, J. Natl. Cancer Inst., 96, 1620-1630, doi: 10.1093/jnci/djh314.
41. Jadia, R., Kydd, J., and Rai, P. (2018) Remotely phototriggered, transferrin-targeted polymeric nanoparticles for the treatment of breast cancer, Photochem. Photobiol., 94, 765-774, doi: 10.1111/php.12903.
42. Hamblin, M. R., and Newman, E. L. (1994) Photosensitizer targeting in photodynamic therapy. I. Conjugates of haematoporphyrin with albumin and transferrin, J. Photochem. Photobiol. B Biol., 26, 45-56, doi: 10.1016/1011-1344(94)85035-6.
43. Sardoiwala, M. N., Kushwaha, A. C., Dev, A., Shrimali, N., Guchhait, P., et al. (2020) Hypericin-loaded transferrin nanoparticles induce PP2A-regulated BMI1 degradation in colorectal cancer-specific chemo-photodynamic therapy, ACS Biomater. Sci. Eng., 6, 3139-3153, doi: 10.1021/acsbiomaterials.9b01844.
44. Schneider, R., Schmitt, F., Frochot, C., Fort, Y., Lourette, N., et al. (2005) Design, synthesis, and biological evaluation of folic acid targeted tetraphenylporphyrin as novel photosensitizers for selective photodynamic therapy, Bioorg. Med. Chem., 13, 2799-2808, doi: 10.1016/j.bmc.2005.02.025.
45. Gravier, J., Schneider, R., Frochot, C., Bastogne, T., Schmitt, F., et al. (2008) Improvement of meta-tetra(hydroxyphenyl)chlorin-like photosensitizer selectivity with folate-based targeted delivery. Synthesis and in vivo delivery studies, J. Med. Chem., 51, 3867-3877, doi: 10.1021/jm800125a.
46. Nwahara, N., Abrahams, G., Prinsloo, E., and Nyokong, T. (2021) Folic acid-modified phthalocyanine-nanozyme loaded liposomes for targeted photodynamic therapy, Photodiagnosis Photodyn. Ther., 36, 102527, doi: 10.1016/j.pdpdt.2021.102527.
47. Liang, X., Xie, Y., Wu, J., Wang, J., Petković, M., et al. (2021) Functional titanium dioxide nanoparticle conjugated with phthalocyanine and folic acid as a promising photosensitizer for targeted photodynamic therapy in vitro and in vivo, J. Photochem. Photobiol. B, 215, 112122, doi: 10.1016/j.jphotobiol.2020.112122.
48. Akbarzadeh, F., Khoshgard, K., Arkan, E., Hosseinzadeh, L., and Hemati Azandaryani, A. (2018) Evaluating the photodynamic therapy efficacy using 5-aminolevulinic acid and folic acid-conjugated bismuth oxide nanoparticles on human nasopharyngeal carcinoma cell line, Artif. Cells Nanomed. Biotechnol., 46, 514-523, doi: 10.1080/21691401.2018.1501376.
49. Hwang, J. W., Jung, S. J., Cheong, T. C., Kim, Y., Shin, E. P., et al. (2019) Smart hybrid nanocomposite for photodynamic inactivation of cancer cells with selectivity, J. Phys. Chem. B, 123, 6776-6783, doi: 10.1021/acs.jpcb.9b04301.
50. Son, J., Yang, S. M., Yi, G., Roh, Y. J., Park, H., et al. (2018) Folate-modified PLGA nanoparticles for tumor-targeted delivery of pheophorbide a in vivo, Biochem. Biophys. Res. Commun., 498, 523-528, doi: 10.1016/j.bbrc.2018.03.013.
51. Bharathiraja, S., Moorthy, M. S., Manivasagan, P., Seo, H., Lee, K. D., et al. (2017) Chlorin e6 conjugated silica nanoparticles for targeted and effective photodynamic therapy, Photodiagnosis Photodyn. Ther., 19, 212-220, doi: 10.1016/j.pdpdt.2017.06.001.
52. Hilgenbrink, A. R., and Low, P. S. (2005) Folate receptor-mediated drug targeting: from therapeutics to diagnostics, J. Pharm. Sci., 94, 2135-2146, doi: 10.1002/jps.20457.
53. Scaranti, M., Cojocaru, E., Banerjee, S., and Banerji, U. (2020) Exploiting the folate receptor α in oncology, Nat. Rev. Clin. Oncol., 17, 349-359, doi: 10.1038/s41571-020-0339-5.
54. Juillerat-Jeanneret, L., and Schmitt, F. (2007) Chemical modification of therapeutic drugs or drug vector systems to achieve targeted therapy: looking for the Grail, Med. Res. Rev., 27, 574-590, doi: 10.1002/med.20086.
55. Pan, X., Xie, J., Li, Z., Chen, M., Wang, M., et al. (2015) Enhancement of the photokilling effect of aluminum phthalocyanine in photodynamic therapy by conjugating with nitrogen-doped TiO2 nanoparticles, Colloids Surf. B Biointerfaces, 130, 292-298, doi: 10.1016/j.colsurfb.2015.04.028.
56. Yang, S. W., Jeong, Y. I., Kook, M. S., and Kim, B. H. (2022) Reactive oxygen species and folate receptor-targeted nanophotosensitizers composed of folic acid-conjugated and poly(ethylene glycol)-chlorin e6 tetramer having diselenide linkages for targeted photodynamic treatment of cancer cells, Int. J. Mol. Sci., 23, 3117, doi: 10.3390/ijms23063117.
57. Salomon, D. S., Brandt, R., Ciardiello, F., and Normanno, N. (1995) Epidermal growth factor-related peptides and their receptors in human malignancies, Crit. Rev. Oncol. Hematol., 19, 183-232, doi: 10.1016/1040-8428(94)00144-i.
58. Vieira, A. V., Lamaze, C., and Schmid, S. L. (1996) Control of EGF receptor signaling by clathrin-mediated endocytosis, Science, 274, 2086-2089, doi: 10.1126/science.274.5295.2086.
59. Lutsenko, S. V., Feldman, N. B., Finakova, G. V., Posypanova, G. A., Severin, S. E., et al. (1999) Targeting phthalocyanines to tumor cells using epidermal growth factor conjugates, Tumor Biol., 20, 218-224, doi: 10.1159/000030066.
60. Gijsens, A., Missiaen, L., Merlevede, W., and De Witte, P. (2000) Epidermal growth factor-mediated targeting of chlorin e6 selectively potentiates its photodynamic activity, Cancer Res., 60, 2197-2202.
61. Castilho, M. L., Jesus, V. P. S., Vieira, P. F. A., Hewitt, K. C., and Raniero, L. (2021) Chlorin e6–EGF conjugated gold nanoparticles as a nanomedicine based therapeutic agent for triple negative breast cancer, Photodiagnosis Photodyn. Ther., 33, 102186, doi: 10.1016/j.pdpdt.2021.102186.
62. Tsai, W.-H., Yu, K.-H., Huang, Y.-C., and Lee, C.-I. (2018) EGFR-targeted photodynamic therapy by curcumin-encapsulated chitosan/TPP nanoparticles, Int. J. Nanomed., 13, 903-916, doi: 10.2147/IJN.S148305.
63. Liu, Q., Pang, M., Tan, S., Wang, J., Chen, Q., et al. (2018) Potent peptide-conjugated silicon phthalocyanines for tumor photodynamic therapy, J. Cancer, 9, 310-320, doi: 10.7150/jca.22362.
64. Wu, J., Lin, Y., Li, H., Jin, Q., and Ji, J. (2017) Zwitterionic stealth peptide-capped 5-aminolevulinic acid prodrug nanoparticles for targeted photodynamic therapy, J. Colloid Interf. Sci., 485, 251-259, doi: 10.1016/j.jcis.2016.09.012.
65. Kamarulzaman, E. E., Gazzali, A. M., Acherar, S., Frochot, C., Barberi-Heyob, M., et al. (2015) New peptide-conjugated chlorin-type photosensitizer targeting neuropilin-1 for anti-vascular targeted photodynamic therapy, Int. J. Mol. Sci., 16, 24059-24080, doi: 10.3390/ijms161024059.
66. Thomas, N., Bechet, D., Becuwe, P., Tirand, L., Vanderesse, R., et al. (2009) Peptide-conjugated chlorin-type photosensitizer binds neuropilin-1 in vitro and in vivo, J. Photochem. Photobiol. B, 96, 101-108, doi: 10.1016/j.jphotobiol.2009.04.008.
67. Yan, S., Tang, D., Hong, Z., Wang, J., Yao, H., et al. (2021) CD133 peptide–conjugated pyropheophorbide-a as a novel photosensitizer for targeted photodynamic therapy in colorectal cancer stem cells, Biomater. Sci., 9, 2020-2031, doi: 10.1039/d0bm01874k.
68. El-Akra, N., Noirot, A., Faye, J. C., and Souchard, J. P. (2006) Synthesis of estradiol–pheophorbide a conjugates: evidence of nuclear targeting, DNA damage and improved photodynamic activity in human breast cancer and vascular endothelial cells, Photochem. Photobiol. Sci., 5, 996-999, doi: 10.1039/b606117f.
69. Swamy, N., Purohit, A., Fernandez-Gacio, A., Jones, G. B., and Ray, R. (2006) Nuclear estrogen receptor targeted photodynamic therapy: selective uptake and killing of MCF-7 breast cancer cells by a C17alpha–alkynylestradiol–porphyrin conjugate, J. Cell. Biochem., 99, 966-977, doi: 10.1002/jcb.20955.
70. Khan, E. H., Ali, H., Tian, H., Rousseau, J., Tessier, G., et al. (2003) Synthesis and biological activities of phthalocyanine–estradiol conjugates, Bioorg. Med. Chem. Lett., 13, 1287-1290, doi: 10.1016/s0960-894x(03)00120-3.
71. Fernandez-Gacio, A., Fernandez-Marcos, C., Swamy, N., Dunn, D., and Ray, R. (2006) Photodynamic cell-kill analysis of breast tumor cells with a tamoxifen–pyropheophorbide conjugate, J. Cell. Biochem., 99, 665-670, doi: 10.1002/jcb.20932.
72. Iqbal, J., Ginsburg, O. M., Wijeratne, T. D., Howell, A., Evans, G., et al. (2012) Endometrial cancer and venous thromboembolism in women under age 50 who take tamoxifen for prevention of breast cancer: a systematic review, Cancer Treat. Rev., 38, 318-328, doi: 10.1016/j.ctrv.2011.06.009.
73. Dong, C., and Chen, L. (2014) Second malignancies after breast cancer: the impact of adjuvant therapy, Mol. Clin. Oncol., 2, 331-336, doi: 10.3892/mco.2014.250.
74. Díaz, M., Lobo, F., Hernández, D., Amesty, Á., Valdés-Baizabal, C., et al. (2021) FLTX2: a novel tamoxifen derivative endowed with antiestrogenic, fluorescent, and photosensitizer properties, Int. J. Mol. Sci., 22, 5339, doi: 10.3390/ijms22105339.
75. Pawar, S., Koneru, T., McCord, E., Tatiparti, K., Sau, S., et al. (2021) LDL receptors and their role in targeted therapy for glioma: a review, Drug Discov. Today, 26, 1212-1225, doi: 10.1016/j.drudis.2021.02.008.
76. Floeth, M., Elges, S., Gerss, J., Schwöppe, C., Kessler, T., et al. (2021) Low-density lipoprotein receptor (LDLR) is an independent adverse prognostic factor in acute myeloid leukaemia, Br. J. Haematol., 192, 494-503, doi: 10.1111/bjh.16853.
77. Jori, G., and Reddi, E. (1993) The role of lipoproteins in the delivery of tumour-targeting photosensitizers, Int. J. Biochem., 25, 1369-1375, doi: 10.1016/0020-711x(93)90684-7.
78. Zhou, C., Milanesi, C., and Jori, G. (1988) An ultrastructural comparative evaluation of tumors photosensitized by porphyrins administered in aqueous solution, bound to liposomes or to lipoproteins, Photochem. Photobiol., 48, 487-492, doi: 10.1111/j.1751-1097.1988.tb02850.x.
79. Hamblin, M. R., and Newman, E. L. (1994) Photosensitizer targeting in photodynamic therapy. II. Conjugates of haematoporphyrin with serum lipoproteins, J. Photochem. Photobiol., 26, 147-157, doi: 10.1016/1011-1344(94)07036-9.
80. Polo, L., Valduga, G., Jori, G., and Reddi, E. (2002) Low-density lipoprotein receptors in the uptake of tumour photosensitizers by human and rat transformed fibroblasts, Int. J. Biochem. Cell Biol., 34, 10-23, doi: 10.1016/s1357-2725(01)00092-9.
81. Song, L., Li, H., Sunar, U., Chen, J., Corbin, I., et al. (2007) Naphthalocyanine-reconstituted LDL nanoparticles for in vivo cancer imaging and treatment, Int. J. Nanomedicine, 2, 767-774.
82. Wang, C., Zhao, X., Jiang, H., Wang, J., Zhong, W., et al. (2021) Transporting mitochondrion-targeting photosensitizers into cancer cells by low-density lipoproteins for fluorescence-feedback photodynamic therapy, Nanoscale, 13, 1195-1205, doi: 10.1039/d0nr07342c.
83. Cao, W., Ng, K. K., Corbin, I., Zhang, Z., Ding, L., et al. (2009) Synthesis and evaluation of a stable bacteriochlorophyll-analog and its incorporation into high-density lipoprotein nanoparticles for tumor imaging, Bioconjug. Chem., 20, 2023-2031, doi: 10.1021/bc900404y.
84. Fujita, M., Lee, B.-S., Khazenzon, N. M., Penichet, M. L., Wawrowsky, K. A., et al. (2007) Brain tumor tandem targeting using a combination of monoclonal antibodies attached to biopoly(β-L-malic acid), J. Control Release, 122, 356-363, doi: 10.1016/j.jconrel.2007.05.032.
85. Savellano, P., and Hasan, T. (2005) Photochemical targeting of epidermal growth factor receptor: a mechanistic study, Clin. Can. Res., 11, 1658-1668, doi: 10.1158/1078-0432.CCR-04-1902.
86. Low, K. P., Bhuvaneswari, R., Thong, P. S., Bunte, R. M., and Soo, K. C. (2016) Novel delivery of Chlorin e6 using anti-EGFR antibody tagged virosomes for fluorescence diagnosis of oral cancer in a hamster cheek pouch model, Eur. J. Pharm. Sci., 83, 143-154, doi: 10.1016/j.ejps.2015.12.023.
87. Nishie, H., Kataoka, H., Yano, S., Yamaguchi, H., Nomoto, A., et al. (2018) Excellent anti-tumor effects for gastrointestinal cancers using photodynamic therapy with a novel glucose conjugated chlorin e6, Biochem. Biophys. Res. Commun., 496, 1204-1209, doi: 10.1016/j.bbrc.2018.01.171.
88. Osaki, T., Hibino, S., Yokoe, I., Yamaguchi, H., Nomoto, A., et al. (2019) A basic study of photodynamic therapy with glucose-conjugated chlorin e6 using mammary carcinoma xenografts, Cancers (Basel), 11, 636, doi: 10.3390/cancers11050636.
89. Desroches, M. C., Kasselouri, A., Meyniel, M., Fontaine, P., Goldmann, M., et al. (2004) Incorporation of glycoconjugated porphyrin derivatives into phospholipid monolayers: a screening method for the evaluation of their interaction with a cell membrane, Langmuir, 20, 11698-11705, doi: 10.1021/la0482610.
90. Bautista-Sanchez, A., Kasselouri, A., Desroches, M. C., Blais, J., Maillard, P., et al. (2005) Photophysical properties of glucoconjugated chlorins and porphyrins and their associations with cyclodextrins, J. Photochem. Photobiol. B Biol., 81, 154-162, doi: 10.1016/j.jphotobiol.2005.05.013.
91. Soyama, T., Sakuragi, A., Oishi, D., Kimura, Y., Aoki, H., et al. (2021) Photodynamic therapy exploiting the anti-tumor activity of mannose-conjugated chlorin e6 reduced M2-like tumor-associated macrophages, Transl. Oncol., 14, 101005, doi: 10.1016/j.tranon.2020.101005.