БИОХИМИЯ, 2022, том 87, вып. 6, с. 707–726

УДК 577

Помогут ли пептиды остановить Covid‑19?

Обзор

© 2022 В.Г. Круть 1, С.А. Чувпило 1, И.В. Астраханцева 1, Л.И. Козловская 2,3, Г.А. Ефимов 4, А.А. Круглов 5,6,7, М.С. Друцкая 1,8, С.А. Недоспасов 1,5,6,8*sergei.nedospasov@gmail.com

АНО ВО Научно-технологический университет Сириус, 354340 Федеральная территория Сириус/Сочи, Россия

ФГАНУ «ФНЦИРИП имени М.П. Чумакова РАН», 108819 Москва, Россия

Первый Московский государственный медицинский университет имени И.М. Сеченова, Институт трансляционной медицины и биотехнологий, 119991 Москва, Россия

Национальный медицинский исследовательский центр гематологии Минздрава России, 125167 Москва, Россия

НИИ физико-химической биологии имени А.Н. Белозерского, Московский государственный университет имени М.В. Ломоносова, 119234 Москва, Россия

Московский государственный университет имени М.В. Ломоносова, биологический факультет, 119234 Москва, Россия

Немецкий исследовательский центр ревматизма (DRFZ), Институт Лейбница, 10117 Берлин, Германия

Институт молекулярной биологии имени В.А. Энгельгардта РАН, 119991 Москва, Россия

Поступила в редакцию 31.12.2021
После доработки 24.04.2022
Принята к публикации 11.05.2022

DOI: 10.31857/S0320972522060021

КЛЮЧЕВЫЕ СЛОВА: SARS‑CoV‑2, АСЕ2, вакцина, Т‑клеточные эпитопы.

Аннотация

Пептиды широко применяются в диагностике, профилактике и терапии некоторых заболеваний человека. Насколько они могут быть полезны при болезни, вызываемой коронавирусом SARS‑CoV‑2? В настоящем обзоре мы обсуждаем возможность применения синтетических и рекомбинантных пептидов и полипептидов для профилактики COVID‑19, основанной на блокировке взаимодействия вируса со своим главным рецептором – АСЕ2, а также использование синтетических пептидов в противовирусных вакцинах с учётом возникающих новых вариантов вируса.

Сноски

* Адресат для корреспонденции.

Финансирование

Работа выполнена при финансовой поддержке АНО ВО Научно-технологический университет Сириус (проект № ИМБ‑НИР‑2103), Российского фонда фундаментальных исследований (грант № 20‑04‑60338) и Министерства науки и высшего образования (дополнительное соглашение № 075‑03‑2021‑448/3, тема № 121122300151‑5).

Благодарности

Авторы благодарят А.А. Ишмухаметова за поддержку и интерес к работе, а также Р.А. Абагяна, И.В. Ямпольского и Г.А. Малеева за полезные обсуждения.

Конфликт интересов

Л.И.К. – сотрудник организации ФГАНУ «ФНЦИРИП имени М.П. Чумакова РАН», которая является разработчиком и производителем вакцины против коронавирусной инфекции КовиВак.

Соблюдение этических норм

Настоящая статья не содержит экспериментальных данных, полученных с использованием людей или животных в качестве объектов.

Список литературы

1. Shereen, M. A., Khan, S., Kazmi, A., Bashir, N., and Siddique, R. (2020) COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses, J. Adv. Res., 24, 91-98, doi: 10.1016/j.jare.2020.03.005.

2. Wang, N., Shang, J., Jiang, S., and Du, L. (2020) Subunit vaccines against emerging pathogenic human coronaviruses, Front. Microbiol., 11, 298, doi: 10.3389/fmicb.2020.00298.

3. Du, L., He, Y., Zhou, Y., Liu, S., Zheng, B. J., and Jiang, S. (2009) The spike protein of SARS-CoV — a target for vaccine and therapeutic development, Nat. Rev. Microbiol., 7, 226-236, doi: 10.1038/nrmicro2090.

4. Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., et al. (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature, 579, 270-273, doi: 10.1038/s41586-020-2012-7.

5. Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., et al. (2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation, Science, 367, 1260-1263, doi: 10.1126/science.abb2507.

6. Ortega, J. T., Serrano, M. L., Pujol, F. H., and Rangel, H. R. (2020) Role of changes in SARS-CoV-2 spike protein in the interaction with the human ACE2 receptor: An in silico analysis, EXCLI J., 19, 410-417, doi: 10.17179/excli2020-1167.

7. Amicone, M., Borges, V., Alves, M. J., Isidro, J., Zé-Zé, L., et al. (2021) Mutation rate of SARS-CoV-2 and emergence of mutators during experimental evolution, bioRxiv, doi: 10.1101/2021.05.19.444774.

8. Volz, E., Mishra, S., Chand, M., Barrett, J. C., Johnson, R., et al. (2021) Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England, Nature, 593, 266-269, doi: 10.1038/s41586-021-03470-x.

9. Wibmer, C. K., Ayres, F., Hermanus, T., Madzivhandila, M., Kgagudi, P., et al. (2021) SARS-CoV-2 501Y. V2 escapes neutralization by South African COVID-19 donor plasma, Nat. Med., 27, 622-625, doi: 10.1038/s41591-021-01285-x.

10. Tegally, H., Wilkinson, E., Giovanetti, M., Iranzadeh, A., Fonseca, V., et al. (2021) Detection of a SARS-CoV-2 variant of concern in South Africa, Nature, 592, 438-443, doi: 10.1038/s41586-021-03402-9.

11. Muik, A., Wallisch, A. K., Sänger, B., Swanson, K. A., Mühl, J., et al. (2021) Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine-elicited human sera, Science, 371, 1152-1153, doi: 10.1126/science.abg6105.

12. Davies, N. G., Abbott, S., Barnard, R. C., Jarvis, C. I., Kucharski, A. J., et al. (2021) Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England, Science, 372, doi: 10.1126/science.abg3055.

13. Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., and Zhou, Q. (2020) Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2, Science, 367, 1444-1448, doi: 10.1126/science.abb2762.

14. Belouzard, S., Chu, V. C., and Whittaker, G. R. (2009) Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites, Proc. Natl. Acad. Sci. USA, 106, 5871-5876, doi: 10.1073/pnas.0809524106.

15. Barrett, C. T., Neal, H. E., Edmonds, K., Moncman, C. L., Thompson, R., et al. (2021) Effect of clinical isolate or cleavage site mutations in the SARS-CoV-2 spike protein on protein stability, cleavage, and cell-cell fusion, J. Biol. Chem., 297, 100902, doi: 10.1016/j.jbc.2021.100902.

16. Singh, J., Rahman, S. A., Ehtesham, N. Z., Hira, S., and Hasnain, S. E. (2021) SARS-CoV-2 variants of concern are emerging in India, Nat. Med., 27, 1131-1133, doi: 10.1038/s41591-021-01397-4.

17. Borisova, N. I., Kotov, I. A., Kolesnikov, A. A., Kaptelova, V. V., Speranskaya, A. S., et al. (2021) Monitoring the spread of the SARS-CoV-2 (Coronaviridae: Coronavirinae: Betacoronavirus; Sarbecovirus) variants in the Moscow region using targeted high-throughput sequencing [in Russia], Vopr. Virusol., 66, 269-278, doi: 10.36233/0507-4088-72.

18. Kumar, S., Thambiraja, T. S., Karuppanan, K., and Subramaniam, G. (2021) Omicron and Delta variant of SARS-CoV-2: A comparative computational study of spike protein, J. Med. Virol., doi: 10.1002/jmv.27526.

19. Gong, S. Y., Chatterjee, D., Richard, J., Prévost, J., Tauzin, A., et al. (2021) Contribution of single mutations to selected SARS-CoV-2 emerging variants spike antigenicity, Virology, 563, 134-145, doi: 10.1016/j.virol.2021.09.001.

20. Jhun, H., Park, H. Y., Hisham, Y., Song, C. S., and Kim, S. (2021) SARS-CoV-2 Delta (B. 1.617.2) Variant: A unique T478K mutation in receptor binding motif (RBM) of spike gene, Immune Netw., 21, e32, doi: 10.4110/in.2021.21.e32.

21. Gao, Q., Bao, L., Mao, H., Wang, L., Xu, K., et al. (2020) Development of an inactivated vaccine candidate for SARS-CoV-2, Science, 369, 77-81, doi: 10.1126/science.abc1932.

22. Rauch, S., Jasny, E., Schmidt, K. E., and Petsch, B. (2018) New vaccine technologies to combat outbreak situations, Front. Immunol., 9, 1963, doi: 10.3389/fimmu.2018.01963.

23. Corbett, K. S., Edwards, D. K., Leist, S. R., Abiona, O. M., Boyoglu-Barnum, S., et al. (2020) SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness, Nature, 586, 567-571, doi: 10.1038/s41586-020-2622-0.

24. Folegatti, P. M., Ewer, K. J., Aley, P. K., Angus, B., Becker, S., et al. (2020) Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial, Lancet, 396, 467-478, doi: 10.1016/s0140-6736(20)31604-4.

25. Logunov, D. Y., Dolzhikova, I. V., Shcheblyakov, D. V., Tukhvatulin, A. I., Zubkova, O. V., et al. (2021) Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia, Lancet, 397, 671-681, doi: 10.1016/s0140-6736(21)00234-8.

26. Yang, J., Wang, W., Chen, Z., Lu, S., Yang, F., et al. (2020) A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity, Nature, 586, 572-577, doi: 10.1038/s41586-020-2599-8.

27. Wang, J. (2021) New strategy for COVID-19 vaccination: targeting the receptor-binding domain of the SARS-CoV-2 spike protein, Cell Mol. Immunol., 18, 243-244, doi: 10.1038/s41423-020-00584-6.

28. Tian, J. H., Patel, N., Haupt, R., Zhou, H., Weston, S., et al. (2021) SARS-CoV-2 spike glycoprotein vaccine candidate NVX-CoV2373 immunogenicity in baboons and protection in mice, Nat. Commun., 12, 372, doi: 10.1038/s41467-020-20653-8.

29. Di Natale, C., La Manna, S., De Benedictis, I., Brandi, P., and Marasco, D. (2020) Perspectives in peptide-based vaccination strategies for syndrome coronavirus 2 pandemic, Front. Pharmacol., 11, 578382, doi: 10.3389/fphar.2020.578382.

30. Abduljaleel, Z., Al-Allaf, F. A., and Aziz, S. A. (2021) Peptides-based vaccine against SARS-nCoV-2 antigenic fragmented synthetic epitopes recognized by T cell and β-cell initiation of specific antibodies to fight the infection, Biodes. Manuf., 4, 490-505, doi: 10.1007/s42242-020-00114-3.

31. Heitmann, J. S., Bilich, T., Tandler, C., Nelde, A., Maringer, Y., et al. (2021) A COVID-19 peptide vaccine for the induction of SARS-CoV-2 T cell immunity, Nature, 601, 617-622, doi: 10.1038/s41586-021-04232-5.

32. Ryzhikov, A. B., Ryzhikov, E. A., Bogryantseva, M. P., Danilenko, E. D., Imatdinov, I. R., et al. (2021) Immunogenicity and protectivity of the Peptide Vaccine against SARS-CoV-2, Ann. Russ. Acad. Med. Sci., 76, 5-19, doi: 10.15690/vramn1528.

33. Ryzhikov, A. B., Ryzhikov, E. A., Bogryantseva, M. P., Usova, S. V., Danilenko, E. D., et al. (2021) A single blind, placebo-controlled randomized study of the safety, reactogenicity and immunogenicity of the “EpiVacCorona” Vaccine for the prevention of COVID-19, in volunteers aged 18-60 years (phase I-II), Russ. J. Infect. Immun., 11, 283-296, doi: 10.15789/2220-7619-ASB-1699.

34. Watanabe, M., Omahdi, Z., and Yamasaki, S. (2020) Direct binding analysis between C-type lectins and glycans using immunoglobulin receptor fusion proteins, Methods Mol. Biol., 2132, 119-128, doi: 10.1007/978-1-0716-0430-4_12.

35. Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., et al. (2020) Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein, Cell, 181, 281-292.e286, doi: 10.1016/j.cell.2020.02.058.

36. Tripet, B., Howard, M. W., Jobling, M., Holmes, R. K., Holmes, K. V., et al. (2004) Structural characterization of the SARS-coronavirus spike S fusion protein core, J. Biol. Chem., 279, 20836-20849, doi: 10.1074/jbc.M400759200.

37. Li, W., Moore, M. J., Vasilieva, N., Sui, J., Wong, S. K., et al. (2003) Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus, Nature, 426, 450-454, doi: 10.1038/nature02145.

38. Shang, J., Wan, Y., Luo, C., Ye, G., Geng, Q., et al. (2020) Cell entry mechanisms of SARS-CoV-2, Proc. Natl. Acad. Sci. USA, 117, 11727-11734, doi: 10.1073/pnas.2003138117.

39. Hussain, M., Jabeen, N., Amanullah, A., Baig, A. A., Aziz, B., et al. (2020) Structural basis of SARS-CoV-2 spike protein priming by TMPRSS2, bioRxiv, doi: 10.1101/2020.04.21.052639.

40. Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., et al. (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell, 181, 271-280.e278, doi: 10.1016/j.cell.2020.02.052.

41. VanPatten, S., He, M., Altiti, A., Cheng, K. F., Ghanem, M. H., et al. (2020) Evidence supporting the use of peptides and peptidomimetics as potential SARS-CoV-2 (COVID-19) therapeutics, Future Med. Chem., 12, 1647-1656, doi: 10.4155/fmc-2020-0180.

42. Hamming, I., Timens, W., Bulthuis, M. L., Lely, A. T., Navis, G., et al. (2004) Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis, J. Pathol., 203, 631-637, doi: 10.1002/path.1570.

43. Zhao, Y., Zhao, Z., Wang, Y., Zhou, Y., Ma, Y., et al. (2020) Single-cell RNA expression profiling of ACE2, the receptor of SARS-CoV-2, Am. J. Respir. Crit. Care Med., 202, 756-759, doi: 10.1164/rccm.202001-0179LE.

44. Millet, J. K., and Whittaker, G. R. (2015) Host cell proteases: critical determinants of coronavirus tropism and pathogenesis, Virus Res., 202, 120-134, doi: 10.1016/j.virusres.2014.11.021.

45. Shulla, A., Heald-Sargent, T., Subramanya, G., Zhao, J., Perlman, S., et al. (2011) A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry, J. Virol., 85, 873-882, doi: 10.1128/jvi.02062-10.

46. Chambers, J. P., Yu, J., Valdes, J. J., and Arulanandam, B. P. (2020) SARS-CoV-2, early entry events, J. Pathog., 2020, 9238696, doi: 10.1155/2020/9238696.

47. Gur, M., Taka, E., Yilmaz, S. Z., Kilinc, C., Aktas, U., et al. (2020) Conformational transition of SARS-CoV-2 spike glycoprotein between its closed and open states, J. Chem. Phys., 153, 075101, doi: 10.1063/5.0011141.

48. Xu, C., Wang, Y., Liu, C., Zhang, C., Han, W., et al. (2021) Conformational dynamics of SARS-CoV-2 trimeric spike glycoprotein in complex with receptor ACE2 revealed by cryo-EM, Sci. Adv., 7, doi: 10.1126/sciadv.abe5575.

49. Jackson, C. B., Farzan, M., Chen, B., and Choe, H. (2022) Mechanisms of SARS-CoV-2 entry into cells, Nat. Rev. Mol. Cell Biol., 23, 3-20, doi: 10.1038/s41580-021-00418-x.

50. Tang, T., Bidon, M., Jaimes, J. A., Whittaker, G. R., and Daniel, S. (2020) Coronavirus membrane fusion mechanism offers a potential target for antiviral development, Antiviral. Res., 178, 104792, doi: 10.1016/j.antiviral.2020.104792.

51. Bosch, B. J., van der Zee, R., de Haan, C. A., and Rottier, P. J. (2003) The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex, J. Virol., 77, 8801-8811, doi: 10.1128/jvi.77.16.8801-8811.2003.

52. White, J. M., Delos, S. E., Brecher, M., and Schornberg, K. (2008) Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme, Crit. Rev. Biochem. Mol. Biol., 43, 189-219, doi: 10.1080/10409230802058320.

53. Millet, J. K., and Whittaker, G. R. (2018) Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells, Virology, 517, 3-8, doi: 10.1016/j.virol.2017.12.015.

54. Chen, Y., Guo, Y., Pan, Y., and Zhao, Z. J. (2020) Structure analysis of the receptor binding of 2019-nCoV, Biochem. Biophys. Res. Commun., 525, 135-140, doi: 10.1016/j.bbrc.2020.02.071.

55. Xia, S., Zhu, Y., Liu, M., Lan, Q., Xu, W., et al. (2020) Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein, Cell. Mol. Immunol., 17, 765-767, doi: 10.1038/s41423-020-0374-2.

56. Xia, S., Liu, M., Wang, C., Xu, W., Lan, Q., et al. (2020) Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion, Cell Res., 30, 343-355, doi: 10.1038/s41422-020-0305-x.

57. Smyth, M. S., and Martin, J. H. (2000) X Ray crys­tallography, Mol. Pathol., 53, 8-14, doi: 10.1136/mp.53.1.8.

58. Smith, G. P. (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface, Science, 228, 1315-1317, doi: 10.1126/science.4001944.

59. Trier, N. H., Hansen, P. R., and Houen, G. (2012) Production and characterization of peptide antibodies, Methods, 56, 136-144, doi: 10.1016/j.ymeth.2011.12.001.

60. Lee, A. C., Harris, J. L., Khanna, K. K., and Hong, J. H. (2019) A comprehensive review on current advances in peptide drug development and design, Int. J. Mol. Sci., 20, doi: 10.3390/ijms20102383.

61. Rabinowitz, J. A., Lainson, J. C., Johnston, S. A., and Diehnelt, C. W. (2018) Non-natural amino acid peptide microarrays to discover Ebola virus glycoprotein ligands, Chem. Commun., 54, 1417-1420, doi: 10.1039/c7cc08242h.

62. Ingallinella, P., Bianchi, E., Ladwa, N. A., Wang, Y. J., Hrin, R., et al. (2009) Addition of a cholesterol group to an HIV-1 peptide fusion inhibitor dramatically increases its antiviral potency, Proc. Natl. Acad. Sci. USA, 106, 5801-5806, doi: 10.1073/pnas.0901007106.

63. Pessi, A., Bixler, S. L., Soloveva, V., Radoshitzky, S., Retterer, C., et al. (2019) Cholesterol-conjugated stapled peptides inhibit Ebola and Marburg viruses in vitro and in vivo, Antiviral Res., 171, 104592, doi: 10.1016/j.antiviral.2019.104592.

64. Chen, G., Cook, J. D., Ye, W., Lee, J. E., and Sidhu, S. S. (2019) Optimization of peptidic HIV-1 fusion inhibitor T20 by phage display, Protein Sci., 28, 1501-1512, doi: 10.1002/pro.3669.

65. Ding, X., Zhang, X., Chong, H., Zhu, Y., Wei, H., Wu, X., et al. (2017) Enfuvirtide (T20)-based lipopeptide is a potent HIV-1 cell fusion inhibitor: Implications for viral entry and inhibition, J. Virol., 91, doi: 10.1128/jvi.00831-17.

66. Matsubara, T., Onishi, A., Saito, T., Shimada, A., Inoue, H., et al. (2010) Sialic acid-mimic peptides as hemagglutinin inhibitors for anti-influenza therapy, J. Med. Chem., 53, 4441-4449, doi: 10.1021/jm1002183.

67. Kadam, R. U., Juraszek, J., Brandenburg, B., Buyck, C., Schepens, W. B. G., et al. (2017) Potent peptidic fusion inhibitors of influenza virus, Science, 358, 496-502, doi: 10.1126/science.aan0516.

68. Shilovskiy, I. P., Andreev, S. M., Kozhikhova, K. V., Nikolskii, A. A., and Khaitov, M. R. (2019) Prospects for the use of peptides against respiratory syncytial virus [in Russian], Mol. Biol. (Mosk), 53, 541-560, doi: 10.1134/s002689841904013x.

69. Brouwer, P. J. M., Caniels, T. G., van der Straten, K., Snitselaar, J. L., Aldon, Y., et al. (2020) Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability, Science, 369, 643-650, doi: 10.1126/science.abc5902.

70. Wang, C., Li, W., Drabek, D., Okba, N. M. A., van Haperen, R., Osterhaus, A., et al. (2020) A human monoclonal antibody blocking SARS-CoV-2 infection, Nat. Commun., 11, 2251, doi: 10.1038/s41467-020-16256-y.

71. Sui, J., Li, W., Murakami, A., Tamin, A., Matthews, L. J., Wong, S. K., et al. (2004) Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association, Proc. Natl. Acad. Sci. USA, 101, 2536-2541, doi: 10.1073/pnas.0307140101.

72. Walls, A. C., Xiong, X., Park, Y. J., Tortorici, M. A., Snijder, J., et al. (2019) Unexpected receptor functional mimicry elucidates activation of coronavirus fusion, Cell, 176, 1026-1039.e1015, doi: 10.1016/j.cell.2018.12.028.

73. Khavinson, V., Linkova, N., Dyatlova, A., Kuznik, B., and Umnov, R. (2020) Peptides: prospects for use in the treatment of COVID-19, Molecules, 25, doi: 10.3390/molecules25194389.

74. Kuba, K., Imai, Y., Rao, S., Gao, H., Guo, F., et al. (2005) A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury, Nat. Med., 11, 875-879, doi: 10.1038/nm1267.

75. Mantovani, A., Locati, M., Vecchi, A., Sozzani, S., and Allavena, P. (2001) Decoy receptors: a strategy to regulate inflammatory cytokines and chemokines, Trends Immunol., 22, 328-336, doi: 10.1016/s1471-4906(01)01941-x.

76. Dinarello, C. A. (1997) Interleukin-1, Cytokine Growth Factor Rev., 8, 253-265, doi: 10.1016/s1359-6101(97)00023-3.

77. Idriss, H. T., and Naismith, J. H. (2000) TNF alpha and the TNF receptor superfamily: structure-function relationship(s), Microsc Res. Tech., 50, 184-195, doi: 10.1002/1097-0029(20000801)50:3<184::AID-JEMT2>3.0.CO;2-H.

78. Pinto, D., Park, Y. J., Beltramello, M., Walls, A. C., Tortorici, M. A., et al. (2020) Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody, Nature, 583, 290-295, doi: 10.1038/s41586-020-2349-y.

79. Zoufaly, A., Poglitsch, M., Aberle, J. H., Hoepler, W., Seitz, T., et al. (2020) Human recombinant soluble ACE2 in severe COVID-19, Lancet Respir. Med., 8, 1154-1158, doi: 10.1016/s2213-2600(20)30418-5.

80. Chan, K. K., Dorosky, D., Sharma, P., Abbasi, S. A., Dye, J. M., et al. (2020) Engineering human ACE2 to optimize binding to the spike protein of SARS coronavirus 2, Science, 369, 1261-1265, doi: 10.1126/science.abc0870.

81. Lu, J., and Sun, P. D. (2020) High affinity binding of SARS-CoV-2 spike protein enhances ACE2 carboxypeptidase activity, bioRxiv, doi: 10.1101/2020.07.01.182659.

82. Glasgow, A., Glasgow, J., Limonta, D., Solomon, P., Lui, I., et al. (2020) Engineered ACE2 receptor traps potently neutralize SARS-CoV-2, bioRxiv, doi: 10.1101/2020.07.31.231746.

83. Chan, K. K., Tan, T. J. C., Narayanan, K. K., and Procko, E. (2020) An engineered decoy receptor for SARS-CoV-2 broadly binds protein S sequence variants, bioRxiv, doi: 10.1101/2020.10.18.344622.

84. Zhang, G., Pomplun, S., Loftis, A. R., Tan, X., Loas, A., et al. (2020), Investigation of ACE2 N-terminal fragments binding to SARS-CoV-2 Spike RBD, bioRxiv, doi: 10.1101/2020.03.19.999318.

85. Karoyan, P., Vieillard, V., Gómez-Morales, L., Odile, E., Guihot, A., et al. (2021) Human ACE2 peptide-mimics block SARS-CoV-2 pulmonary cells infection, Commun. Biol., 4, 197, doi: 10.1038/s42003-021-01736-8.

86. Rezaei Araghi, R., and Keating, A. E. (2016) Designing helical peptide inhibitors of protein-protein interactions, Curr. Opin. Struct. Biol., 39, 27-38, doi: 10.1016/j.sbi.2016.04.001.

87. Ali, A. M., Atmaj, J., Van Oosterwijk, N., Groves, M. R., and Dömling, A. (2019) Stapled peptides inhibitors: A new window for target drug discovery, Comput. Struct. Biotechnol. J., 17, 263-281, doi: 10.1016/j.csbj.2019.01.012.

88. Morgan, D. C., Morris, C., Mahindra, A., Blair, C. M., Tejeda, G., et al. (2021) Stapled ACE2 peptidomimetics designed to target the SARS-CoV-2 spike protein do not prevent virus internalization, Pept. Sci. (Hoboken), e24217, doi: 10.1002/pep2.24217.

89. Curreli, F., Victor, S. M. B., Ahmed, S., Drelich, A., Tong, X., et al. (2020) Stapled Peptides based on human angiotensin-converting enzyme 2 (ACE2) potently inhibit SARS-CoV-2 infection in vitro, mBio, 11, doi: 10.1128/mBio.02451-20.

90. Bibilashvili, R. S., Sidorova, M. V., Dudkina, U. S., Palkeeva, M. E., Molokoedov, A. S., et al. (2021) Peptide inhibitors of the interaction of the SARS-CoV-2 receptor-binding domain with the ACE2 cell receptor, Biochem. Mosc. Suppl. B Biomed. Chem., 15, 274-280, doi: 10.1134/s199075082104003x.

91. Krut, V. G., Astrakhantseva, I. V., Chuvpilo, S. A., Efimov, G. A., Ambaryan, S. G., et al. (2021) Antibodies to the N-terminal domain of angiotensin-converting enzyme (ACE2) that block its interaction with SARS-CoV-2 S protein, Dokl. Biochem. Biophys., 4, 1-4, doi: 10.1134/S160767292201001X.

92. Larue, R. C., Xing, E., Kenney, A. D., Zhang, Y., Tuazon, J. A., et al. (2021) Rationally designed ACE2-derived peptides inhibit SARS-CoV-2, Bioconjug. Chem., 32, 215-223, doi: 10.1021/acs.bioconjchem.0c00664.

93. Adhikary, P., Kandel, S., Mamani, U. F., Mustafa, B., Hao, S., et al. (2021) Discovery of small anti-ACE2 peptides to inhibit SARS-CoV-2 infectivity, Adv. Ther. (Weinh), 2100087, doi: 10.1002/adtp.202100087.

94. Wettstein, L., Kirchhoff, F., and Münch, J. (2022) The transmembrane protease TMPRSS2 as a therapeutic target for COVID-19 treatment, Int. J. Mol. Sci., 23, 1351, doi: 10.3390/ijms23031351.

95. Iwata-Yoshikawa, N., Okamura, T., Shimizu, Y., Hasegawa, H., Takeda, M., et al. (2019) TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after Coronavirus infection, J. Virol., 93, doi: 10.1128/jvi.01815-18.

96. Lucas, J. M., Heinlein, C., Kim, T., Hernandez, S. A., Malik, M. S., et al. (2014) The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis, Cancer Discov., 4, 1310-1325, doi: 10.1158/2159-8290.Cd-13-1010.

97. Bertram, S., Glowacka, I., Blazejewska, P., Soilleux, E., Allen, P., et al. (2010) TMPRSS2 and TMPRSS4 facilitate trypsin-independent spread of influenza virus in Caco-2 cells, J. Virol., 84, 10016-10025, doi: 10.1128/jvi.00239-10.

98. Böttcher-Friebertshäuser, E., Freuer, C., Sielaff, F., Schmidt, S., et al. (2010) Cleavage of influenza virus hemagglutinin by airway proteases TMPRSS2 and HAT differs in subcellular localization and susceptibility to protease inhibitors, J. Virol., 84, 5605-5614, doi: 10.1128/jvi.00140-10.

99. Bittle, J. L., Houghten, R. A., Alexander, H., Shinnick, T. M., Sutcliffe, J. G., et al. (1982) Protection against foot-and-mouth disease by immunization with a chemically synthesized peptide predicted from the viral nucleotide sequence, Nature, 298, 30-33, doi: 10.1038/298030a0.

100. Langeveld, J. P., Casal, J. I., Osterhaus, A. D., Cortés, E., de Swart, R., et al. (1994) First peptide vaccine providing protection against viral infection in the target animal: studies of canine parvovirus in dogs, J. Virol., 68, 4506-4513, doi: 10.1128/JVI.68.7.4506-4513.1994.

101. Casal, J. I., Langeveld, J. P., Cortés, E., Schaaper, W. W., van Dijk, E., et al. (1995) Peptide vaccine against canine parvovirus: Identification of two neutralization subsites in the N terminus of VP2 and optimization of the amino acid sequence, J. Virol., 69, 7274-7277, doi: 10.1128/JVI.69.11.7274-7277.1995.

102. DiMarchi, R., Brooke, G., Gale, C., Cracknell, V., Doel, T., et al. (1986) Protection of cattle against foot-and-mouth disease by a synthetic peptide, Science, 232, 639-641, doi: 10.1126/science.3008333.

103. Broekhuijsen, M. P., van Rijn, J. M., Blom, A. J., Pouwels, P. H., Enger-Valk, B. E., et al. (1987) Fusion proteins with multiple copies of the major antigenic determinant of foot-and-mouth disease virus protect both the natural host and laboratory animals, J. Gen. Virol., 68, 3137-3143, doi: 10.1099/0022-1317-68-12-3137.

104. Rydyznski Moderbacher, C., Ramirez, S. I., Dan, J. M., Grifoni, A., Hastie, K. M., et al. (2020) Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity, Cell, 183, 996-1012.e1019, doi: 10.1016/j.cell.2020.09.038.99.

105. Rammensee, H. G., Wiesmüller, K. H., Chandran, P. A., Zelba, H., Rusch, E., et al. (2019) A new syn­thetic toll-like receptor 1/2 ligand is an efficient adju­vant for peptide vaccination in a human volunteer, J. Immunother Cancer, 7, 307, doi: 10.1186/s40425-019-0796-5.102.

106. Nelde, A., Bilich, T., Heitmann, J. S., Maringer, Y., Salih, H. R., et al. (2021) SARS-CoV-2-derived peptides define heterologous and COVID-19-induced T cell recognition, Nat. Immunol., 22, 74-85, doi: 10.1038/s41590-020-00808-x.

107. Bilich, T., Nelde, A., Heitmann, J. S., Maringer, Y., Roerden, M., Bauer, J., et al. (2021) T cell and antibody kinetics delineate SARS-CoV-2 peptides mediating long-term immune responses in COVID-19 convalescent individuals, Sci. Transl. Med., 13, doi: 10.1126/scitranslmed.abf7517.

108. Barchuk, A., Cherkashin, M., Bulina, A., Berezina, N., Rakova, T., et al. (2021) Vaccine effectiveness against referral to hospital and severe lung injury associated with COVID-19: a population-based case-control study in St. Petersburg, Russia, medRxiv, doi: 10.1101/2021.08.18.21262065.

109. Shomuradova, A. S., Vagida, M. S., Sheetikov, S. A., Zornikova, K. V., Kiryukhin, D., et al. (2020) SARS-CoV-2 epitopes are recognized by a public and diverse repertoire of human T cell receptors, Immunity, 53, 1245-1257.e1245, doi: 10.1016/j.immuni.2020.11.004.

110. Ferretti, A. P., Kula, T., Wang, Y., Nguyen, D. M. V., Weinheimer, A., et al. (2020) Unbiased screens show CD8+ T cells of COVID-19 patients recognize shared epitopes in SARS-CoV-2 that largely reside outside the spike protein, Immunity, 53, 1095-1107.e1093, doi: 10.1016/j.immuni.2020.10.006.

111. Titov, A., Shaykhutdinova, R., Shcherbakova, O. V., Serdyuk, Y. V., Sheetikov, S. A., et al. (2022) Immunogenic epitope panel for accurate detection of non-cross-reactive T cell response to SARS-CoV-2, JCI Insight, doi: 10.1172/jci.insight.157699.