БИОХИМИЯ, 2022, том 87, вып. 9, с. 1203–1222
УДК 576.32/36
Роль стресса эндоплазматического ретикулума в дифференцировке клеток мезенхимного происхождения
Обзор
Московский государственный университет имени М.В. Ломоносова, биологический факультет, 119991 Москва, Россия
Поступила в редакцию 05.05.2022
После доработки 28.06.2022
Принята к публикации 30.06.2022
DOI: 10.31857/S0320972522090032
КЛЮЧЕВЫЕ СЛОВА: эндоплазматический ретикулум, дифференцировка, стресс эндоплазматического ретикулума, UPR, миофибробласты, фиброз, адипогенез, миогенез, остеобластогенез, остеокластогенез.
Аннотация
Эндоплазматический ретикулум (ЭПР) – это мультифункциональный мембранный компартмент, одной из основных функций которого является котрансляционный перенос и процессинг секреторных, лизосомных и трансмембранных белков. Неправильный процессинг белков при нарушении гомеостаза ЭПР приводит к состоянию, которое называется «стресс ЭПР». Для восстановления нормального функционирования ЭПР активируется адаптивный механизм, который обозначают как ответ на неправильно свёрнутые белки или UPR. Помимо контроля сворачивания белков, UPR играет ключевую роль в других физиологических процессах, в частности в дифференцировке клеток соединительнотканного, мышечного, эпителиального и нейрального происхождения. Однако дифференцировку стимулирует только физиологический уровень стресса ЭПР, в то время как его повышенный уровень подавляет дифференцировку и может вызвать гибель клеток. Следует отметить, что до настоящего времени неизвестно, является ли активация UPR индуктором дифференцировки клеток или же UPR запускается из-за повышенного синтеза секреторных белков в процессе дифференцировки. Дифференцировка клеток является важным этапом в развитии многоклеточных организмов, поэтому этот процесс строго контролируется. Подавление или, наоборот, избыточная активация дифференцировки ведут к развитию патологических процессов в организме. В частности, нарушения в ходе дифференцировки клеток соединительнотканного происхождения ведут к развитию таких заболеваний, как фиброз, ожирение и остеопороз. Фиброз в настоящее время вызывает особый интерес, так как является одним из основных последствий COVID-19. В связи с этим изучение роли UPR в активации дифференцировки представляет как теоретический, так и практический интерес, так как может привести к идентификации потенциальных молекулярных мишеней, позволяющих селективно регулировать разные этапы дифференцировки и воздействовать на механизмы, ведущие к развитию патологических процессов.
Текст статьи
Сноски
* Адресат для корреспонденции.
Финансирование
Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (гранты №№ 19-015-00233 и 20-315-90118) в рамках научного проекта государственного задания МГУ № 121032300098-5.
Вклад авторов
Е.П. Турищева – работа с литературой и написание текста статьи; М.С. Вильданова – авторство рисунков; Е.А. Смирнова, Г.Е. Онищенко – редактирование текста статьи.
Конфликт интересов
Авторы заявляют об отсутствии конфликта интересов.
Соблюдение этических норм
Настоящая статья не содержит описания выполненных авторами исследований с участием людей или использованием животных в качестве объектов.
Список литературы
1. Oslowski, C. M., and Urano, F. (2011) Measuring ER stress and the unfolded protein response using mammalian tissue culture system, Method. Enzymol., 490, 71-92, doi: 10.1016/B978-0-12-385114-7.00004-0.
2. Sicari, D., Delaunay‐Moisan, A., Combettes, L., Chevet, E., and Igbaria, A. (2020) A guide to assessing endoplasmic reticulum homeostasis and stress in mammalian systems, FEBS J., 287, 27-42, doi: 10.1111/febs.15107.
3. Hwang, J., and Qi, L. (2018) Quality control in the endoplasmic reticulum: crosstalk between ERAD and UPR pathways, TiBS, 43, 593-605, doi: 10.1016/j.tibs.2018.06.005.
4. Fregno, I., and Molinari, M. (2019) Proteasomal and lysosomal clearance of faulty secretory proteins: ER-associated degradation (ERAD) and ER-to-lysosome-associated degradation (ERLAD) pathways, Crit. Rev. Biochem. Mol., 54, 153-163, doi: 10.1080/10409238.2019.1610351.
5. Chadwick, S. R., and Lajoie, P. (2019) Endoplasmic reticulum stress coping mechanisms and lifespan regulation in health and diseases, Front. Cell Dev. Biol., 7, 84, doi: 10.3389/fcell.2019.00084.
6. Liu, E. S., Ou, J. H., and Lee, A. S. (1992) Brefeldin A as a regulator of grp78 gene expression in mammalian cells, J. Biol. Chem., 267, 7128-7133, doi: 10.1016/S0021-9258(19)50547-6.
7. Yoshida, I., Monji, A., Tashiro, K. I., Nakamura, K. I., Inoue, R., et al. (2006) Depletion of intracellular Ca2+ store itself may be a major factor in thapsigargin-induced ER stress and apoptosis in PC12 cells, Neurochem. Int., 48, 696-702, doi: 10.1016/j.neuint.2005.12.012.
8. Li, B., Yi, P., Zhang, B., Xu, C., Liu, Q., et al. (2011) Differences in endoplasmic reticulum stress signalling kinetics determine cell survival outcome through activation of MKP-1, Cell. Signal., 23, 35-45, doi: 10.1016/j.cellsig.2010.07.019.
9. Corazzari, M., Gagliardi, M., Fimia, G. M., and Piacentini, M. (2017) Endoplasmic reticulum stress, unfolded protein response, and cancer cell fate, Front. Oncol., 7, 78, doi: 10.3389/fonc.2017.00078.
10. Almanza, A., Carlesso, A., Chintha, C., Creedican, S., Doultsinos, D., et al. (2019) Endoplasmic reticulum stress signalling – from basic mechanisms to clinical applications, FEBS J., 286, 241-278, doi: 10.1111/febs.14608.
11. Hetz, C. (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond, Nat. Rev. Mol. Cell Biol., 13, 89-102, doi: 10.1038/nrm3270.
12. Oakes, S. A., and Papa, F. R. (2015) The role of endoplasmic reticulum stress in human pathology, Annu. Rev. Pathol., 10, 173-194, doi: 10.1146/annurev-pathol-012513-104649.
13. Celli, A., Mackenzie, D. S., Crumrine, D. S., Tu, C. L., Hupe, M., et al. (2011) Endoplasmic reticulum Ca2+ depletion activates XBP1 and controls terminal differentiation in keratinocytes and epidermis, Brit. J. Dermatol., 164, 16-25, doi: 10.1111/j.1365-2133.2010.10046.x.
14. Matsuzaki, S., Hiratsuka, T., Taniguchi, M., Shingaki, K., Kubo, T., et al. (2015) Physiological ER stress mediates the differentiation of fibroblasts, PLoS One, 10, e0123578, doi: 10.1371/journal.pone.0123578.
15. Nakanishi, K., Kakiguchi, K., Yonemura, S., Nakano, A., and Morishima, N. (2015) Transient Ca2+ depletion from the endoplasmic reticulum is critical for skeletal myoblast differentiation, FASEB J., 29, 2137-2149, doi: 10.1096/fj.14-261529.
16. Murao, N., and Nishitoh, H. (2017) Role of the unfolded protein response in the development of central nervous system, J. Biochem., 162, 155-162, doi: 10.1093/jb/mvx047.
17. Vildanova, M., Saidova, A., Fokin, A., Potashnikova, D., Onishchenko, G., et al. (2019) Jasmonic acid induces endoplasmic reticulum stress with different outcome in cultured normal and tumor epidermal cells, Biochemistry (Moscow), 84, 1289-1300, doi: 10.1134/S0320972519090070.
18. Vildanova, M., Vishnyakova, P., Saidova, A., Konduktorova, V., Onishchenko, G., et al. (2021) Gibberellic acid initiates ER stress and activation of differentiation in cultured human immortalized keratinocytes HaCaT and epidermoid carcinoma cells A431, Pharmaceutics, 13, 1813, doi: 10.3390/pharmaceutics13111813.
19. Турищева Е. П., Вильданова М. С., Поташникова Д. М., Смирнова Е. А. (2020) Различная реакция биосинтетической системы дермальных фибробластов и клеток фибросаркомы человека на действие растительных гормонов, Цитология, 62, 566-580, doi: 10.31857/S0041377120080088.
20. Calfon, M., Zeng, H., Urano, F., Till, J. H., Hubbard, S. R., et al. (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA, Nature, 415, 92-96, doi: 10.1038/415092a.
21. Lee, A. H., Iwakoshi, N. N., and Glimcher, L. H. (2003) XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response, Mol. Cell. Biol., 23, 7448-7459, doi: 10.1128/MCB.23.21.7448-7459.2003.
22. Lam, W. Y., and Bhattacharya, D. (2018) Metabolic links between plasma cell survival, secretion, and stress, Trends Immunol., 39, 19-27, doi: 10.1016/j.it.2017.08.007.
23. Teske, B. F., Wek, S. A., Bunpo, P., Cundiff, J. K., McClintick, J. N., et al. (2011) The eIF2 kinase PERK and the integrated stress response facilitate activation of ATF6 during endoplasmic reticulum stress, Mol. Biol. Cell, 22, 4390-4405, doi: 10.1091/mbc.e11-06-0510.
24. Gardner, B. M., Pincus, D., Gotthardt, K., Gallagher, C. M., and Walter, P. (2013) Endoplasmic reticulum stress sensing in the unfolded protein response, Cold Spring Harb. Perspect. Biol., 5, a013169, doi: 10.1101/cshperspect.a013169.
25. Yoshida, H., Haze, K., Yanagi, H., Yura, T., and Mori, K. (1998) Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins: involvement of basic leucine zipper transcription factors, J. Biol. Chem., 273, 33741-33749, doi: 10.1074/jbc.273.50.33741.
26. Ye, J., Rawson, R. B., Komuro, R., Chen, X., Davé, U. P., et al. (2000) ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs, Mol. Cell, 6, 1355-1364, doi: 10.1016/S1097-2765(00)00133-7.
27. Kendall, R. T., and Feghali-Bostwick, C. A. (2014) Fibroblasts in fibrosis: novel roles and mediators, Front. Pharmacol., 5, 123, doi: 10.3389/fphar.2014.00123.
28. Desai, V. D., Hsia, H. C., and Schwarzbauer, J. E. (2014) Reversible modulation of myofibroblast differentiation in adipose-derived mesenchymal stem cells, PLoS One, 9, e86865, doi: 10.1371/journal.pone.0086865.
29. Heindryckx, F., Binet, F., Ponticos, M., Rombouts, K., Lau, J., et al. (2016) Endoplasmic reticulum stress enhances fibrosis through IRE 1α‐mediated degradation of miR‐150 and XBP‐1 splicing, EMBO Mol. Med., 8, 729-744, doi: 10.15252/emmm.201505925.
30. Zhong, Q., Zhou, B., Ann, D. K., Minoo, P., Liu, Y., et al. (2011) Role of endoplasmic reticulum stress in epithelial–mesenchymal transition of alveolar epithelial cells: effects of misfolded surfactant protein, Am. J. Resp. Cell Mol., 45, 498-509, doi: 10.1165/rcmb.2010-0347OC.
31. Baek, H. A., Kim, D. S., Park, H. S., Jang, K. Y., Kang, M. J., et al. (2012) Involvement of endoplasmic reticulum stress in myofibroblastic differentiation of lung fibroblasts, Am. J. Resp. Cell Mol., 46, 731-739, doi: 10.1165/rcmb.2011-0121OC.
32. Chen, Y. C., Chen, B. C., Huang, H. M., Lin, S. H., and Lin, C. H. (2019) Activation of PERK in ET‐1‐and thrombin‐induced pulmonary fibroblast differentiation: Inhibitory effects of curcumin, J. Cell. Physiol., 234, 15977-15988, doi: 10.1002/jcp.28256.
33. Jiang, S., He, R., Zhu, L., Liang, T., Wang, Z., et al. (2018) Endoplasmic reticulum stress-dependent ROS production mediates synovial myofibroblastic differentiation in the immobilization-induced rat knee joint contracture model, Exp. Cell Res., 369, 325-334, doi: 10.1016/j.yexcr.2018.05.036.
34. Qin, X., Lin, X., Liu, L., Li, Y., Li, X., et al. (2021) Macrophage‐derived exosomes mediate silica‐induced pulmonary fibrosis by activating fibroblast in an endoplasmic reticulum stress‐dependent manner, J. Cell. Mol. Med., 25, 4466-4477, doi: 10.1111/jcmm.16524.
35. Song, M., Peng, H., Guo, W., Luo, M., Duan, W., et al. (2019) Cigarette smoke extract promotes human lung myofibroblast differentiation by the induction of endoplasmic reticulum stress, Respiration, 98, 347-356, doi: 10.1159/000502099.
36. Stauffer, W. T., Blackwood, E. A., Azizi, K., Kaufman, R. J., and Glembotski, C. C. (2020) The ER unfolded protein response effector, ATF6, reduces cardiac fibrosis and decreases activation of cardiac fibroblasts, Int. J. Mol. Sci., 21, 1373, doi: 10.3390/ijms21041373.
37. Sriburi, R., Jackowski, S., Mori, K., and Brewer, J. W. (2004) XBP1: a link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum, J. Cell Biol., 167, 35-41, doi: 10.1083/jcb.200406136.
38. Ali, A. T., Hochfeld, W. E., Myburgh, R., and Pepper, M. S. (2013) Adipocyte and adipogenesis, Eur. J. Cell Biol., 92, 229-236, doi: 10.1016/j.ejcb.2013.06.001.
39. Basseri, S., Lhoták, Š., Sharma, A. M., and Austin, R. C. (2009) The chemical chaperone 4-phenylbutyrate inhibits adipogenesis by modulating the unfolded protein response, J. Lipid Res., 50, 2486-2501, doi: 10.1194/jlr.M900216-JLR200.
40. Sha, H., He, Y., Chen, H., Wang, C., Zenno, A., et al. (2009) The IRE1α–XBP1 pathway of the unfolded protein response is required for adipogenesis, Cell Metab., 9, 556-564, doi: 10.1016/j.cmet.2009.04.009.
41. Batchvarova, N., Wang, X. Z., and Ron, D. (1995) Inhibition of adipogenesis by the stress‐induced protein CHOP (Gadd153), EMBO J., 14, 4654-4661, doi: 10.1002/j.1460-2075.1995.tb00147.x.
42. Shimada, T., Hiramatsu, N., Okamura, M., Hayakawa, K., Kasai, A., et al. (2007) Unexpected blockade of adipocyte differentiation by K-7174: implication for endoplasmic reticulum stress, Biochem. Biophys. Res. Commun., 363, 355-360, doi: 10.1016/j.bbrc.2007.08.167.
43. Bobrovnikova-Marjon, E., Hatzivassiliou, G., Grigoriadou, C., Romero, M., Cavener, D. R., et al. (2008) PERK-dependent regulation of lipogenesis during mouse mammary gland development and adipocyte differentiation, Proc. Natl. Acad. Sci. USA, 105, 16314-16319, doi: 10.1073/pnas.0808517105.
44. Bobrovnikova-Marjon, E., Pytel, D., Riese, M. J., Vaites, L. P., Singh, N., et al. (2012) PERK utilizes intrinsic lipid kinase activity to generate phosphatidic acid, mediate Akt activation, and promote adipocyte differentiation, Mol. Cell. Biol., 32, 2268-2278, doi: 10.1128/MCB.00063-12.
45. Han, J., Murthy, R., Wood, B., Song, B., Wang, S., et al. (2013) ER stress signalling through eIF2α and CHOP, but not IRE1α, attenuates adipogenesis in mice, Diabetologia, 56, 911-924, doi: 10.1007/s00125-012-2809-5.
46. Longo, M., Spinelli, R., D’Esposito, V., Zatterale, F., Fiory, F., et al. (2016) Pathologic endoplasmic reticulum stress induced by glucotoxic insults inhibits adipocyte differentiation and induces an inflammatory phenotype, BBA-Mol. Cell Res., 1863, 1146-1156, doi: 10.1016/j.bbamcr.2016.02.019.
47. Kang, S. U., Kim, H. J., Kim, D. H., Han, C. H., Lee, Y. S., et al. (2018) Nonthermal plasma treated solution inhibits adipocyte differentiation and lipogenesis in 3T3-L1 preadipocytes via ER stress signal suppression, Sci. Rep., 8, 1-12, doi: 10.1038/s41598-018-20768-5.
48. Lowe, C. E., Dennis, R. J., Obi, U., O’Rahilly, S., and Rochford, J. J. (2012) Investigating the involvement of the ATF6α pathway of the unfolded protein response in adipogenesis, Int. J. Obesity, 36, 1248-1251, doi: 10.1038/ijo.2011.233.
49. Mohan, S., Brown, L., and Ayyappan, P. (2019) Endoplasmic reticulum stress: a master regulator of metabolic syndrome, Eur. J. Pharmacol., 860, 172553, doi: 10.1016/j.ejphar.2019.172553.
50. Carlson, S. G., Fawcett, T. W., Bartlett, J. D., Bernier, M., and Holbrook, N. J. (1993) Regulation of the C/EBP-related gene gadd153 by glucose deprivation, Mol. Cell. Biol., 13, 4736-4744, doi: 10.1128/mcb.13.8.4736-4744.1993.
51. Lee, J. M., Park, S., Lee, D., Ginting, R. P., Lee, M. R., et al. (2021) Reduction in endoplasmic reticulum stress activates beige adipocytes differentiation and alleviates high fat diet-induced metabolic phenotypes, BBA-Mol. Basis Dis., 1867, 166099, doi: 10.1016/j.bbadis.2021.166099.
52. Tan, Y. Y., Zhang, Y., Li, B., Ou, Y. W., Xie, S. J., et al. (2021) PERK signaling controls myoblast differentiation by regulating microRNA networks, Front. Cell Dev. Biol., 9, 670435, doi: 10.3389/fcell.2021.670435.
53. Chal, J., and Pourquié, O. (2017) Making muscle: skeletal myogenesis in vivo and in vitro, Development, 144, 2104-2122, doi: 10.1242/dev.151035.
54. Sincennes, M. C., Brun, C. E., and Rudnicki, M. A. (2016) Concise review: epigenetic regulation of myogenesis in health and disease, Stem Cells Transl. Med., 5, 282-290, doi: 10.5966/sctm.2015-0266.
55. Tokutake, Y., Yamada, K., Hayashi, S., Arai, W., Watanabe, T., et al. (2020) IRE1-XBP1 pathway of the unfolded protein response is required during early differentiation of C2C12 myoblasts, Int. J. Mol. Sci., 21, 182, doi: 10.3390/ijms21010182.
56. Xiong, G., Hindi, S. M., Mann, A. K., Gallot, Y. S., Bohnert, K. R., et al. (2017) The PERK arm of the unfolded protein response regulates satellite cell-mediated skeletal muscle regeneration, Elife, 6, e22871, doi: 10.7554/eLife.22871.
57. Benhaddou, A., Keime, C., Ye, T., Morlon, A., Michel, I., et al. (2012) Transcription factor TEAD4 regulates expression of myogenin and the unfolded protein response genes during C2C12 cell differentiation, Cell Death Differ., 19, 220-231, doi: 10.1038/cdd.2011.87.
58. Blais, A., Tsikitis, M., Acosta-Alvear, D., Sharan, R., Kluger, Y., et al. (2005) An initial blueprint for myogenic differentiation, Gene Dev., 19, 553-569, doi: 10.1101/gad.1281105.
59. Acosta-Alvear, D., Zhou, Y., Blais, A., Tsikitis, M., Lents, N. H., et al. (2007) XBP1 controls diverse cell type-and condition-specific transcriptional regulatory networks, Mol. Cell, 27, 53-66, doi: 10.1016/j.molcel.2007.06.011.
60. Alter, J., and Bengal, E. (2011) Stress-induced C/EBP homology protein (CHOP) represses MyoD transcription to delay myoblast differentiation, PLoS One, 6, e29498, doi: 10.1371/journal.pone.0029498.
61. Nakanishi, K., Sudo, T., and Morishima, N. (2005) Endoplasmic reticulum stress signaling transmitted by ATF6 mediates apoptosis during muscle development, J. Cell Biol., 169, 555-560, doi: 10.1083/jcb.200412024.
62. Nakanishi, K., Dohmae, N., and Morishima, N. (2007) Endoplasmic reticulum stress increases myofiber formation in vitro, FASEB J., 21, 2994-3003, doi: 10.1096/fj.06-6408com.
63. Wei, Y., Tao, X., Xu, H., Chen, Y., Zhu, L., et al. (2016) Role of miR-181a-5p and endoplasmic reticulum stress in the regulation of myogenic differentiation, Gene, 592, 60-70, doi: 10.1016/j.gene.2016.07.056.
64. Wiles, B., Miao, M., Coyne, E., Larose, L., Cybulsky, A. V., et al. (2015) USP19 deubiquitinating enzyme inhibits muscle cell differentiation by suppressing unfolded-protein response signaling, Mol. Biol. Cell, 26, 913-923, doi: 10.1091/mbc.E14-06-1129.
65. Yang, X., and Karsenty, G. (2004) ATF4, the osteoblast accumulation of which is determined post-translationally, can induce osteoblast-specific gene expression in non-osteoblastic cells, J. Biol. Chem., 279, 47109-47114, doi: 10.1074/jbc.M410010200.
66. Rutkovskiy, A., Stensløkken, K. O., and Vaage, I. J. (2016) Osteoblast differentiation at a glance, Med. Sci. Monit. Basic Res., 22, 95-106, doi: 10.12659/MSMBR.901142.
67. Wei, J., Sheng, X., Feng, D., McGrath, B., and Cavener, D. R. (2008) PERK is essential for neonatal skeletal development to regulate osteoblast proliferation and differentiation, J. Cell. Physiol., 217, 693-707, doi: 10.1002/jcp.21543.
68. Saito, A., Ochiai, K., Kondo, S., Tsumagari, K., Murakami, T., et al. (2011) Endoplasmic reticulum stress response mediated by the PERK-eIF2α-ATF4 pathway is involved in osteoblast differentiation induced by BMP2, J. Biol. Chem., 286, 4809-4818, doi: 10.1074/jbc.M110.152900.
69. Zhang, K., Wang, M., Li, Y., Li, C., Tang, S., et al. (2019) The PERK-EIF2α-ATF4 signaling branch regulates osteoblast differentiation and proliferation by PTH, Am. J. Physiol. Endocrinol. Metab., 316, E590-E604, doi: 10.1152/ajpendo.00371.2018.
70. Murakami, T., Saito, A., Hino, S. I., Kondo, S., Kanemoto, S., et al. (2009) Signalling mediated by the endoplasmic reticulum stress transducer OASIS is involved in bone formation, Nat. Cell Biol., 11, 1205-1211, doi: 10.1038/ncb1963.
71. Jang, W. G., Kim, E. J., Kim, D. K., Ryoo, H. M., Lee, K. B., et al. (2012) BMP2 protein regulates osteocalcin expression via Runx2-mediated Atf6 gene transcription, J. Biol. Chem., 287, 905-915, doi: 10.1074/jbc.M111.253187.
72. Son, H. E., Kim, E. J., and Jang, W. G. (2018) Curcumin induces osteoblast differentiation through mild-endoplasmic reticulum stress-mediated such as BMP2 on osteoblast cells, Life Sci., 193, 34-39, doi: 10.1016/j.lfs.2017.12.008.
73. Tohmonda, T., Miyauchi, Y., Ghosh, R., Yoda, M., Uchikawa, S., et al. (2011) The IRE1α–XBP1 pathway is essential for osteoblast differentiation through promoting transcription of Osterix, EMBO Rep., 12, 451-457, doi: 10.1038/embor.2011.34.
74. Guo, F. J., Jiang, R., Xiong, Z., Xia, F., Li, M., et al. (2014) IRE1a constitutes a negative feedback loop with BMP2 and acts as a novel mediator in modulating osteogenic differentiation, Cell Death Dis., 5, e1239, doi: 10.1038/cddis.2014.194.
75. Yang, X., Matsuda, K., Bialek, P., Jacquot, S., Masuoka, H. C., et al. (2004) ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology: implication for Coffin-Lowry syndrome, Cell, 117, 387-398, doi: 10.1016/S0092-8674(04)00344-7.
76. Xiao, G., Jiang, D., Ge, C., Zhao, Z., Lai, Y., et al. (2005) Cooperative interactions between activating transcription factor 4 and Runx2/Cbfa1 stimulate osteoblast-specific osteocalcin gene expression, J. Biol. Chem., 280, 30689-30696, doi: 10.1074/jbc.M500750200.
77. Yu, S., Franceschi, R. T., Luo, M., Fan, J., Jiang, D., et al. (2009) Critical role of activating transcription factor 4 in the anabolic actions of parathyroid hormone in bone, PLoS One, 4, e7583, doi: 10.1371/journal.pone.0007583.
78. Yang, S., Hu, L., Wang, C., and Wei, F. (2020) PERK-eIF2α-ATF4 signaling contributes to osteogenic differentiation of periodontal ligament stem cells, J. Mol. Histol., 51, 125-135, doi: 10.1007/s10735-020-09863-y.
79. Yu, S., Zhu, K., Lai, Y., Zhao, Z., Fan, J., et al. (2013) ATF4 promotes β-catenin expression and osteoblastic differentiation of bone marrow mesenchymal stem cells, Int. J. Biol. Sci., 9, 256-266, doi: 10.7150/ijbs.5898.
80. Jang, W. G., Kim, E. J., and Koh, J. T. (2011) Tunicamycin negatively regulates BMP2-induced osteoblast differentiation through CREBH expression in MC3T3E1 cells, BMB Rep., 44, 735-740, doi: 10.5483/BMBRep.2011.44.11.735.
81. Shi, M., Song, W., Han, T., Chang, B., Li, G., et al. (2017) Role of the unfolded protein response in topography-induced osteogenic differentiation in rat bone marrow mesenchymal stem cells, Acta Biomater., 54, 175-185, doi: 10.1016/j.actbio.2017.03.018.
82. Tanaka, K. I., Yamaguchi, T., Kaji, H., Kanazawa, I., and Sugimoto, T. (2013) Advanced glycation end products suppress osteoblastic differentiation of stromal cells by activating endoplasmic reticulum stress, Biochem. Bioph. Res. Commun., 438, 463-467, doi: 10.1016/j.bbrc.2013.07.126.
83. Boyle, W. J., Simonet, W. S., and Lacey, D. L. (2003) Osteoclast differentiation and activation, Nature, 423, 337-342, doi: 10.1038/nature01658.
84. Tohmonda, T., Yoda, M., Iwawaki, T., Matsumoto, M., Nakamura, M., et al. (2015) IRE1α/XBP1-mediated branch of the unfolded protein response regulates osteoclastogenesis, J. Clin. Invest., 125, 3269-3279, doi: 10.1172/JCI76765.
85. Guo, J., Ren, R., Sun, K., Yao, X., Lin, J., et al. (2020) PERK controls bone homeostasis through the regulation of osteoclast differentiation and function, Cell Death Dis., 11, 1-16, doi: 10.1038/s41419-020-03046-z.
86. Raimondi, L., De Luca, A., Fontana, S., Amodio, N., Costa, V., et al. (2020) Multiple myeloma-derived extracellular vesicles induce osteoclastogenesis through the activation of the XBP1/IRE1α axis, Cancers, 12, 2167, doi: 10.3390/cancers12082167.
87. Cao, H., Yu, S., Yao, Z., Galson, D. L., Jiang, Y., et al. (2010) Activating transcription factor 4 regulates osteoclast differentiation in mice, J. Clin. Invest., 120, 2755-2766, doi: 10.1172/JCI42106.
88. Wang, K., Niu, J., Kim, H., and Kolattukudy, P. E. (2011) Osteoclast precursor differentiation by MCPIP via oxidative stress, endoplasmic reticulum stress, and autophagy, J. Mol. Cell Biol., 3, 360-368, doi: 10.1093/jmcb/mjr021.
89. Lee, E. G., Sung, M. S., Yoo, H. G., Chae, H. J., Kim, H. R., et al. (2014) Increased RANKL-mediated osteoclastogenesis by interleukin-1β and endoplasmic reticulum stress, Joint Bone Spine, 81, 520-526, doi: 10.1016/j.jbspin.2014.04.012.
90. Zhang, L., Bao, D., Li, P., Lu, Z., Pang, L., et al. (2018) Particle-induced SIRT1 downregulation promotes osteoclastogenesis and osteolysis through ER stress regulation, Biomed. Pharmacother, 104, 300-306, doi: 10.1016/j.biopha.2018.05.030.
91. Lee, W. S., Jeong, J. H., Lee, E. G., Choi, Y., Kim, J. H., et al. (2017) Tacrolimus regulates endoplasmic reticulum stress-mediated osteoclastogenesis and inflammation: in vitro and collagen‐induced arthritis mouse model, Cell Biol. Int., 42, 393-402, doi: 10.1002/cbin.10861.
92. He, L., Lee, J., Jang, J. H., Sakchaisri, K., Hwang, J., et al. (2013) Osteoporosis regulation by salubrinal through eIF2α mediated differentiation of osteoclast and osteoblast, Cell. Signal., 25, 552-560, doi: 10.1016/j.cellsig.2012.11.015.
93. Li, J., Li, X., Liu, D., Hamamura, K., Wan, Q., et al. (2019) eIF2α signaling regulates autophagy of osteoblasts and the development of osteoclasts in OVX mice, Cell Death Dis., 10, 1-15, doi: 10.1038/s41419-019-2159-z.