БИОХИМИЯ, 2022, том 87, вып. 4, с. 474–496
УДК 543.94
Современные методы определения микроРНК
Обзор
Московский государственный университет имени М.В. Ломоносова, химический факультет, 119991 Москва, Россия
Поступила в редакцию 21.01.2022
После доработки 21.03.2022
Принята к публикации 21.03.2022
DOI: 10.31857/S0320972522040029
КЛЮЧЕВЫЕ СЛОВА: биоанализ, микроРНК, нуклеиновые кислоты, амплификация, полимеразы.
Аннотация
В настоящем обзоре рассмотрены современные методы количественного и полуколичественного определения микроРНК – малых некодирующих РНК, влияющих на такие биологические процессы, как развитие, дифференциация, метаболизм и формирование иммунологического ответа и рассматриваемых в качестве перспективных биомаркёров в диагностике ряда заболеваний.
Текст статьи
Сноски
* Адресат для корреспонденции.
Финансирование
Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 21‑54‑53007).
Конфликт интересов
Авторы заявляют об отсутствии конфликта интересов.
Соблюдение этических норм
Настоящая статья не содержит описания каких-либо исследований с участием людей или использованием животных в качестве объектов.
Список литературы
1. Bodulev, O. L., and Sakharov, I. Y. (2020) Isothermal nucleic acid amplification techniques and their use in bioanalysis, Biochemistry (Moscow), 85, 147-166, doi: 10.1134/S0006297920020030.
2. Pritchard, C. C., Cheng, H. H., and Tewari, M. (2012) MicroRNA profiling: Approaches and considerations, Nat. Rev. Genet., 13, 358-369, doi: 10.1038/nrg3198.
3. De Planell-Saguer, M., and Rodicio, M. C. (2011) Analytical aspects of microRNA in diagnostics: A review, Anal. Chim. Acta, 699, 134-152, doi: 10.1016/j.aca.2011.05.025.
4. Ragan, C., Zuker, M., and Ragan, M. A. (2011) Quantitative prediction of miRNA-mRNA interaction based on equilibrium concentrations, PLoS Comput. Biol., 7, e1001090, doi: 10.1371/journal.pcbi.1001090.
5. Kozomara, A., Birgaoanu, M., and Griffiths-Jones, S. (2019) miRBase: From microRNA sequences to function, Nucleic Acids Res., 47, D155-D162, doi: 10.1093/nar/gky1141.
6. Plotnikova, O., Baranova, A., and Skoblov, M. (2019) Comprehensive analysis of human microRNA–mRNA interactome, Front. Genet., 10, 933, doi: 10.3389/fgene.2019.00933.
7. Krol, J., Loedige, I., and Filipowicz, W. (2010) The widespread regulation of microRNA biogenesis, function and decay, Nat. Rev. Genet., 11, 597-610, doi: 10.1038/nrg2843.
8. Katoh, T., Sakaguchi, Y., Miyauchi, K., Suzuki, T., Kashiwabara, S. I., et al. (2009) Selective stabilization of mammalian microRNAs by 3′ adenylation mediated by the cytoplasmic poly (A) polymerase GLD-2, Genes Dev., 23, 433-438, doi: 10.1101/gad.1761509.
9. Lee, R. C., Feinbaum, R. L., and Ambros, V. (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell, 75, 843-854, doi: 10.1016/0092-8674(93)90529-Y.
10. Bartel, D. P. (2009) MicroRNAs: target recognition and regulatory functions, Cell, 136, 215-233, doi: 10.1016/j.cell.2009.01.002.
11. Liang, Y., Ridzon, D., Wong, L., and Chen, C. (2007) Characterization of microRNA expression profiles in normal human tissues, BMC Genom., 8, 1-20, doi: 10.1186/1471-2164-8-166.
12. Wienholds, E., Kloosterman, W. P., Miska, E., Alvarez-Saavedra, E., Berezikov, E., et al. (2005) MicroRNA expression in zebrafish embryonic development, Science, 309, 310-311, doi: 10.1126/science.1114519.
13. Alvarez-Garcia, I., and Miska, E. A. (2005) MicroRNA functions in animal development and human disease, Development, 132, 4653-4662, doi: 10.1242/dev.02073.
14. Lu, J., Getz, G., Miska, E.A., Alvarez-Saavedra, E., Lamb, J., et al. (2005) MicroRNA expression profiles classify human cancers, Nature, 435, 834-838, doi: 10.1038/nature03702.
15. Lee, J. S., Ahn, Y. H., Won, H. S., Sun, D. S., Kim, Y. H., et al. (2017) Prognostic role of the microRNA-200 family in various carcinomas: a systematic review and meta-analysis, BioMed Res. Int., 2017, doi: 10.1155/2017/1928021.
16. Zhang, L., Wu, H., Zhao, M., and Lu, Q. (2020) Identifying the differentially expressed microRNAs in autoimmunity: a systemic review and meta-analysis, Autoimmunity, 53, 122-136, doi: 10.1080/08916934.2019.1710135.
17. He, M., Zhang, H. N., Tang, Z. C., Gao, S. G. (2021) Diagnostic and therapeutic potential of exosomal microRNAs for neurodegenerative diseases, J. Neural Transplant. Plast., 2021, doi: 10.1155/2021/8884642.
18. Ono, K., Kuwabara, Y., and Han, J. (2011) MicroRNAs and cardiovascular diseases, FEBS J., 278, 1619-1633, doi: 10.1111/j.1742-4658.2011.08090.x.
19. Sempere, L. F., Freemantle, S., Pitha-Rowe, I., Moss, E., Dmitrovsky, E., et al. (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation, Genome Biol., 5, 1-11, doi: 10.1186/gb-2004-5-3-r13.
20. Wightman, B., Ha, I., Ruvkun, G. (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans, Cell, 75, 855-862, doi: 10.1016/0092-8674(93)90530-4.
21. Válóczi, A., Hornyik, C., Varga, N., Burgyán, J., Kauppinen, S., et al. (2004) Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes, Nucleic Acids Res., 32, e175, doi: 10.1093/nar/gnh171.
22. Várallyay, E., Burgyán, J., and Havelda, Z. (2008) MicroRNA detection by northern blotting using locked nucleic acid probes, Nat. Protoc., 3, 190-196, doi: 10.1038/nprot.2007.528.
23. Pall, G. S., Codony-Servat, C., Byrne, J., Ritchie, L., and Hamilton, A. (2007) Carbodiimide-mediated cross-linking of RNA to nylon membranes improves the detection of siRNA, miRNA and piRNA by northern blot, Nucleic Acids Res., 35, e60, doi: 10.1093/nar/gkm112.
24. Ramkissoon, S. H., Mainwaring, L. A., Sloand, E. M., Young, N. S., and Kajigaya, S. (2006) Nonisotopic detection of microRNA using digoxigenin labeled RNA probes, Mol. Cell. Probes, 20, 1-4, doi: 10.1016/j.mcp.2005.07.004.
25. Kim, S. W., Li, Z., Moore, P. S., Monaghan, A. P., Chang, Y., et al. (2010) A sensitive non-radioactive northern blot method to detect small RNAs, Nucleic Acids Res., 38, e98, doi: 10.1093/nar/gkp1235.
26. Johnson, B. N., and Mutharasan, R. (2014) Biosensor-based microRNA detection: techniques, design, performance, and challenges, Analyst, 139, 1576-1588, doi: 10.1039/C3AN01677C.
27. Dong, H., Lei, J., Ding, L., Wen, Y., Ju, H., et al. (2013) MicroRNA: function, detection, and bioanalysis, Chem. Rev., 113, 6207-6233, doi: 10.1021/cr300362f.
28. Shimomura, A., Shiino, S., Kawauchi, J., Takizawa, S., Sakamoto, H., et al. (2016) Novel combination of serum microRNA for detecting breast cancer in the early stage, Cancer Sci., 107, 326-334, doi: 10.1111/cas.12880.
29. Gungormez, C., Aktas, H. G., Dilsiz, N., and Borazan, E. (2019) Novel miRNAs as potential biomarkers in stage II colon cancer: microarray analysis, Mol. Biol. Rep., 46, 4175-4183, doi: 10.1007/s11033-019-04868-7.
30. Li, W., and Ruan, K. (2009) MicroRNA detection by microarray, Anal. Bioanal. Chem., 394, 1117-1124, doi: 10.1007/s00216-008-2570-2.
31. Ueno, T., and Funatsu, T. (2014) Label-free quantification of microRNAs using ligase-assisted sandwich hybridization on a DNA microarray, PLoS One, 9, e90920, doi: 10.1371/journal.pone.0090920.
32. Wang, H., Ach, R. A., and Curry, B. O. (2007) Direct and sensitive miRNA profiling from low-input total RNA, RNA, 13, 151-159, doi: 10.1261/rna.234507.
33. Castoldi, M., Schmidt, S., Benes, V., Noerholm, M., Kulozik, A. E., et al. (2006) A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA), RNA, 12, 913-920, doi: 10.1261/rna.2332406.
34. Liu, C. G., Calin, G. A., Volinia, S., and Croce, C. M. (2008) MicroRNA expression profiling using microarrays, Nat. Protoc., 3, 563-578, doi: 10.1038/nprot.2008.14.
35. Tian, R., Ning, W., Chen, M., Zhang, C., Li, Q., et al. (2019) High performance electrochemical biosensor based on 3D nitrogen-doped reduced graphene oxide electrode and tetrahedral DNA nanostructure, Talanta, 194, 273-281, doi: 10.1016/j.talanta.2018.09.110.
36. Kutluk, H., Bruch, R., Urban, G. A., and Dincer, C. (2020) Impact of assay format on miRNA sensing: Electrochemical microfluidic biosensor for miRNA-197 detection, Biosens. Bioelectron., 148, 111824, doi: 10.1016/j.bios.2019.111824.
37. Smith, D. A., Simpson, K., Cicero, M. L., Newbury, L. J., Nicholas, P., et al. (2021) Detection of urinary microRNA biomarkers using diazo sulfonamide-modified screen-printed carbon electrodes, RSC Adv., 11, 18832-18839, doi: 10.1039/D0RA09874D.
38. Bodulev, O. L., and Sakharov, I. Y. (2019) Chemiluminescent determination of microRNA-141 using target-dependent activation of the peroxidase-mimicking DNAzyme, Anal. Lett., 52, 813-824, doi: 10.1080/00032719.2018.1498506.
39. Lai, M., and Slaughter, G. (2019) Label-free MicroRNA optical biosensors, Nanomaterials, 9, 1573, doi: 10.3390/nano9111573.
40. Xue, T., Liang, W., Li, Y., Sun, Y., Xiang, Y., et al. (2019) Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor, Nat. Commun., 10, 1-9, doi: 10.1038/s41467-018-07947-8.
41. Chen, C., Ridzon, D. A., Broomer, A. J., Zhou, Z., Lee, D. H., et al. (2005) Real-time quantification of microRNAs by stem-loop RT-PCR, Nucleic Acids Res., 33, e179, doi: 10.1093/nar/gni178.
42. Lao, T. D., and Le, T. A. H. (2020) Development of stem-loop real-time PCR technique for miRNA-141 expression analysis in nasopharyngeal carcinoma, Asian J. Pharm. Res. Health Care, 11, 30-36, doi: 10.18311/ajprhc/2019/24990.
43. Xu, Y. F., Hannafon, B. N., Khatri, U., Gin, A., and Ding, W. Q. (2019) The origin of exosomal miR-1246 in human cancer cells, RNA Biol., 16, 770-784, doi: 10.1080/15476286.2019.1585738.
44. Zhang, L., Lin, J., Ye, Y., Oba, T., Gentile, E., et al. (2018) Serum microRNA‐150 predicts prognosis for early‐stage non‐small cell lung cancer and promotes tumor cell proliferation by targeting tumor suppressor gene SRCIN1, Clin. Pharmacol. Ther., 103, 1061-1073, doi: 10.1002/cpt.870.
45. Konoshenko, M. Y., Lekchnov, E. A., Bryzgunova, O. E., Zaporozhchenko, I. A., Yarmoschuk, S. V., et al. (2020) The panel of 12 cell-free microRNAs as potential biomarkers in prostate neoplasms, Diagnostics, 10, 38, doi: 10.3390/diagnostics10010038.
46. Androvic, P., Valihrach, L., Elling, J., Sjoback, R., and Kubista, M. (2017) Two-tailed RT-qPCR: A novel method for highly accurate miRNA quantification, Nucleic Acids Res., 45, e144-e144, doi: 10.1093/nar/gkx588.
47. Raabe, C. A., Tang, T. H., Brosius, J., and Rozhdestvensky, T. S. (2014) Biases in small RNA deep sequencing data, Nucleic Acids Res., 42, 1414-1426, doi: 10.1093/nar/gkt1021.
48. Zhang, J., Li, Z., Wang, H., Wang, Y., Jia, H., and Yan, J. (2011) Ultrasensitive quantification of mature microRNAs by real-time PCR based on ligation of a ribonucleotide-modified DNA probe, Chem. Commun., 47, 9465-9467, doi: 10.1039/C1CC13466C.
49. Tian, H., Sun, Y., Liu, C., Duan, X., Tang, W., et al. (2016) Precise quantitation of microRNA in a single cell with droplet digital PCR based on ligation reaction, Anal. Chem., 88, 11384-11389, doi: 10.1021/acs.analchem.6b01225.
50. Zhao, G., Jiang, T., Liu, Y., Huai, G., Lan, C., et al. (2018) Droplet digital PCR-based circulating microRNA detection serve as a promising diagnostic method for gastric cancer, BMC Cancer, 18, 1-10, doi: 10.1186/s12885-018-4601-5.
51. Cirillo, P. D., Margiotti, K., Mesoraca, A., and Giorlandino, C. (2020) Quantification of circulating microRNAs by droplet digital PCR for cancer detection, BMC Res. Notes, 13, 1-6, doi: 10.1186/s13104-020-05190-3.
52. Friedländer, M. R., Chen, W., Adamidi, C., Maaskola, J., Einspanier, R., et al. (2008) Discovering microRNAs from deep sequencing data using miRDeep, Nat. Biotechnol., 26, 407-415, doi: 10.1038/nbt1394.
53. Dave, V. P., Ngo, T. A., Pernestig, A. K., Tilevik, D., Kant, K., et al. (2019) MicroRNA amplification and detection technologies: opportunities and challenges for point of care diagnostics, Lab. Invest., 99, 452-469, doi: 10.1038/s41374-018-0143-3.
54. Castoldi, M., Collier, P., Nolan, T., and Benes, V. (2013) Expression profiling of microRNAs by quantitative real-time PCR: the good, the bad, and the ugly, PCR Technology: Current Innovations, 307-319, Boca Raton, FL: CRC Press.
55. Borst, A., Box, A. T. A., and Fluit, A. C. (2004) False-positive results and contamination in nucleic acid amplification assays: suggestions for a prevent and destroy strategy, Eur. J. Clin. Microbiol. Infect. Dis., 23, 289-299, doi: 10.1007/s10096-004-1100-1.
56. García, P. B., Robledo, N. L., and Islas, A. L. (2004) Analysis of non-template-directed nucleotide addition and template switching by DNA polymerase, Biochemistry, 43, 16515-16524, doi: 10.1021/bi0491853.
57. Lomidze, L., Williford, T. H., Musier-Forsyth, K., and Kankia, B. (2018) Isothermal amplification of long DNA segments by quadruplex priming amplification, Anal. Methods, 10, 2972-2979, doi: 10.1039/C8AY00843D.
58. Jonstrup, S. P., Koch, J., and Kjems, J. (2006) A microRNA detection system based on padlock probes and rolling circle amplification, RNA, 12, 1747-1752, doi: 10.1261/rna.110706.
59. Wu, X., Zhu, S., Huang, P., and Chen, Y. (2016) Highly specific quantification of microRNA by coupling probe–rolling circle amplification and Förster resonance energy transfer, Anal. Biochem., 502, 16-23, doi: 10.1016/j.ab.2016.03.001.
60. Li, R., Liu, Q., Jin, Y., and Li, B. (2020) Sensitive colorimetric determination of microRNA let-7a through rolling circle amplification and a peroxidase-mimicking system composed of trimeric G-triplex and hemin DNAzyme, Microchim. Acta, 187, 1-8, doi: 10.1007/s00604-019-4093-2.
61. Kumara, G. S. R., Pandith, A., and Seo, Y. J. (2020) Highly fluorescent morpholine naphthalimide deoxyuridine nucleotide for the detection of miRNA 24-3P through rolling circle amplification, Analyst, 145, 4777-4781, doi: 10.1039/D0AN00723D.
62. Zhou, Y., Huang, Q., Gao, J., Lu, J., Shen, X., et al. (2010) A dumbbell probe-mediated rolling circle amplification strategy for highly sensitive microRNA detection, Nucleic Acids Res., 38, e156, doi: 10.1093/nar/gkq556.
63. Li, R., Wang, Y., Wang, P., and Lu, J. (2017) A dual discrimination mode for improved specificity towards let‐7a detection via a single‐base mutated padlock probe‐based exponential rolling circle amplification, Luminescence, 32, 1574-1581, doi: 10.1002/bio.3362.
64. Liu, H., Li, L., Duan, L., Wang, X., Xie, Y., Tong, L., et al. (2013) High specific and ultrasensitive isothermal detection of microRNA by padlock probe-based exponential rolling circle amplification, Anal. Chem., 85, 7941-7947, doi: 10.1021/ac401715k.
65. Chen, S., Zhao, J., Xu, C., Sakharov, I. Y., and Zhao, S. (2021) Absolute quantification of microRNAs in a single cell with chemiluminescence detection based on rolling circle amplification on a microchip platform, Anal. Chem., 93, 9218-9225, doi: 10.1021/acs.analchem.1c01463.
66. Zhang, X., Liu, Y., Yang, Y., Huang, J., Wang, H., et al. (2018) Ligation-promoted hyperbranched rolling circle amplification enables ultrasensitive detection of microRNA in clinical specimens, Sens. Actuators B Chem., 277, 634-639, doi: 10.1016/j.snb.2018.09.058.
67. Бодулев О. Л., Сахаров И. Ю. (2022) Планшетный хемилюминесцентный метод определения микроРНК-141, основанный на применении каталитической сборки шпилек и конъюгата стрептавидина и полипероксидазы, Журн. Анал. Химии, 77, 366-374, doi: 10.31857/S0044450222040053.
68. Eslamizadeh, S., Heidari, M., Agah, S., Faghihloo, E., Ghazi, H., et al. (2018) The role of microRNA signature as diagnostic biomarkers in different clinical stages of colorectal cancer, Cell J., 20, 220, doi: 10.22074/cellj.2018.5366.
69. Zhang, S., Liu, C., Zou, X., Geng, X., Zhou, X., et al. (2021) MicroRNA panel in serum reveals novel diagnostic biomarkers for prostate cancer, PeerJ, 9, e11441, doi: 10.7717/peerj.11441.
70. Zyrina, N. V., and Antipova, V. N. (2021) Nonspecific synthesis in the reactions of isothermal nucleic acid amplification, Biochemistry (Moscow), 86, 887-897, doi: 10.1134/S0006297921070099.
71. Van Ness, J., Van Ness, L. K., and Galas, D. J. (2003) Isothermal reactions for the amplification of oligonucleotides, Proc. Natl. Acad. Sci. USA, 100, 4504-4509, doi: 10.1073/pnas.0730811100.
72. Jia, H., Li, Z., Liu, C., and Cheng, Y. (2010) Ultrasensitive detection of microRNAs by exponential isothermal amplification, Angew. Chem. Int. Ed., 49, 5498-5501, doi: 10.1002/anie.201001375.
73. Wu, H., Wu, J., Liu, Y., Wang, H., and Zou, P. (2019) Fluorometric determination of microRNA using arched probe-mediated isothermal exponential amplification combined with DNA-templated silver nanoclusters, Microchim. Acta, 186, 1-8, doi: 10.1007/s00604-019-3836-4.
74. Reid, M. S., Le, X. C., and Zhang, H. (2018) Exponential isothermal amplification of nucleic acids and assays for proteins, cells, small molecules, and enzyme activities: An EXPAR example, Angew. Chem. Int. Ed., 57, 11856-11866, doi: 10.1002/anie.201712217.
75. Chen, J., An, T., Ma, Y., Situ, B., Chen, D., et al. (2018) Isothermal amplification on a structure-switchable symmetric toehold dumbbell-template: A strategy enabling MicroRNA analysis at the single-cell level with ultrahigh specificity and accuracy, Anal. Chem., 90, 859-865, doi: 10.1021/acs.analchem.7b03713.
76. Li, C., Li, Z., Jia, H., and Yan, J. (2011) One-step ultrasensitive detection of microRNAs with loop-mediated isothermal amplification (LAMP), Chem. Commun., 47, 2595-2597, doi: 10.1039/C0CC03957H.
77. Tran, D. H., and Phung, H. T. T. (2020) Detecting Fasciola hepatica and Fasciola gigantica microRNAs with loop-mediated isothermal amplification (LAMP), J. Parasit. Dis., 44, 364-373, doi: 10.1007/s12639-019-01164-w.
78. Du, W., Lv, M., Li, J., Yu, R., and Jiang, J. (2016) A ligation-based loop-mediated isothermal amplification (ligation-LAMP) strategy for highly selective microRNA detection, Chem. Commun., 52, 12721-12724, doi: 10.1039/C6CC06160E.
79. Liu, L., Deng, D., Wu, D., Hou, W., Wang, L., et al. (2021) Duplex-specific nuclease-based electrochemical biosensor for the detection of microRNAs by conversion of homogeneous assay into surface-tethered electrochemical analysis, Anal. Chim. Acta, 1149, 338199, doi: 10.1016/j.aca.2021.338199.
80. Yin, B. C., Liu, Y. Q., and Ye, B. C. (2012) One-step, multiplexed fluorescence detection of microRNAs based on duplex-specific nuclease signal amplification, J. Am. Chem. Soc., 134, 5064-5067, doi: 10.1021/ja300721s.
81. Ma, X., Xu, H., Qian, K., Kandawa-Schulz, M., Miao, W., et al. (2020) Electrochemical detection of microRNAs based on AuNPs/CNNS nanocomposite with Duplex-specific nuclease assisted target recycling to improve the sensitivity, Talanta, 208, 120441, doi: 10.1016/j.talanta.2019.120441.
82. Sang, Y., Xu, Y., Xu, L., Cheng, W., Li, X., et al. (2017) Colorimetric and visual determination of microRNA via cycling signal amplification using T7 exonuclease, Microchim. Acta, 184, 2465-2471, doi: 10.1007/s00604-017-2238-8.
83. Zheng, Y., Chen, J., Li, Y., Xu, Y., Chen, L., et al. (2021) Dual-probe fluorescent biosensor based on T7 exonuclease-assisted target recycling amplification for simultaneous sensitive detection of microRNA-21 and microRNA-155, Anal. Bioanal. Chem., 413, 1605-1614, doi: 10.1007/s00216-020-03121-6.
84. Wang, M., Fu, Z., Li, B., Zhou, Y., Yin, H., et al. (2014) One-step, ultrasensitive, and electrochemical assay of microRNAs based on T7 exonuclease assisted cyclic enzymatic amplification, Anal. Chem., 86, 5606-5610, doi: 10.1021/ac5010376.
85. Zhang, P., Zhuo, Y., Chang, Y., Yuan, R., and Chai, Y. (2015) Electrochemiluminescent graphene quantum dots as a sensing platform: A dual amplification for microRNA assay, Anal. Chem., 87, 10385-10391, doi: 10.1021/acs.analchem.5b02495.
86. Chen, Z., Xie, Y., Huang, W., Qin, C., Yu, A., et al. (2019) Exonuclease-assisted target recycling for ultrasensitive electrochemical detection of microRNA at vertically aligned carbon nanotubes, Nanoscale, 11, 11262-11269, doi: 10.1039/c9nr02543j.
87. Liu, M. X., Liang, S., Tang, Y., Tian, J., Zhao, Y., et al. (2018) Rapid and label-free fluorescence bioassay for microRNA based on exonuclease III-assisted cycle amplification, RSC Adv., 8, 15967-15972, doi: 10.1039/c8ra01605d.
88. Tang, Y., Liu, M., Zhao, Z., Li, Q., Liang, X., et al. (2019) Fluorometric determination of microRNA-122 by using ExoIII-aided recycling amplification and polythymine induced formation of copper nanoparticles, Microchim. Acta, 186, 133, doi: 10.1007/s00604-019-3237-8.
89. Yan, X. M., Wang, Y. Q., Chen, Y., Chen, Z. P., and Yu, R. Q. (2020) Detection of microRNAs by the combination of exonuclease-III assisted target recycling amplification and repeated-fishing strategy, Anal. Chim. Acta, 1131, 1-8, doi: 10.1016/j.aca.2020.07.025.
90. Miao, P., Wang, B., Yu, Z., Zhao, J., and Tang, Y. (2015) Ultrasensitive electrochemical detection of microRNA with star trigon structure and endonuclease mediated signal amplification, Biosens. Bioelectron., 63, 365-370, doi: 10.1016/j.bios.2014.07.075.
91. Huang, Y., Wang, W., Wu, T., Xu, L. P., Wen, Y., et al. (2016) A three-line lateral flow biosensor for logic detection of microRNA based on Y-shaped junction DNA and target recycling amplification, Anal. Bioanal. Chem., 408, 8195-8202, doi: 10.1007/s00216-016-9925-x.
92. Luo, L., Wang, L., Zeng, L., Wang, Y., Weng, Y., et al. (2020) A ratiometric electrochemical DNA biosensor for detection of exosomal microRNA, Talanta, 207, 120298, doi: 10.1016/j.talanta.2019.120298.
93. Gong, S., Zhang, S., Lu, F., Pan, W., Li, N., and Tang, B. (2021) CRISPR/Cas-based in vitro diagnostic platforms for cancer biomarker detection, Anal. Chem., 93, 11899-11909, doi: 10.1021/acs.analchem.1c02533.
94. Kim, S., Ji, S., and Koh, H. R. (2021) CRISPR as a diagnostic tool, Biomolecules, 11, 1162, doi: 10.3390/biom11081162.
95. Zhang, F. (2019) Development of CRISPR-Cas systems for genome editing and beyond, Q. Rev. Biophys., 52, 1-31, doi: 10.1017/S0033583519000052.
96. Shan, Y., Zhou, X., Huang, R., and Xing, D. (2019) High-fidelity and rapid quantification of miRNA combining crRNA programmability and CRISPR/Cas13a trans-cleavage activity, Anal. Chem., 91, 5278-5285, doi: 10.1021/acs.analchem.9b00073.
97. Yuan, C., Tian, T., Sun, J., Hu, M., Wang, X., et al. (2020) Universal and naked-eye gene detection platform based on the clustered regularly interspaced short palindromic repeats/Cas12a/13a system, Anal. Chem., 92, 4029-4037, doi: 10.1021/acs.analchem.9b05597.
98. Bruch, R., Johnston, M., Kling, A., Mattmüller, T., Baaske, J., et al. (2021) CRISPR-powered electrochemical microfluidic multiplexed biosensor for target amplification-free miRNA diagnostics, Biosens. Bioelectron., 177, 112887, doi: 10.1016/j.bios.2020.112887.
99. Granados-Riveron, J. T., and Aquino-Jarquin, G. (2021) CRISPR/Cas13-based approaches for ultrasensitive and specific detection of microRNAs, Cells, 10, 1655, doi: 10.3390/cells10071655.
100. Sha, Y., Huang, R., Huang, M., Yue, H., Shan, Y., et al. (2021) Cascade CRISPR/Cas enables amplification-free microRNA sensing with fM-sensitivity and single-base-specificity, Chem. Commun., 57, 247-250, doi: 10.1039/D0CC06412B.
101. Zhang, G., Zhang, L., Tong, J., Zhao, X., and Ren, J. (2020) CRISPR-Cas12a enhanced rolling circle amplification method for ultrasensitive miRNA detection, Microchem. J., 158, 105239, doi: 10.1016/j.microc.2020.105239.
102. Zhou, T., Huang, R., Huang, M., Shen, J., Shan, Y., et al. (2020) CRISPR/Cas13a powered portable electrochemiluminescence chip for ultrasensitive and specific MiRNA detection, Adv. Sci., 7, 1903661, doi: 10.1002/advs.201903661.
103. Giuffrida, M. C., Zanoli, L. M., D’Agata, R., Finotti, A., Gambari, R., et al. (2015) Isothermal circular-strand-displacement polymerization of DNA and microRNA in digital microfluidic devices, Anal. Bioanal. Chem., 407, 1533-1543, doi: 10.1007/s00216-014-8405-4.
104. Wang, B., You, Z., and Ren, D. (2019) Target-assisted FRET signal amplification for ultrasensitive detection of microRNA, Analyst, 144, 2304-2311, doi: 10.1039/C8AN02266F.
105. Ma, W., Situ, B., Lv, W., Li, B., Yin, X., et al. (2016) Electrochemical determination of microRNAs based on isothermal strand-displacement polymerase reaction coupled with multienzyme functionalized magnetic micro-carriers, Biosens. Bioelectron., 80, 344-351, doi: 10.1016/j.bios.2015.12.064.
106. Cai, S., Ye, J., Al‐Maskri, A. A. A., Sun, L., and Zeng, S. (2019) A conformational switch‐based aptasensor for the chemiluminescence detection of microRNA, Luminescence, 34, 823-829, doi: 10.1002/bio.3677.
107. Solovjev, A. M., Galkin, I. I., Pletjushkina, O. Y., Medvedko, A. V., Zhao, S., et al. (2021) Isothermal chemiluminescent assay based on circular stand-displacement polymerization reaction amplification for cel-miRNA-39-3p determination in cell extracts, Int. J. Biol. Macromolecules, 182, 987-992, doi: 10.1016/j.ijbiomac.2021.04.101.
108. Ang, Y. S., and Yung, L.-Y. L. (2016) Rational design of hybridization chain reaction monomers for robust signal amplification, Chem. Commun., 52, 4219-4222, doi: 10.1039/C5CC08907G.
109. Zhang, H., Liu, X., Zhang, C., Xu, Y., Su, J., et al. (2020) A DNA tetrahedral structure-mediated ultrasensitive fluorescent microarray platform for nucleic acid test, Sens. Actuators B Chem., 321, 128538, doi: 10.1016/j.snb.2020.128538.
110. Miao, P., Tang, Y., and Yin, J. (2015) MicroRNA detection based on analyte triggered nanoparticle localization on a tetrahedral DNA modified electrode followed by hybridization chain reaction dual amplification, Chem. Commun., 51, 15629-15632, doi: 10.1039/C5CC05499K.
111. Ge, Z., Lin, M., Wang, P., Pei, H., Yan, J., et al. (2014) Hybridization chain reaction amplification of microRNA detection with a tetrahedral DNA nanostructure-based electrochemical biosensor, Anal. Chem., 86, 2124-2130, doi: 10.1021/ac4037262.
112. Liu, H., Bei, X., Xia, Q., Fu, Y., Zhang, S., et al. (2016) Enzyme-free electrochemical detection of microRNA-21 using immobilized hairpin probes and a target-triggered hybridization chain reaction amplification strategy, Microchim. Acta, 183, 297-304, doi: 10.1007/s00604-015-1636-z.
113. Guo, Q., Yu, Y., Zhang, H., Cai, C., and Shen, Q. (2020) Electrochemical sensing of exosomal microRNA based on hybridization chain reaction signal amplification with reduced false-positive signals, Anal. Chem., 92, 5302-5310, doi: 10.1021/acs.analchem.9b05849.
114. Xiong, Z., Pan, R., Hu, Q., Yun, W., Li, N., et al. (2020) One-step triggered branched DNA nanostrucuture for ultra-sensitive electrochemical detection of microRNA, Microchem. J., 158, 105186, doi: 10.1016/j.microc.2020.105186.
115. Hosseinzadeh, E., Ravan, H., Mohammadi, A., and Pourghadamyari, H. (2020) Colorimetric detection of miRNA-21 by DNAzyme-coupled branched DNA constructs, Talanta, 216, 120913, doi: 10.1016/j.talanta.2020.120913.
116. Li, Y., Huang, C. Z., and Li, Y. F. (2019) Ultrasensitive electrochemiluminescence detection of MicroRNA via one-step introduction of a target-triggered branched hybridization chain reaction circuit, Anal. Chem., 91, 9308-9314, doi: 10.1021/acs.analchem.9b02580.
117. Shen, Z., He, L., Wang, W., Tan, L., and Gan, N. (2020) Highly sensitive and simultaneous detection of microRNAs in serum using stir-bar assisted magnetic DNA nanospheres-encoded probes, Biosens. Bioelectron., 148, 111831, doi: 10.1016/j.bios.2019.111831.
118. Shuai, H. L., Huang, K. J., Xing, L. L., and Chen, Y. X. (2016) Ultrasensitive electrochemical sensing platform for microRNA based on tungsten oxide-graphene composites coupling with catalyzed hairpin assembly target recycling and enzyme signal amplification, Biosens. Bioelectron., 86, 337-345, doi: 10.1016/j.bios.2016.06.057.
119. Ji, D., Mou, X., and Kwok, C. K. (2019) Label-free and ratiometric detection of microRNA based on target-induced catalytic hairpin assembly and two fluorescent dyes, Anal. Methods, 11, 4808-4813, doi: 10.1039/C9AY01891C.
120. Li, C., Huang, Y., and Yang, Y. (2021) Coupling of an antifouling and reusable nanoplatform with catalytic hairpin assembly for highly sensitive detection of nucleic acids using zeta potential as signal readout, Sens. Actuators B Chem., 326, 128845, doi: 10.1016/j.snb.2020.128845.
121. Jin, F., and Xu, D. (2021) A fluorescent microarray platform based on catalytic hairpin assembly for MicroRNAs detection, Anal. Chim. Acta, 1173, 338666, doi: 10.1016/j.aca.2021.338666.
122. Jiang, Z., Wang, H., Zhang, X., Liu, C., and Li, Z. (2014) An enzyme-free signal amplification strategy for sensitive detection of microRNA via catalyzed hairpin assembly, Anal. Methods, 6, 9477-9482, doi: 10.1039/C4AY02142H.
123. Zhang, Y., Zhang, X., Situ, B., Wu, Y., Luo, S., et al. (2021) Rapid electrochemical biosensor for sensitive profiling of exosomal microRNA based on multifunctional DNA tetrahedron assisted catalytic hairpin assembly, Biosens. Bioelectron., 183, 113205, doi: 10.1016/j.bios.2021.113205.
124. Zhang, R. Y., Luo, S. H., Lin, X. M., Hu, X. M., Zhang, Y., et al. (2021) A novel electrochemical biosensor for exosomal microRNA-181 detection based on a catalytic hairpin assembly circuit, Anal. Chim. Acta, 1157, 338396, doi: 10.1016/j.aca.2021.338396.
125. Jiang, Y. S., Bhadra, S., Li, B., and Ellington, A. D. (2014) Mismatches improve the performance of strand‐displacement nucleic acid circuits, Angew. Chem. Int. Ed., 126, 1876-1879, doi: 10.1002/ange.201307418.
126. Bodulev, O. L., Zhao, S., and Sakharov, I. Y. (2021) Improving the sensitivity of the miRNA assay coupled with the mismatched catalytic hairpin assembly reaction by optimization of hairpin annealing conditions, Anal. Chem., 93, 6824-6830, doi: 10.1021/acs.analchem.1c00820.
127. Tian, W., Li, P., He, W., Liu, C., and Li, Z. (2019) Rolling circle extension-actuated loop-mediated isothermal amplification (RCA-LAMP) for ultrasensitive detection of microRNAs, Biosens. Bioelectron., 128, 17-22, doi: 10.1016/j.bios.2018.12.041.
128. Zhou, C., Huang, R., Zhou, X., and Xing, D. (2020) Sensitive and specific microRNA detection by RNA dependent DNA ligation and rolling circle optical signal amplification, Talanta, 216, 120954, doi: 10.1016/j.talanta.2020.120954.
129. Zhuang, J., Lai, W., Chen, G., and Tang, D. (2014) A rolling circle amplification-based DNA machine for miRNA screening coupling catalytic hairpin assembly with DNAzyme formation, Chem. Commun., 50, 2935-2938, doi: 10.1039/C3CC49873E.
130. Fan, T., Mao, Y., Liu, F., Zhang, W., Lin, J. S., et al. (2019) Label-free fluorescence detection of circulating microRNAs based on duplex-specific nuclease-assisted target recycling coupled with rolling circle amplification, Talanta, 200, 480-486, doi: 10.1016/j.talanta.2019.01.038.
131. Wang, S., Lu, S., Zhao, J., Ye, J., Huang, J., and Yang, X. (2019) An electric potential modulated cascade of catalyzed hairpin assembly and rolling chain amplification for microRNA detection, Biosens. Bioelectron., 126, 565-571, doi: 10.1016/j.bios.2018.09.088.
132. Huang, M., Huang, R., Yue, H., Shan, Y., and Xing, D. (2020) Ultrasensitive and high-specific microRNA detection using hyper-branching rolling circle amplified CRISPR/Cas13a biosensor, Sens. Actuators B Chem., 325, 128799, doi: 10.1016/j.snb.2020.128799.
133. Liu, H., Tian, T., Zhang, Y., Ding, L., Yu, J., et al. (2017) Sensitive and rapid detection of microRNAs using hairpin probes-mediated exponential isothermal amplification, Biosens. Bioelectron., 89, 710-714, doi: 10.1016/j.bios.2016.10.099.
134. Fu, P., Xu, M., Xing, S., Zhao, Y., and Zhao, C. (2021) Dual cascade isothermal amplification reaction based glucometer sensors for point-of-care diagnostics of cancer-related microRNAs, Analyst, 146, 3242-3250, doi: 10.1039/D1AN00037C.
135. Song, W., Zhang, F., Song, P., Zhang, Z., He, P., et al. (2021) Untrasensitive photoelectrochemical sensor for microRNA detection with DNA walker amplification and cation exchange reaction, Sens. Actuators B Chem., 327, 128900, doi: 10.1016/j.snb.2020.128900.
136. Yuan, Y. H., Chi, B. Z., Wen, S. H., Liang, R. P., Li, Z. M., et al. (2018) Ratiometric electrochemical assay for sensitive detecting microRNA based on dual-amplification mechanism of duplex-specific nuclease and hybridization chain reaction, Biosens. Bioelectron., 102, 211-216, doi: 10.1016/j.bios.2017.11.030.
137. Bodulev, O. L., Burkin, K. M., Efremov, E. E., and Sakharov, I. Y. (2020) One-pot microplate-based chemiluminescent assay coupled with catalytic hairpin assembly amplification for DNA detection, Anal. Bioanal. Chem., 412, 5105-5111, doi: 10.1007/s00216-020-02438-6.
138. Kolosova, A. Y., and Sakharov, I. Y. (2019) Triple amplification strategy for the improved efficiency of a microplate-based assay for the chemiluminescent detection of DNA, Anal. Lett., 52, 1352-1362, doi: 10.1080/00032719.2018.1539091.