БИОХИМИЯ, 2022, том 87, вып. 9, с. 1182–1202

УДК 577.21

Бактерия Neisseria gonorrhoeae: системы репарации ДНК и их роль в патогенезе

Обзор

© 2022 В.Ю. Савицкая 1, М.В. Монахова 2, Ю.В. Якушкина 1, И.И. Боровикова 3, Е.А. Кубарева 2*kubareva@belozersky.msu.ru

Московский государственный университет имени М.В. Ломоносова, химический факультет, 119991 Москва, Россия

НИИ физико-химической биологии имени А.Н. Белозерского, Московский государственный университет имени М.В. Ломоносова, 119991 Москва, Россия

Московский государственный университет имени М.В. Ломоносова, факультет биоинженерии и биоинформатики, 119991 Москва, Россия

Поступила в редакцию 19.04.2022
После доработки 12.07.2022
Принята к публикации 12.07.2022

DOI: 10.31857/S0320972522090020

КЛЮЧЕВЫЕ СЛОВА: система репарации «мисматчей», репарация повреждений ДНК, эксцизионная репарация, MutS, MutL, антигенная вариация, гомологичная рекомбинация, G-квадруплекс, Neisseria gonorrhoeae.

Аннотация

Организм Neisseria gonorrhoeae (грамотрицательный диплококк) является патогеном человека и возбудителем гонореи – инфекционного заболевания, передаваемого половым путём. Бактерия использует различные способы, чтобы адаптироваться к условиям окружающей среды и эффективно размножаться в организме человека, такие как регуляция экспрессии генов поверхностных белков и липоолигосахаридов (например, экспрессия различных форм пилина). Системы репарации повреждений в ДНК играют важную роль в способности бактерии выживать в организме-хозяине. В данном обзоре описаны системы репарации ДНК N. gonorrhoeae, а также их роль в патогенезе бактерии. Особое внимание уделено системе репарации «мисматчей» (MMR) и функционированию белков MutS и MutL, а также рассмотрена роль этих белков в процессе регуляции антигенной вариации пилина патогена N. gonorrhoeae.

Сноски

* Адресат для корреспонденции.

Финансирование

Работа выполнена при финансовой поддержке Российского научного фонда (грант № 21-14-00161).

Вклад авторов

В.Ю. Савицкая, М.В. Монахова и Е.А. Кубарева – концепция; В.Ю. Савицкая, И.И. Боровикова и Ю.В. Якушкина – анализ литературы; В.Ю. Савицкая, М.В. Монахова и Е.А. Кубарева – обсуждение данных литературы; В.Ю. Савицкая – подготовка текста; В.Ю. Савицкая, И.И. Боровикова, Ю.В. Якушкина, и М.В. Монахова – подготовка иллюстративного материала, Е.А. Кубарева и М.В. Монахова – редактирование обзора.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических норм

Настоящая статья не содержит описания каких-либо исследований с участием людей или животных в качестве объектов.

Список литературы

1. Hoffman, O., and Weber, J. R. (2009) Review: Pathophysiology and treatment of bacterial meningitis, Ther. Adv. Neurol. Disord., 2, 401-412, doi: 10.1177/1756285609337975.

2. Snyder, L. A. S., Butcher, S. A., and Saunders, N. J. (2001) Comparative whole-genome analyses reveal over 100 putative phase-variable genes in the pathogenic Neisseria spp, Microbiology, 147, 2321-2332, doi: 10.1099/00221287-147-8-2321.

3. Hill, S. A., Masters, T. L., and Wachter, J. (2016) Gonorrhea – an evolving disease of the new millennium, Microb. Cell, 3, 371-389, doi: 10.15698/mic2016.09.524.

4. Caromona-Gutierrez, D., Kainz, K., and Madeo, F. (2016) Sexually transmitted infections: old foes on the rise, Microb. Cell, 3, 361-362, doi: 10.15698/mic2016.09.522.

5. Lim, K. Y. L., Mullally, C. A., Haese, E. C., Kibble, E. A., McCluskey, N. R., et al. (2021) Anti-virulence therapeutic approaches for Neisseria gonorrhoeae, Antibiotics, 10, 103, doi: 10.3390/antibiotics10020103.

6. Liu, J., Yang, C., Cheng, C., Zhang, C., Zhao, J., and Fu, C. (2021) In vitro antimicrobial effect and mechanism of action of plasma-activated liquid on planktonic Neisseria gonorrhoeae, Bioengineered, 12, 4605-4619, doi: 10.1080/21655979.2021.1955548.

7. Dijokaite, A., Humbert, M. V., Borkowski, E., La Ragione, R. M., and Christodoulides, M. (2021) Establishing an invertebrate Galleria mellonella greater wax moth larval model of Neisseria gonorrhoeae infection, Virulence, 12, 1900-1920, doi: 10.1080/21505594.2021.1950269.

8. Quillin, S. J., and Seifert, H. S. (2018) Neisseria gonorrhoeae host adaptation and pathogenesis, Nat. Rev. Microbiol., 16, 226-240, doi: 10.1038/nrmicro.2017.169.

9. Giltner, C. L., Nguyen, Y., and Burrows, L. L. (2012) Type IV pilin proteins: versatile molecular modules, Microbiol. Mol. Biol. Rev., 76, 740-772, doi: 10.1128/MMBR.00035-12.

10. Rudel, T., Scheuerpflug, I., and Meyer, T. F. (1995) Neisseria PilC protein identified as type-4 pilus tip-located adhesin, Nature, 373, 357-359, doi: 10.1038/373357a0.

11. Denis, K., Le Bris, M., Le Guennec, L., Barnier, J.-P., Faure, C., et al. (2019) Targeting type IV pili as an antivirulence strategy against invasive meningococcal disease, Nat. Microbiol., 4, 972-984, doi: 10.1038/s41564-019-0395-8.

12. Plant, L. J., and Jonsson, A.-B. (2006) Type IV pili of Neisseria gonorrhoeae influence the activation of human CD4+ T cells, Infect. Immun., 74, 442-448, doi: 10.1128/IAI.74.1.442-448.2006.

13. Shaughnessy, J., Ram, S., and Rice, P. A. (2019) Biology of the gonococcus: disease and pathogenesis, Methods in Molecular Biology, Springer, Totowa, NJ.

14. Zhang, S., Tu, Y., Cai, H., Ding, H., Li, Q., et al. (2016) Opacity proteins of Neisseria gonorrhoeae in lipooligosaccharide mutants lost ability to interact with neutrophil-restricted CEACAM3 (CD66d), J. Huazhong Univ. Sci. Technol. Med. Sci., 36, 344-349, doi: 10.1007/s11596-016-1589-4.

15. Britigan, B. E., Cohen, M. S., and Sparling, P. F. (1985) Gonococcal infection: a model of molecular pathogenesis, N. Engl. J. Med., 312, 1683-1694, doi: 10.1056/NEJM198506273122606.

16. Judd, R. C. (1989) Protein I: structure, function, and genetics, Clin. Microbiol. Rev., 2, S41-S48, doi: 10.1128/CMR.2.Suppl.S41-S48.1989.

17. Ram, S., McQuillen, D. P., Gulati, S., Elkins, C., Pangburn, M. K., et al. (1998) Binding of complement factor H to loop 5 of porin protein 1A: a molecular mechanism of serum resistance of nonsialylated Neisseria gonorrhoeae, J. Exp. Med., 188, 671-680, doi: 10.1084/jem.188.4.671.

18. Ram, S., Cullinane, M., Blom, A. M., Gulati, S., McQuillen, D. P., et al. (2001) Binding of C4b-binding protein to porin, J. Exp. Med., 193, 281-296, doi: 10.1084/jem.193.3.281.

19. Song, W., Ma, L., Chen, R., and Stein, D. C. (2000) Role of lipooligosaccharide in Opa-independent invasion of Neisseria gonorrhoeae into human epithelial cells, J. Exp. Med., 191, 949-960, doi: 10.1084/jem.191.6.949.

20. Chakraborti, S., Gulati, S., Zheng, B., Beurskens, F. J., Schuurman, J., et al. (2020) Bypassing phase variation of lipooligosaccharide (LOS): using heptose 1 glycan mutants to establish widespread efficacy of gonococcal anti-LOS monoclonal antibody 2C7, Infect. Immun., 88, e00862-19, doi: 10.1128/IAI.00862-19.

21. Schaub, R. E., Perez-Medina, K. M., Hackett, K. T., Garcia, D. L., and Dillard, J. P. (2019) Neisseria gonorrhoeae PBP3 and PBP4 facilitate NOD1 agonist peptidoglycan fragment release and survival in stationary phase, Infect. Immun., 87, e00833-18, doi: 10.1128/IAI.00833-18.

22. Schaub, R. E., and Dillard, J. P. (2019) The pathogenic Neisseria use a streamlined set of peptidoglycan degradation proteins for peptidoglycan remodeling, recycling, and toxic fragment release, Front. Microbiol., 10, 73, doi: 10.3389/fmicb.2019.00073.

23. Wetzler, L. M., Barry, K., Blake, M. S., and Gotschlich, E. C. (1992) Gonococcal lipooligosaccharide sialylation prevents complement-dependent killing by immune sera, Infect. Immun., 60, 39-43, doi: 10.1128/iai.60.1.39-43.1992.

24. Ngampasutadol, J., Ram, S., Gulati, S., Agarwal, S., Li, C., et al. (2008) Human factor H interacts selectively with Neisseria gonorrhoeae and results in species-specific complement evasion, J. Immunol., 180, 3426-3435, doi: 10.4049/jimmunol.180.5.3426.

25. Edwards, J. L., and Apicella, M. A. (2002) The role of lipooligosaccharide in Neisseria gonorrhoeae pathogenesis of cervical epithelia: lipid A serves as a C3 acceptor molecule, Cell. Microbiol., 4, 585-598, doi: 10.1046/j.1462-5822.2002.00212.x.

26. Heesterbeek, D. A. C., Muts, R. M., van Hensbergen, V. P., de Saint Aulaire, P., Wennekes, T., et al. (2021) Outer membrane permeabilization by the membrane attack complex sensitizes Gram-negative bacteria to antimicrobial proteins in serum and phagocytes, PLOS Pathog., 17, e1009227, doi: 10.1371/journal.ppat.1009227.

27. Johnson, S. R., Steiner, B. M., Cruce, D. D., Perkins, G. H., and Arko, R. J. (1993) Characterization of a catalase-deficient strain of Neisseria gonorrhoeae: evidence for the significance of catalase in the biology of N. gonorrhoeae, Infect. Immun., 61, 1232-1238, doi: 10.1128/iai.61.4.1232-1238.1993.

28. Stohl, E. A., and Seifert, H. S. (2006) Neisseria gonorrhoeae DNA recombination and repair enzymes protect against oxidative damage caused by hydrogen peroxide, J. Bacteriol., 188, 7645-7651, doi: 10.1128/JB.00801-06.

29. Skaar, E. P., Tobiason, D. M., Quick, J., Judd, R. C., Weissbach, H., et al. (2002) The outer membrane localization of the Neisseria gonorrhoeae MsrA/B is involved in survival against reactive oxygen species, Proc. Natl. Acad. Sci. USA, 99, 10108-10113, doi: 10.1073/pnas.152334799.

30. Tseng, H.-J., Srikhanta, Y., McEwan, A. G., and Jennings, M. P. (2001) Accumulation of manganese in Neisseria gonorrhoeae correlates with resistance to oxidative killing by superoxide anion and is independent of superoxide dismutase activity, Mol. Microbiol., 40, 1175-1186, doi: 10.1046/j.1365-2958.2001.02460.x.

31. Iyer, R. R., Pluciennik, A., Burdett, V., and Modrich, P. L. (2006) DNA mismatch repair: functions and mechanisms, Chem. Rev., 106, 302-323, doi: 10.1021/cr0404794.

32. Chatterjee, N., and Walker, G. C. (2017) Mechanisms of DNA damage, repair, and mutagenesis, Environ. Mol. Mutagen., 58, 235-263, doi: 10.1002/em.22087.

33. Black, C. G., Fyfe, J. A. M., and Davies, J. K. (1998) Absence of an SOS-like system in Neisseria gonorrhoeae, Gene, 208, 61-66, doi: 10.1016/S0378-1119(97)00653-7.

34. Ambur, O. H., Davidsen, T., Frye, S. A., Balasingham, S. V., Lagesen, K., et al. (2009) Genome dynamics in major bacterial pathogens, FEMS Microbiol. Rev., 33, 453-470, doi: 10.1111/j.1574-6976.2009.00173.x.

35. Schook, P. O. P., Stohl, E. A., Criss, A. K., and Seifert, H. S. (2011) The DNA-binding activity of the Neisseria gonorrhoeae LexA orthologue NG1427 is modulated by oxidation, Mol. Microbiol., 79, 846-860, doi: 10.1111/j.1365-2958.2010.07491.x.

36. Maslowska, K. H., Makiela-Dzbenska, K., and Fijalkowska, I. J. (2019) The SOS system: A complex and tightly regulated response to DNA damage, Environ. Mol. Mutagen., 60, 368-384, doi: 10.1002/em.22267.

37. Kline, K. A., Sechman, E. V., Skaar, E. P., and Seifert, H. S. (2003) Recombination, repair and replication in the pathogenic Neisseriae: the 3 R′s of molecular genetics of two human-specific bacterial pathogens, Mol. Microbiol., 50, 3-13, doi: 10.1046/j.1365-2958.2003.03679.x.

38. Lindahl, T. (1981) DNA methyl transferase acting on O6-methylguanine residues in adapted E. coli, Chromosome Damage and Repair, Springer US, New York, NY.

39. Lindahl, T., Demple, B., and Robins, P. (1982) Suicide inactivation of the E. coli O6-methylguanine-DNA methyltransferase, EMBO J., 1, 1359-1363, doi: 10.1002/j.1460-2075.1982.tb01323.x.

40. Friedberg, E. C., and Walker, G. C. (2006) DNA repair and mutagenesis, ASM Press, Second Edition, Washington, DC.

41. Setlow, R. B., Swenson, P. A., and Carrier, W. L. (1963) Thymine dimers and inhibition of DNA synthesis by ultraviolet irradiation of cells, Science, 142, 1464-1466, doi: 10.1126/science.142.3598.1464.

42. Swenson, P. A., and Setlow, R. B. (1966) Effects of ultraviolet radiation on macromolecular synthesis in Escherichia coli, J. Mol. Biol., 15, 201-219, doi: 10.1016/S0022-2836(66)80221-8.

43. Villani, G., Boiteux, S., and Radman, M. (1978) Mechanism of ultraviolet-induced mutagenesis: extent and fidelity of in vitro DNA synthesis on irradiated templates, Proc. Natl. Acad. Sci. USA, 75, 3037-3041, doi: 10.1073/pnas.75.7.3037.

44. Yamamoto, J., Shimizu, K., Kanda, T., Hosokawa, Y., Iwai, S., et al. (2017) Loss of fourth electron-transferring tryptophan in animal (6–4) photolyase impairs DNA repair activity in bacterial cells, Biochemistry, 56, 5356-5364, doi: 10.1021/acs.biochem.7b00366.

45. Thiagarajan, V., Byrdin, M., Eker, A. P. M., Müller, P., and Brettel, K. (2011) Kinetics of cyclobutane thymine dimer splitting by DNA photolyase directly monitored in the UV, Proc. Natl. Acad. Sci. USA, 108, 9402-9407, doi: 10.1073/pnas.1101026108.

46. Campbell, L. A., and Yasbin, R. E. (1979) Deoxyribonucleic acid repair capacities of Neisseria gonorrhoeae: absence of photoreactivation, J. Bacteriol., 140, 1109-1111, doi: 10.1128/jb.140.3.1109-1111.1979.

47. Cahoon, L. A., Stohl, E. A., and Seifert, H. S. (2011) The Neisseria gonorrhoeae photolyase orthologue phrB is required for proper DNA supercoiling but does not function in photo-reactivation, Mol. Microbiol., 79, 729-742, doi: 10.1111/j.1365-2958.2010.07481.x.

48. Couvé, S., Ishchenko, A. A., Fedorova, O. S., Ramanculov, E. M., Laval, J., et al. (2013) Direct DNA lesion reversal and excision repair in Escherichia coli, EcoSal Plus, 5, doi: 10.1128/ecosalplus.7.2.4.

49. Rydberg, B., and Lindahl, T. (1982) Nonenzymatic methylation of DNA by the intracellular methyl group donor S-adenosyl-L-methionine is a potentially mutagenic reaction, EMBO J., 1, 211-216, doi: 10.1002/j.1460-2075.1982.tb01149.x.

50. Cadet, J., and Wagner, J. R. (2013) DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation, Cold Spring Harb. Perspect. Biol., 5, a012559, doi: 10.1101/cshperspect.a012559.

51. Davidsen, T., Bjørås, M., Seeberg, E. C., and Tønjum, T. (2005) Antimutator role of DNA glycosylase MutY in pathogenic Neisseria species, J. Bacteriol., 187, 2801-2809, doi: 10.1128/JB.187.8.2801-2809.2005.

52. LeCuyer, B. E., Criss, A. K., and Seifert, H. S. (2010) Genetic characterization of the nucleotide excision repair system of Neisseria gonorrhoeae, J. Bacteriol., 192, 665-673, doi: 10.1128/JB.01018-09.

53. Campbell, L. A., and Yasbin, R. E. (1984) A DNA excision repair system for Neisseria gonorrhoeae, Mol. Gen. Genet. MGG, 193, 561-563, doi: 10.1007/BF00382101.

54. Duppatla, V., Bodda, C., Urbanke, C., Friedhoff, P., and Rao, D. N. (2009) The C-terminal domain is sufficient for endonuclease activity of Neisseria gonorrhoeae MutL, Biochem. J., 423, 265-277, doi: 10.1042/BJ20090626.

55. Kunkel, T. A. (2004) DNA replication fidelity, J. Biol. Chem., 279, 16895-16898, doi: 10.1074/jbc.R400006200.

56. Adamczyk-Popławska, M., Bandyra, K., and Kwiatek, A. (2018) Activity of Vsr endonucleases encoded by Neisseria gonorrhoeae FA1090 is influenced by MutL and MutS proteins, BMC Microbiol., 18, 95, doi: 10.1186/s12866-018-1243-3.

57. Ehrlich, M., Norris, K. F., Wang, R. Y., Kuo, K. C., and Gehrke, C. W. (1986) DNA cytosine methylation and heat-induced deamination, Biosci. Rep., 6, 387-393, doi: 10.1007/BF01116426.

58. Shen, J.-C., Rideout, W. M., and Jones, P. A. (1994) The rate of hydrolytic deamination of 5-methylcytosine in double-stranded DNA, Nucleic Acids Res., 22, 972-976, doi: 10.1093/nar/22.6.972.

59. Prister, L. L., Xu, J., and Seifert, H. S. (2019) A double-strand break does not promote Neisseria gonorrhoeae pilin antigenic variation, J. Bacteriol., 201, e00256-19, doi: 10.1128/JB.00256-19.

60. Salvatore, P., Bucci, C., Pagliarulo, C., Tredici, M., Colicchio, R., et al. (2002) Phenotypes of a naturally defective recB allele in Neisseria meningitidis clinical isolates, Infect. Immun., 70, 4185-4195, doi: 10.1128/IAI.70.8.4185-4195.2002.

61. Fang, F. C. (2004) Antimicrobial reactive oxygen and nitrogen species: concepts and controversies, Nat. Rev. Microbiol., 2, 820-832, doi: 10.1038/nrmicro1004.

62. Van der Veen, S., and Tang, C. M. (2015) The BER necessities: the repair of DNA damage in human-adapted bacterial pathogens, Nat. Rev. Microbiol., 13, 83-94, doi: 10.1038/nrmicro3391.

63. Bignon, E., Gillet, N., Chan, C.-H., Jiang, T., Monari, A., et al. (2021) Recognition of a tandem lesion by DNA bacterial formamidopyrimidine glycosylases explored combining molecular dynamics and machine learning, Comput. Struct. Biotechnol. J., 19, 2861-2869, doi: 10.1016/j.csbj.2021.04.055.

64. Tsai-Wu, J. J., Liu, H. F., and Lu, A. L. (1992) Escherichia coli MutY protein has both N-glycosylase and apurinic/apyrimidinic endonuclease activities on A.C and A.G mispairs, Proc. Natl. Acad. Sci. USA, 89, 8779-8783, doi: 10.1073/pnas.89.18.8779.

65. Nakamura, T., Meshitsuka, S., Kitagawa, S., Abe, N., Yamada, J., et al. (2010) Structural and dynamic features of the MutT protein in the recognition of nucleotides with the mutagenic 8-oxoguanine base, J. Biol. Chem., 285, 444-452, doi: 10.1074/jbc.M109.066373.

66. Ендуткин, А. В., Жарков, Д. О. (2021) GO-система: путь репарации ДНК для борьбы с окислительными повреждениями, Мол. Биол., 55, 223-242, doi: 10.31857/S0026898421020063.

67. Fromme, J. C., Banerjee, A., Huang, S. J., and Verdine, G. L. (2004) Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase, Nature, 427, 652-656, doi: 10.1038/nature02306.

68. Nagorska, K., Silhan, J., Li, Y., Pelicic, V., Freemont, P. S., et al. (2012) A network of enzymes involved in repair of oxidative DNA damage in Neisseria meningitidis, Mol. Microbiol., 83, 1064-1079, doi: 10.1111/j.1365-2958.2012.07989.x.

69. Davidsen, T., Amundsen, E. K., Rødland, E. A., and Tønjum, T. (2007) DNA repair profiles of disease-associated isolates of Neisseria meningitidis, FEMS Immunol. Med. Microbiol., 49, 243-251, doi: 10.1111/j.1574-695X.2006.00195.x.

70. Landová, B., and Šilhán, J. (2020) Conformational changes of DNA repair glycosylase MutM triggered by DNA binding, FEBS Lett., 594, 3032-3044, doi: 10.1002/1873-3468.13876.

71. Michelson, A. Z., Chen, M., Wang, K., and Lee, J. K. (2012) Gas-phase studies of purine 3-methyladenine DNA glycosylase II (AlkA) substrates, J. Am. Chem. Soc., 134, 9622-9633, doi: 10.1021/ja211960r.

72. Van Houten, B., Croteau, D. L., DellaVecchia, M. J., Wang, H., and Kisker, C. (2005) ‘Close-fitting sleeves’: DNA damage recognition by the UvrABC nuclease system, Mutat. Res. Mol. Mech. Mutagen., 577, 92-117, doi: 10.1016/j.mrfmmm.2005.03.013.

73. Bernacchia, L., Paris, A., Gupta, A., Moores, A. A., and Kad, N. M. (2022) Identification of the target and mode of action for the prokaryotic nucleotide excision repair inhibitor ATBC, Biosci. Rep., 42, BSR20220403, doi: 10.1042/BSR20220403.

74. Монахова М. В., Милакина М. А., Трикин Р. М., Орецкая Т. С., Кубарева Е. А. (2020) Особенности функционирования белка MutL из системы репарации «мисматчей» различных организмов, Биоорг. Хим., 46, 563-579, doi: 10.31857/S0132342320060214.

75. Monakhova, M., Ryazanova, A., Kunetsky, V., Li, P., Shilkin, E., et al. (2020) Probing the DNA-binding center of the MutL protein from the Escherichia coli mismatch repair system via crosslinking and Förster resonance energy transfer, Biochimie, 171172, 43-54, doi: 10.1016/j.biochi.2020.02.004.

76. Монахова М. В., Милакина М. А., Савицкая В. Ю., Романова Е. А., Rao D. N., et al. (2021) Белок MutL из системы репарации мисматчей бактерии Neisseria gonorrhoeae: взаимодействие с ATP и ДНК, Мол. Биол., 55, 289-304, doi: 10.31857/S0026898421020117.

77. Monakhova, M. V., Penkina, A. I., Pavlova, A. V., Lyaschuk, A. M., Kucherenko, V. V., et al. (2018) Endonuclease activity of protein MutL from Rhodobacter sphaeroides mismatch repair system, Biochemistry (Moscow), 83, 281-293, doi: 10.1134/S0006297918030082.

78. Sancar, A., and Hearst, J. (1993) Molecular matchmakers, Science, 259, 1415-1420, doi: 10.1126/science.8451638.

79. Putnam, C. D. (2021) Strand discrimination in DNA mismatch repair, DNA Repair (Amst), 105, 103161, doi: 10.1016/j.dnarep.2021.103161.

80. Guarné, A. (2012) The functions of MutL in mismatch repair, Progr. Mol. Biol. Transl. Sci., 110, 41-70, doi: 10.1016/B978-0-12-387665-2.00003-1.

81. De Saro, F. J. L., Marinus, M. G., Modrich, P., and O’Donnell, M. (2006) The β sliding clamp binds to multiple sites within MutL and MutS, J. Biol. Chem., 281, 14340-14349, doi: 10.1074/jbc.M601264200.

82. Lopez de Saro, F. J., and O’Donnell, M. (2001) Interaction of the sliding clamp with MutS, ligase, and DNA polymerase I, Proc. Natl. Acad. Sci. USA, 98, 8376-8380, doi: 10.1073/pnas.121009498.

83. Pluciennik, A., Burdett, V., Lukianova, O., O’Donnell, M., and Modrich, P. (2009) Involvement of the β clamp in methyl-directed mismatch repair in vitro, J. Biol. Chem., 284, 32782-32791, doi: 10.1074/jbc.M109.054528.

84. Fukui, K., Baba, S., Kumasaka, T., and Yano, T. (2016) Structural features and functional dependency on β-clamp define distinct subfamilies of bacterial mismatch repair endonuclease MutL, J. Biol. Chem., 291, 16990-17000, doi: 10.1074/jbc.M116.739664.

85. Nirwal, S., Kulkarni, D. S., Sharma, A., Rao, D. N., and Nair, D. T. (2018) Mechanism of formation of a toroid around DNA by the mismatch sensor protein, Nucleic Acids Res., 46, 256-266, doi: 10.1093/nar/gkx1149.

86. Modrich, P. (1989) Methyl-directed DNA mismatch correction, J. Biol. Chem., 264, 6597-6600, doi: 10.1016/S0021-9258(18)83467-6..

87. Liu, J., Hanne, J., Britton, B. M., Bennett, J., Kim, D., et al. (2016) Cascading MutS and MutL sliding clamps control DNA diffusion to activate mismatch repair, Nature, 539, 583-587, doi: 10.1038/nature20562.

88. Groothuizen, F. S., Winkler, I., Cristóvão, M., Fish, A., Winterwerp, H. H., et al. (2015) MutS/MutL crystal structure reveals that the MutS sliding clamp loads MutL onto DNA, Elife, 4, doi: 10.7554/eLife.06744.

89. Namadurai, S., Jain, D., Kulkarni, D. S., Tabib, C. R., Friedhoff, P., et al. (2010) The C-terminal domain of the MutL homolog from Neisseria gonorrhoeae forms an inverted homodimer, PLoS One, 5, e13726, doi: 10.1371/journal.pone.0013726.

90. Banasik, M., and Sachadyn, P. (2014) Conserved motifs of MutL proteins, Mutat. Res. Mol. Mech. Mutagen., 769, 69-79, doi: 10.1016/j.mrfmmm.2014.07.006.

91. Sánchez-Romero, M. A., Cota, I., and Casadesús, J. (2015) DNA methylation in bacteria: from the methyl group to the methylome, Curr. Opin. Microbiol., 25, 9-16, doi: 10.1016/j.mib.2015.03.004.

92. Kwiatek, A., Łuczkiewicz, M., Bandyra, K., Stein, D. C., and Piekarowicz, A. (2010) Neisseria gonorrhoeae FA1090 carries genes encoding two classes of Vsr endonucleases, J. Bacteriol., 192, 3951-3960, doi: 10.1128/JB.00098-10.

93. Bhagwat, A. S., and Lieb, M. (2002) Cooperation and competition in mismatch repair: very short-patch repair and methyl-directed mismatch repair in Escherichia coli, Mol. Microbiol., 44, 1421-1428, doi: 10.1046/j.1365-2958.2002.02989.x.

94. Robertson, A. B., and Matson, S. W. (2012) Reconstitution of the very short patch repair pathway from Escherichia col, J. Biol. Chem., 287, 32953-32966, doi: 10.1074/jbc.M112.384321.

95. Cahoon, L. A., and Seifert, H. S. (2011) Focusing homologous recombination: pilin antigenic variation in the pathogenic Neisseria, Mol. Microbiol., 81, 1136-1143, doi: 10.1111/j.1365-2958.2011.07773.x.

96. Ajiboye, T. O., Skiebe, E., and Wilharm, G. (2018) Contributions of RecA and RecBCD DNA repair pathways to the oxidative stress response and sensitivity of Acinetobacter baumannii to antibiotics, Int. J. Antimicrob. Agents, 52, 629-636, doi: 10.1016/j.ijantimicag.2018.07.022.

97. Michel, B., Boubakri, H., Baharoglu, Z., Lemasson, M., and Lestini, R. (2007) Recombination proteins and rescue of arrested replication forks, DNA Repair (Amst), 6, 967-980, doi: 10.1016/j.dnarep.2007.02.016.

98. Dillingham, M. S., and Kowalczykowski, S. C. (2008) RecBCD enzyme and the repair of double-stranded DNA breaks, Microbiol. Mol. Biol. Rev., 72, 642-671, doi: 10.1128/MMBR.00020-08.

99. Beyene, G. T., Balasingham, S. V., Frye, S. A., Namouchi, A., Homberset, H., et al. (2016) Characterization of the Neisseria meningitidis helicase RecG, PLoS One, 11, e0164588, doi: 10.1371/journal.pone.0164588.

100. Morimatsu, K., and Kowalczykowski, S. C. (2003) RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange, Mol. Cell, 11, 1337-1347, doi: 10.1016/S1097-2765(03)00188-6.

101. Mehr, I. J., and Seifert, H. S. (1998) Differential roles of homologous recombination pathways in Neisseria gonorrhoeae pilin antigenic variation, DNA transformation and DNA repair,Mol. Microbiol., 30, 697-710, doi: 10.1046/j.1365-2958.1998.01089.x.

102. Jacobsen, T., Bardiaux, B., Francetic, O., Izadi-Pruneyre, N., and Nilges, M. (2020) Structure and function of minor pilins of type IV pili, Med. Microbiol. Immunol., 209, 301-308, doi: 10.1007/s00430-019-00642-5.

103. Rotman, E., Webber, D. M., and Seifert, H. S. (2016) Analyzing Neisseria gonorrhoeae pilin antigenic variation using 454 sequencing technology, J. Bacteriol., 198, 2470-2482, doi: 10.1128/JB.00330-16.

104. Obergfell, K. P., and Seifert, H. S. (2016) The pilin N-terminal domain maintains Neisseria gonorrhoeae transformation competence during pilus phase variation, PLOS Genet., 12, e1006069, doi: 10.1371/journal.pgen.1006069.

105. Killoran, M. P., Kohler, P. L., Dillard, J. P., and Keck, J. L. (2009) RecQ DNA helicase HRDC domains are critical determinants in Neisseria gonorrhoeae pilin antigenic variation and DNA repair, Mol. Microbiol., 71, 158-171, doi: 10.1111/j.1365-2958.2008.06513.x.

106. Sechman, E. V., Kline, K. A., and Seifert, H. S. (2006) Loss of both Holliday junction processing pathways is synthetically lethal in the presence of gonococcal pilin antigenic variation, Mol. Microbiol., 61, 185-193, doi: 10.1111/j.1365-2958.2006.05213.x.

107. Helm, R. A., and Seifert, H. S. (2009) Pilin antigenic variation occurs independently of the RecBCD pathway in Neisseria gonorrhoeae, J. Bacteriol., 191, 5613-5621, doi: 10.1128/JB.00535-09.

108. Ozer, E. A., Prister, L. L., Yin, S., Ward, B. H., Ivanov, S., et al. (2019) PacBio amplicon sequencing method to measure pilin antigenic variation frequencies of Neisseria gonorrhoeae, mSphere, 4, e00562-19, doi: 10.1128/mSphere.00562-19.

109. Kline, K. A., Criss, A. K., Wallace, A., and Seifert, H. S. (2007) Transposon mutagenesis identifies sites upstream of the Neisseria gonorrhoeae pilE gene that modulate pilin antigenic variation, J. Bacteriol., 189, 3462-3470, doi: 10.1128/JB.01911-06.

110. Cahoon, L. A., and Seifert, H. S. (2009) An alternative DNA structure is necessary for pilin antigenic variation in Neisseria gonorrhoeae, Science, 325, 764-767, doi: 10.1126/science.1175653.

111. Prister, L. L., Yin, S., Cahoon, L. A., and Seifert, H. S. (2020) Altering the Neisseria gonorrhoeae pilE guanine quadruplex loop bases affects pilin antigenic variation, Biochemistry, 59, 1104-1112, doi: 10.1021/acs.biochem.9b01038.

112. Maizels, N., and Davis, L. (2018) Initiation of homologous recombination at DNA nicks, Nucleic Acids Res., 46, 6962-6973, doi: 10.1093/nar/gky588.

113. Cahoon, L. A., and Seifert, H. S. (2013) Transcription of a cis-acting, noncoding, small RNA is required for pilin antigenic variation in Neisseria gonorrhoeae, PLoS Pathog., 9, e1003074, doi: 10.1371/journal.ppat.1003074.

114. Prister, L. L., Ozer, E. A., Cahoon, L. A., and Seifert, H. S. (2019) Transcriptional initiation of a small RNA, not R‐loop stability, dictates the frequency of pilin antigenic variation in Neisseria gonorrhoeae, Mol. Microbiol., 112, 1219-1234, doi: 10.1111/mmi.14356.

115. Pavlova, A. V., Kubareva, E. A., Monakhova, M. V., Zvereva, M. I., and Dolinnaya, N. G. (2021) Impact of G-Quadruplexes on the regulation of genome integrity, DNA damage and repair, Biomolecules, 11, 1284, doi: 10.3390/biom11091284.

116. Linke, R., Limmer, M., Juranek, S., Heine, A., and Paeschke, K. (2021) The relevance of G-quadruplexes for DNA repair, Int. J. Mol. Sci., 22, 12599, doi: 10.3390/ijms222212599.

117. Voter, A. F., Callaghan, M. M., Tippana, R., Myong, S., Dillard, J. P., et al. (2020) Antigenic variation in Neisseria gonorrhoeae occurs independently of RecQ-mediated unwinding of the pilE G quadruplex, J. Bacteriol., 202, e00607-19, doi: 10.1128/JB.00607-19.

118. Davidsen, T., Tuven, H. K., Bjørås, M., Rødland, E. A., and Tønjum, T. (2007) Genetic interactions of DNA repair pathways in the pathogen Neisseria meningitidis, J. Bacteriol., 189, 5728-5737, doi: 10.1128/JB.00161-07.

119. Criss, A. K., Bonney, K. M., Chang, R. A., Duffin, P. M., LeCuyer, B. E., et al. (2010) Mismatch correction modulates mutation frequency and pilus phase and antigenic variation in Neisseria gonorrhoeae, J. Bacteriol., 192, 316-325, doi: 10.1128/JB.01228-09.

120. Fussenegger, M., Rudel, T., Barten, R., Ryll, R., and Meyer, T. F. (1997) Transformation competence and type-4 pilus biogenesis in Neisseria gonorrhoeae – a review, Gene, 192, 125-134, doi: 10.1016/S0378-1119(97)00038-3.

121. Ordabayev, Y. A., Nguyen, B., Niedziela-Majka, A., and Lohman, T. M. (2018) Regulation of UvrD helicase activity by MutL, J. Mol. Biol., 430, 4260-4274, doi: 10.1016/j.jmb.2018.08.022.

122. Vigué, L., and Eyre-Walker, A. (2019) The comparative population genetics of Neisseria meningitidis and Neisseria gonorrhoeae, PeerJ, 7, e7216, doi: 10.7717/peerj.7216.

123. Boyce, K. J. (2022) Mutators enhance adaptive micro-evolution in pathogenic microbes, Microorganisms, 10, 442, doi: 10.3390/microorganisms10020442.

124. Richardson, A. R., and Stojiljkovic, I. (2001) Mismatch repair and the regulation of phase variation in Neisseria meningitidis, Mol. Microbiol., 40, 645-655, doi: 10.1046/j.1365-2958.2001.02408.x.

125. Tauseef, I., Ali, Y. M., and Bayliss, C. D. (2013) Phase variation of PorA, a major outer membrane protein, mediates escape of bactericidal antibodies by Neisseria meningitidis, Infect. Immun., 81, 1374-1380, doi: 10.1128/IAI.01358-12.

126. Rotman, E., and Seifert, H. S. (2015) Neisseria gonorrhoeae MutS affects pilin antigenic variation through mismatch correction and not by pilE guanine quartet binding, J. Bacteriol., 197, 1828-1838, doi: 10.1128/JB.02594-14.

127. Pavlova, A. V., Monakhova, M. V., Ogloblina, A. M., Andreeva, N. A., Laptev, G. Y., et al. (2020) Responses of DNA mismatch repair Proteins to a stable G-quadruplex embedded into a DNA duplex structure, Int. J. Mol. Sci., 21, 8773, doi: 10.3390/ijms21228773.

128. Larson, E. D., Duquette, M. L., Cummings, W. J., Streiff, R. J., and Maizels, N. (2005) MutSα binds to and promotes synapsis of transcriptionally activated immunoglobulin switch regions, Curr. Biol., 15, 470- 474, doi: 10.1016/j.cub.2004.12.077.

129. Ehrat, E. A., Johnson, B. R., Williams, J. D., Borchert, G. M., and Larson, E. D. (2012) G-quadruplex recognition activities of E. coli MutS, BMC Mol. Biol., 13, 23, doi: 10.1186/1471-2199-13-23.

130. Shukla, K., Thakur, R. S., Ganguli, D., Rao, D. N., and Nagaraju, G. (2017) Escherichia coli and Neisseria gonorrhoeae UvrD helicase unwinds G4 DNA structures, Biochem. J., 474, 3579-3597, doi: 10.1042/BCJ20170587.

131. Worth, L., Clark, S., Radman, M., and Modrich, P. (1994) Mismatch repair proteins MutS and MutL inhibit RecA-catalyzed strand transfer between diverged DNAs, Proc. Natl. Acad. Sci. USA, 91, 3238-3241, doi: 10.1073/pnas.91.8.3238.