БИОХИМИЯ, 2022, том 87, вып. 4, с. 459–473

УДК 577.12

Окислительный стресс и редокс-зависимый сигналинг при раке предстательной железы

Обзор

© 2022 Е.В. Калинина 1*kalinina-ev@rudn.ru, Л.А. Гаврилюк 1, В.С. Покровский 2

Российский университет дружбы народов, 117198 Москва, Россия

ФГБУ «НМИЦ онкологии имени Н.Н. Блохина» Минздрава России, 115478 Москва, Россия

Поступила в редакцию 24.01.2022
После доработки 20.03.2022
Принята к публикации 20.03.2022

DOI: 10.31857/S0320972522040017

КЛЮЧЕВЫЕ СЛОВА: рак предстательной железы, окислительный стресс, антиоксидантные и прооксидантные ферменты, транскрипционные факторы Nrf2, NF‑κB, редокс-зависимый сигналинг, микроРНК.

Аннотация

Возникновение и прогрессирование опухоли осложняется двойственной ролью активных форм кислорода (АФК) в этих процессах. Низкий уровень АФК необходим для многих внутриклеточных процессов метаболизма и пролиферации клеток, тогда как значительный рост уровня АФК может нарушать механизмы их регуляции, приводя к повреждению и гибели клеток. Длительный дисбаланс соотношения АФК/антиоксиданты и значительный рост уровня АФК на фоне снижения эффективности системы антиоксидантной защиты приводит к хроническому окислительному стрессу, вызывающему изменение редокс-зависимой регуляции и потенцированию опухолевой прогрессии. Многочисленные данные демонстрируют развитие окислительного стресса при раке простаты, который является одним из наиболее распространенных онкологических заболеваний. Однако причины его возникновения, изменения редокс-зависимого сигналинга и клеточного редокстаза всё ещё остаются малоизученными. В обзоре рассматривается состояние прооксидантных и антиоксидантных ферментных систем, дисбаланс которых приводит к развитию окислительного стресса при раке предстательной железы, оценивается изменение ключевых звеньев редокс-зависимого сигналинга и роль микроРНК в модуляции редокс-статуса опухолевых клеток.

Текст статьи

Пожалуйста, введите код, чтобы получить PDF файл с полным текстом статьи:

captcha

Сноски

* Адресат для корреспонденции.

Финансирование

Работа выполнена при поддержке Программы стратегического академического лидерства РУДН.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических норм

Настоящая статья не содержит описания каких-либо исследований с участием людей или животных в качестве объектов.

Список литературы

1. Rawla, P. (2019) Epidemiology of prostate cancer, World J. Oncol., 10, 63-89, doi: 10.14740/wjon1191.

2. Hayes, J. D., Dinkova-Kostova, A. T., and Tew, K. D. (2020) Oxidative stress in cancer, Cancer Cell, 38, 167-197, doi: 10.1016/j.ccell.2020.06.001.

3. Staal, J., and Beyaert, R. (2018) Inflammation and NF-κB signaling in prostate cancer: mechanisms and clinical implications, Cells, 7, 122, doi: 10.3390/cells7090122.

4. Tan, B. L., and Norhaizan, M. E. (2021) Oxidative stress, diet and prostate cancer, World J. Mens Health, 39, 195-207, doi: 10.5534/wjmh.200014.

5. Shukla, S., Srivastava, J. K., Shankar, E., Kanwal, R., Nawab, A., et al. (2020) Oxidative stress and antioxidant status in high-risk prostate cancer subjects, Diagnostics (Basel), 10, 126, doi: 10.3390/diagnostics10030126.

6. Fahmy, O., Alhakamy, N. A., Rizg, W. Y., Bagalagel, A., Alamoudi, A. J., et al. (2021) Updates on molecular and biochemical development and progression of prostate cancer, J. Clin. Med., 10, 5127, doi: 10.3390/jcm10215127.

7. Szewczyk-Golec, K., Tyloch, J., and Czuczejko, J. (2015) Antioxidant defense system in prostate adenocarcinoma and benign prostate hyperplasia of elderly patients, Neoplasma, 62, 119-123, doi: 10.4149/neo_2015_015.

8. D’Souza, L. C., Mishra, S., Chakraborty, A., Shekher, A., Sharma, A., et al. (2020) Oxidative stress and cancer development: are noncoding RNAs the missing links? Antioxid. Redox. Signal, 33, 1209-1229, doi: 10.1089/ars.2019.7987.

9. Kalinina, E. V., Ivanova-Radkevich, V. I., and Chernov, N. N. (2019) Role of MicroRNAs in the regulation of redox-dependent processes, Biochemistry (Moscow), 84, 1233-1246, doi: 10.1134/S0006297919110026.

10. Snezhkina, A. V., Kudryavtseva, A. V., Kardymon, O. L., Savvateeva, M. V., Melnikova, N. V., et al. (2019) ROS generation and antioxidant defense systems in normal and malignant cells, Oxid. Med. Cell Longev., 2019, 6175804, doi: 10.1155/2019/6175804.

11. Sajjaboontawee, N., Supasitthumrong, T., Tunvirachaisakul, C., Nantachai, K., Snabboon, T., et al. (2020) Lower thiol, glutathione, and glutathione peroxidase levels in prostate cancer: a meta-analysis study, Aging Male, 23, 1533-1544, doi: 10.1080/13685538.2020.1858048.

12. Martignano, F., Gurioli, G., Salvi, S., Calistri, D., Costantini, M., et al. (2016) GSTP1 methylation and protein expression in prostate cancer: diagnostic implications, Dis. Markers, 2016, 4358292, doi: 10.1155/2016/4358292.

13. Debelec-Butuner, B., Bostancı, A., Ozcan, F., Singin, O., Karamil, S., et al. (2019) Oxidative DNA damage-mediated genomic heterogeneity is regulated by NKX3.1 in prostate cancer, Cancer Invest., 37, 113-126, doi: 10.1080/07357907.2019.1576192.

14. Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., et al. (2018) Oxidative stress, aging, and diseases, Clin. Interv. Aging, 13, 757-772, doi: 10.2147/CIA.S158513.

15. Zhang, L., Wang, X., Cueto, R., Effi, C., Zhang, Y., et al. (2019) Biochemical basis and metabolic interplay of redox regulation, Redox Biol., 26, 101284, doi: 10.1016/j.redox.2019.101284.

16. Mohammadi, M., Irani, S., Salahshourifar, I., Hosseini, J., Moradi, A., et al. (2020) Investigation of GSTP1 and epigenetic regulators expression pattern in a population of Iranian patients with prostate cancer, Hum. Antibodies, 28, 327-334, doi: 10.3233/HAB-200424.

17. Yang, Y., Fuentes, F., Shu, L., Wang, C., Pung, D., et al. (2017) Epigenetic CpG methylation of the promoter and reactivation of the expression of GSTP1 by astaxanthin in human prostate LNCaP cells, AAPS J., 19, 421-430, doi: 10.1208/s12248-016-0016-x.

18. Fukai, T., and Ushio-Fukai, M. (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases, Antioxid. Redox Signal, 15, 1583-1606, doi: 10.1089/ars.2011.3999.

19. Dhar, S. K., Tangpong, J., Chaiswing, L., Oberley, T. D., and Clair, D. K. (2011) Manganese superoxide dismutase is a p53-regulated gene that switches cancers between early and advanced stages, Cancer Res., 71, 6684-6695, doi: 10.1158/0008-5472.CAN-11-1233.

20. Roy, K., Wu, Y., Meitzler, J. L., Juhasz, A., Liu, H., et al. (2015) NADPH oxidases and cancer, Clin. Sci. (Lond), 128, 863-875, doi: 10.1042/CS20140542.

21. Arbiser, J. L., Petros, J., Klafter, R., Govindajaran, B., McLaughlin, E. R., et al. (2002) Reactive oxygen generated by Nox1 triggers the angiogenic switch, Proc. Natl. Acad. Sci. USA, 99, 715-720, doi: 10.1073/pnas.022630199.

22. Deep, G., Kumar, R., Jain, A. K., Dhar, D., Panigrahi, G. K., et al. (2016) Graviola inhibits hypoxia-induced NADPH oxidase activity in prostate cancer cells reducing their proliferation and clonogenicity, Sci. Rep., 6, 23135, doi: 10.1038/srep23135.

23. Tamura, R. E., Hunger, A., Fernandes, D. C., Laurindo, F. R., Costanzi-Strauss, E., et al. (2017) Induction of oxidants distinguishes susceptibility of prostate carcinoma cell lines to p53 gene transfer mediated by an improved adenoviral vector, Hum. Gene Ther., 28, 639-653, doi: 10.1089/hum.2016.139.

24. Lim, S. D., Sun, C. Q., Lambeth, J. D., Marshall, F., Amin, M., et al. (2005) Increased Nox1 and hydrogen peroxide in prostate cancer, Prostate, 62, 200-207, doi: 10.1002/pros.20137.

25. Juhasz, A., Ge, Y., Markel, S., Chiu, A., Matsumoto, L., et al. (2009) Expression of NADPH oxidase homologues and accessory genes in human cancer cell lines, tumours and adjacent normal tissues, Free Radic. Res., 43, 523-532, doi: 10.1080/10715760902918683.

26. Höll, M., Koziel, R., Schäfer, G., Pircher, H., Pauck, A., et al. (2016) ROS signaling by NADPH oxidase 5 modulates the proliferation and survival of prostate carcinoma cells, Mol. Carcinog., 55, 27-39, doi: 10.1002/mc.22255.

27. Kumar, B., Koul, S., Khandrika, L., Meacham, R. B., and Koul, H. K. (2008) Oxidative stress in inherent in prostate cancer cells and is required for aggressive phenotype, Cancer Res., 68, 1777-1785, doi: 10.1158/0008-5472.CAN-07-5259.

28. Brar, S. S., Corbib, Z., Kennedy, T. P., Hemendinger, R., Thornton, L., et al. (2003) NOX5 NAD(P)H oxidase regulates growth and apoptosis in DU145 prostate cancer cells, Am. J. Physiol. Cell Physiol., 285, 353-369, doi: 10.1152/ajpcell.00525.2002.

29. Pettigrew, C. A., Clerkin, J. S., and Cotter, T. G. (2012) DUOX enzyme activity promotes AKT signalling in prostate cancer cells, Anticancer Res., 32, 5175-5181.

30. Lu, J. P., Monardo, L., Bryskin, I., Hou, Z. F., Trachtenberg, J., et al. (2010) Androgens induce oxidative stress and radiation resistance in prostate cancer cells though NADPH oxidase, Prostate Cancer Prostatic Dis., 13, 39-46, doi: 10.1038/pcan.2009.24.

31. Lu, J. P., Hou, Z. F., Duivenvoorden, W. C., Whelan, K., Honig, A., et al. (2012) Adiponectin inhibits oxidative stress in human prostate carcinoma cells, Prostate Cancer Prostatic Dis., 15, 28-35, doi: 10.1038/pcan.2011.53.

32. Speed, N., and Blair, I. A. (2011) Cyclooxygenase- and lipoxygenase-mediated DNA damage, Cancer Metastasis Rev., 30, 437-447, doi: 10.1007/s10555-011-9298-8.

33. Pidgeon, G. P., Lysaght, J., Krishnamoorthy, S., Reynolds, J. V., O’Byrne, K., et al. (2007) Lipoxygenase metabolism: roles in tumor progression and survival, Cancer Metastasis Rev., 26, 503-524, doi: 10.1007/s10555-007-9098-3.

34. Saboormaleki, S., Sadeghian, H., Bahrami, A. R., Orafaie, A., and Matin, M. M. (2018) 7-Farnesyloxycoumarin exerts anti-cancer effects on a prostate cancer cell line by 15-LOX-1 inhibition, Arch. Iran Med., 21, 251-259.

35. Iranpour, S., Al-Mosawi, A. K. M., Bahrami, A. R., Sadeghian, H., and Matin, M. M. (2021) Investigating the effects of two novel 4-MMPB analogs as potent lipoxygenase inhibitors for prostate cancer treatment, J. Biol. Res. (Thessalon), 28, 10, doi: 10.1186/s40709-021-00141-w.

36. Krishnamoorthy, S., Jin, R., Cai, Y., Maddipati, K. R., Nie, D., et al. (2010) 12-Lipoxygenase and the regulation of hypoxia-inducible factor in prostate cancer cells, Exp. Cell Res., 316, 1706-1715, doi: 10.1016/j.yexcr.2010.03.005.

37. Sarveswaran, S., Chakraborty, D., Chitale, D., Sears, R., and Ghosh, J. (2015) Inhibition of 5-lipoxygenase selectively triggers disruption of c-Myc signaling in prostate cancer cells, J. Biol. Chem., 290, 4994-5006, doi: 10.1074/jbc.M114.599035.

38. Hsi, L. C., Wilson, L. C., and Eling, T. E. (2002) Opposing effects of 15-lipoxygenase-1 and -2 metabolites on MAPK signaling in prostate. Alteration in peroxisome proliferator-activated receptor gamma, J. Biol. Chem., 277, 40549-40556, doi: 10.1074/jbc.M203522200.

39. Gondek, T., Szajewski, M., Szefel, J., Aleksandrowicz-Wrona, E., Skrzypczak-Jankun, E., et al. (2014) Evaluation of 12-lipoxygenase (12-LOX) and plasminogen activator inhibitor 1 (PAI-1) as prognostic markers in prostate cancer, Biomed. Res. Int., 2014, 102478, doi: 10.1155/2014/102478.

40. Gao, X., Porter, A. T., and Honn, K. V. (1997) Involvement of the multiple tumor suppressor genes and 12-lipoxygenase in human prostate cancer. Therapeutic implications, Adv. Exp. Med. Biol., 407, 41-53, doi: 10.1007/978-1-4899-1813-0_7.

41. Matsuyama, M., Yoshimura, R., Mitsuhashi, M., Hase, T., Tsuchida, K., et al. (2004) Expression of lipoxygenase in human prostate cancer and growth reduction by its inhibitors, Int. J. Oncol., 24, 821-827, doi: 10.3892/ijo.24.4.821.

42. Goftari, S. N., Sadeghian, H., Bahrami, A. R., Maleki, F., and Matin, M. M. (2019) Stylosin and some of its synthetic derivatives induce apoptosis in prostate cancer cells as 15-lipoxygenase enzyme inhibitors, Naunyn Schmiedebergs Arch. Pharmacol., 392, 1491-1502, doi: 10.1007/s00210-019-01689-0.

43. Hosseinymehr, M., Matin, M. M., Sadeghian, H., Bahrami, A. R., and Kaseb-Mojaver, N. (2016) 8-Farnesyloxycoumarin induces apoptosis in PC-3 prostate cancer cells by inhibition of 15-lipoxygenase-1 enzymatic activity, Anticancer Drugs, 27, 854-862, doi: 10.1097/CAD.0000000000000399.

44. Robertson, H., Dinkova-Kostova, A. T., and Hayes, J. D. (2020) NRF2 and the ambiguous consequences of its activation during initiation and the subsequent stages of tumourigenesis cancers, Cancers, 12, 3609, doi: 10.3390/cancers12123609.

45. Zimta, A.-A., Cenariu, D., Irimie, A., Magdo, L., Nabavi, S. M., et al. (2019) The role of Nrf2 activity in cancer development and progression, Cancers, 11, 1755, doi: 10.3390/cancers11111755.

46. Sekine, H., Motohashi, H. (2021) Roles of CNC transcription factors NRF1 and NRF2 in cancer, Cancers (Basel), 13, 541, doi: 10.3390/cancers13030541.

47. Taguchi, K., and Yamamoto, M. (2021) The KEAP1-NRF2 system as a molecular target of cancer treatment, Cancers (Basel), 13, 46, doi: 10.3390/cancers13010046.

48. Zucker, S. N., Fink, E. E., Bagati, A., Mannava, S., Bianchi-Smiraglia, A., et al. (2014) Nrf2 amplifies oxidative stress via induction of Klf9, Mol Cell, 53, 916-928, doi: 10.1016/j.molcel.2014.01.033.

49. Barve, A., Khor, T. O., Nair, S., Reuhl, K., Suh, N., et al. (2009) Tocopherol-enriched mixed tocopherol diet inhibits prostate carcinogenesis in TRAMP mice, Int. J. Cancer, 124, 1693-1699, doi: 10.1002/ijc.24106.

50. Frohlich, D. A., McCabe, M. T., Arnold, R. S., and Day, M. L. (2008) The role of Nrf2 in increased reactive oxygen species and DNA damage in prostate tumorigenesis, Oncogene, 27, 4353-4362, doi: 10.1038/onc.2008.79.

51. Wardyn, J. D., Ponsford, A. H., and Sanderson, C. M. (2015) Dissecting molecular cross-talk between Nrf2 and NF‑κB response pathways, Biochem. Soc. Trans., 43, 621-626, doi: 10.1042/BST20150014.

52. Buelna-Chontal, M., and Zazueta, C. (2013) Redox activation of Nrf2 and NF‑κB: a double end sword? Cell Signal, 25, 2548-2557, doi: 10.1016/j.cellsig.2013.08.007.

53. Taniguchi, K., and Karin, M. (2018) NF-κB, inflammation, immunity and cancer: coming of age, Nat. Rev. Immunol., 18, 309-324, doi: 10.1038/nri.2017.142.

54. Jin, R., Yi, Y., Yull, F. E., Blackwell, T. S., Clark, P. E., et al. (2014) NF-κB gene signature predicts prostate cancer progression, Cancer Res., 74, 2763-2772, doi: 10.1158/0008-5472.CAN-13-2543.

55. Grivennikov, S. I., and Karin, M. (2010) Dangerous liaisons: STAT3 and NF‑κB collaboration and crosstalk in cancer, Cytokine Growth Factor Rev., 21, 11-19, doi: 10.1016/j.cytogfr.2009.11.005.

56. Jiang, L. H., Hao, Y. L., and Zhu, J. W. (2019) Expression and prognostic value of HER‑2/neu, STAT3 and SOCS3 in hepatocellular carcinoma, Clin. Res. Hepatol. Gastroenterol., 43, 282-291, doi: 10.1016/j.clinre.2018.09.011.

57. Wang, X., Wang, B., Zhou, L., Wang, X., Veeraraghavan, V. P., et al. (2020) Ganoderma lucidum put forth anti-tumor activity against PC-3 prostate cancer cells via inhibition of Jak-1/STAT-3 activity, Saudi. J. Biol. Sci., 27, 2632-2637, doi: 10.1016/j.sjbs.2020.05.044.

58. Guo, Y., Zang, Y., Lv, L., Cai, F., Qian, T., et al. (2017) IL‑8 promotes proliferation and inhibition of apoptosis via STAT3/AKT/NF‑κB pathway in prostate cancer, Mol. Med. Rep., 16, 9035-9042, doi: 10.3892/mmr.2017.7747.

59. Chen, W., Li, P., Liu, Y., Yang, Y., Ye, X., et al. (2018) Isoalantolactone induces apoptosis through ROS-mediated ER stress and inhibition of STAT3 in prostate cancer cells, J. Exp. Clin. Cancer Res., 37, 309, doi: 10.1186/s13046-018-0987-9.

60. Gudkov, A. V., and Komarova, E. A. (2016) p53 and the carcinogenicity of chronic inflammation, Cold Spring Harb. Perspect. Med., 6, a026161, doi: 10.1101/cshperspect.a026161.

61. Schneider, G., Henrich, A., Greiner, G., Wolf, V., Lovas, A., et al. (2010) Crosstalk between stimulated NF-kappaB and the tumor suppressor p53, Oncogene, 29, 2795-2806, doi: 10.1038/onc.2010.46.

62. Shankar, E., Zhang, A., Franco, D., and Gupta, S. (2017) Betulinic acid-mediated apoptosis in human prostate cancer cells involves p53 and nuclear factor-kappa B (NF-κB) pathways, Molecules, 22, 264, doi: 10.3390/molecules22020264.

63. Dong, J. T. (2006) Prevalent mutations in prostate cancer, J. Cell Biochem., 97, 433-447, doi: 10.1002/jcb.20696.

64. Meek, D. W. (2015) Regulation of the p53 response and its relationship to cancer, Biochem. J., 469, 325-346, doi: 10.1042/BJ20150517.

65. Wan, J., Zhang, J., and Zhang, J. (2018) Expression of p53 and its mechanism in prostate cancer, Oncol. Lett., 16, 378-382, doi: 10.3892/ol.2018.8680.

66. Wang, D., Gao, Z., and Zhang, X. (2018) Resveratrol induces apoptosis in murine prostate cancer cells via hypoxia-inducible factor 1-alpha (HIF-1α)/reactive oxygen species (ROS)/P53 signaling, Med. Sci. Monit., 24, 8970-8976, doi: 10.12659/MSM.913290.

67. Papa, S., Zazzeroni, F., Pham, C. G., Bubici, C., and Franzoso, G. (2004) Linking JNK signaling to NF‑κB: a key to survival, J. Cell Sci., 117, 5197-5208, doi: 10.1242/jcs.01483.

68. Xu, R., and Hu, J. (2020) The role of JNK in prostate cancer progression and therapeutic strategies, Biomed. Pharmacother., 121, 109679, doi: 10.1016/j.biopha.2019.109679.

69. Nikoloudaki, G., Brooks, S., Peidl, A. P., Tinney, D., and Hamilton, D. W. (2020) JNK signaling as a key modulator of soft connective tissue physiology, pathology, and healing, Int. J. Mol. Sci., 21, 1015, doi: 10.3390/ijms21031015.

70. Takata, T., Araki, S., Tsuchiya, Y., and Watanabe, Y. (2020) Oxidative stress orchestrates MAPK and nitric-oxide synthase signal, Int. J. Mol. Sci., 21, 8750, doi: 10.3390/ijms21228750.

71. Dou, Y., Jiang, X., Xie, H., He, J., and Xiao, S. (2019) The Jun N-terminal kinases signaling pathway plays a “seesaw” role in ovarian carcinoma: a molecular aspect, J. Ovarian Res., 12, 99, doi: 10.1186/s13048-019-0573-6.

72. Acosta, A. M., and Kadko, S. S. (2016) Mitogen-activated protein kinase signaling pathway in cutaneous melanoma: an updated review, Arch. Pathol. Lab. Med., 140, 1290-1296, doi: 10.5858/arpa.2015-0475-RS.

73. Wang, J., Xiao, Q., Chen, X., Tong, S., Sun, J., et al. (2018) LanCL1 protects prostate cancer cells from oxidative stress via suppression of JNK pathway, Cell Death. Dis., 9, 197, doi: 10.1038/s41419-017-0207-0.

74. Lv, J. M., Chen, L., Gao, Y., Huang, H., Pan, X. W., et al. (2018) PPP5C promotes cell proliferation and survival in human prostate cancer by regulating of the JNK and ERK1/2 phosphorylation, Onco. Ther., 11, 5797-5809, doi: 10.2147/OTT.S161280.

75. Chambers, J., Pachori, A., Howard, S., Iqbal, S., and LoGrasso, P. (2012) Inhibition of JNK mitochondrial localization and signaling is protective against ischemia/reperfusion injury in rats, J. Boil. Chem., 288, 4000-4011, doi: 10.1074/jbc.M112.406777.

76. Günther, J. K., Nikolajevic, A., Ebner, S., Troppmair, J., and Khalid, S. (2020) Rigosertib-activated JNK1/2 eliminate tumor cells through p66Shc activation, Biology (Basel), 9, 99, doi: 10.3390/biology9050099.

77. Galimov, E. R. (2010) The role of p66shc in oxidative stress and apoptosis, Acta Naturae, 2, 44-51, doi: 10.32607/20758251-2010-2-4-44-51.

78. Eid, R. A., Zaki, M. S. A., Eldeen, M. A., Alshehri, M. M., Shati, A. A., et al. (2020) Exendin-4 protects the hearts of rats from ischaemia/reperfusion injury by boosting antioxidant levels and inhibition of JNK/p66Shc/NADPH axis, Clin. Exper. Pharmacol. Physiol., 47, 1240-1253, doi: 10.1111/1440-1681.13299.

79. Han, C., Wang, Z., Xu, Y., Chen, S., Han, Y., et al. (2020) Roles of reactive oxygen species in biological behaviors of prostate cancer, Biomed. Res. Int., 2020, 1269624, doi: 10.1155/2020/1269624.

80. Khurana, N., and Sikka, S. C. (2018) Targeting crosstalk between Nrf-2, NF-κB and androgen receptor signaling in prostate cancer, Cancers, 10, 352, doi: 10.3390/cancers10100352.

81. Yu, J., Zhou, P., Du, W., Xu, R., Yan, G., et al. (2020) Metabolically stable diphenylamine derivatives suppress androgen receptor and BET protein in prostate cancer, Biochem. Pharmacol., 177, 113946, doi: 10.1016/j.bcp.2020.113946.

82. Schultz, M. A., Hagan, S. S., Datta, A., Zhang, Y., Freeman, M. L., et al. (2014) Nrf1 and Nrf2 transcription factors regulate androgen receptor transactivation in prostate cancer cells, PLoS One, 9, e87204, doi: 10.1371/journal.pone.0087204.

83. Uzuner, E., Ulu, G. T., Gürler, S. B., and Baran, Y. (2022) The role of miRNA in cancer: pathogenesis, diagnosis, and treatment, Methods Mol. Biol., 2257, 375-422, doi: 10.1007/978-1-0716-1170-8_18.

84. Ali Syeda, Z., Langden, S. S., Munkhzul, C., Lee, M., and Song, S. (2020) Regulatory mechanism of microRNA expression in cancer, J. Int. J Mol. Sci., 21, 1723, doi: 10.3390/ijms21051723.

85. Xu, Z., Zhang, Y., Ding, J., Hu, W., Tan, C., et al. (2018) miR-17-3p downregulates mitochondrial antioxidant enzymes and enhances the radiosensitivity of prostate cancer cells, Mol. Ther. Nucleic Acids, 13, 64-77, doi: 10.1016/j.omtn.2018.08.009.

86. Martino, T., Kudrolli, T. A., Kumar, B., Salviano, I., Mencalha, A., et al. (2018) The orally active pterocarpanquinone LQB-118 exhibits cytotoxicity in prostate cancer cell and tumor models through cellular redox stress, Prostate, 78, 140-151, doi: 10.1002/pros.23455.

87. Yang, Z., Chen, J.-S., Wen, J-K., Gao, H-T., Zheng, B., et al. (2017) Silencing of miR-193a-5p increases the chemosensitivity of prostate cancer cells to docetaxel, J. Exp. Clin. Cancer Res., 36, 178, doi: 10.1186/s13046-017-0649-3.

88. Jajoo, S., Mukherjea, D., Kaur, T., Sheehan, K. E., Sheth, S., et al. (2013) Essential role of NADPH oxidase-dependent reactive oxygen species generation in regulating microRNA-21 expression and function in prostate cancer, Antioxid. Redox Signal., 19, 1863-1876, doi: 10.1089/ars.2012.4820.

89. Wu, Q.-Q., Zheng, B., Weng, G.-B., Yang, H.-M., Ren, Y., et al. (2019) Downregulated NOX4 underlies a novel inhibitory role of microRNA-137 in prostate cancer, J. Cell Biochem., 120, 10215-10227, doi: 10.1002/jcb.28306.

90. Kim, H.-K., Lee, H.-Y., Riaz, T. A., Bhattarai, K. R., Chaudhary, M., et al. (2021) Chalcone suppresses tumor growth through NOX4-IRE1α sulfonation-RIDD-miR-23b axis, Redox Biol., 40, 101853, doi: 10.1016/j.redox.2021.101853.

91. Hao, Y., Gu, X., Zhao, Y., Greene, S., Sha, W., et al. (2011) Enforced expression of miR‑101 inhibits prostate cancer cell growth by modulating the COX‑2 pathway in vivo, Cancer Prev. Res. (Phila), 4, 1073-1083, doi: 10.1158/1940-6207.CAPR-10-0333.

92. Madrigal-Martínez, A., Constâncio, V., Lucio-Cazaña, F. J., and Fernández-Martínez, A. B. (2019) Prostaglandine2 stimulates cancer-related phenotypes in prostate cancer PC3 cells through cyclooxygenase-2, J. Cell Physiol., 234, 7548-7559, doi: 10.1002/jcp.27515.

93. Josson, S., Sung, S.-Y., Lao, K., Chung, L. W. K., and Johnstone, P. A. S. (2008) Radiation modulation of microRNA in prostate cancer cell lines, Prostate, 68, 1599-1606, doi: 10.1002/pros.20827.

94. Gandellini, P., Giannoni, E., Casamichele, A., Taddei, M. L., Callari, M., et al. (2014) miR-205 hinders the malignant interplay between prostate cancer cells and associated fibroblasts, Antioxid. Redox Signal., 20, 1045-1059, doi: 10.1089/ars.2013.5292.

95. Zang, Y., Zhu, J., Li, Q., Tu, J., Li, X., et al. (2020) miR-137-3p modulates the progression of prostate cancer by regulating the JNK3/EZH2 axis, Onco. Targets Ther., 13, 7921-7932, doi: 10.2147/OTT.S256161.

96. Meitzler, J. L., Antony, S., Wu, Y., Juhasz, A., Liu, H., et al. (2014) NADPH oxidases: a perspective on reactive oxygen species production in tumor biology, Antioxid. Redox Signal., 20, 2873-2889, doi: 10.1089/ars.2013.5603.

97. Kumar, S., Singh, R. K., and Meena, R. (2016) Emerging targets for radioprotection and radiosensitization in radiotherapy, Tumour Biol., 37, 11589-11609, doi: 10.1007/s13277-016-5117-8.

98. Sarveswaran, S., Varma, N. R. S., Morisetty, S., and Ghosh, J. (2019) Inhibition of 5-lipoxygenase downregulates stemness and kills prostate cancer stem cells by triggering apoptosis via activation of c-Jun N-terminal kinase, Oncotarget, 10, 424-436, doi: 10.18632/oncotarget.13422.

99. Wartenberg, M., Hoffmann, E., Schwindt, H., Grünheck, F., Petros, J., et al. (2005) Reactive oxygen species-linked regulation of the multidrug resistance transporter P-glycoprotein in Nox-1 overexpressing prostate tumor spheroids, FEBS Lett., 579, 4541-4549, doi: 10.1016/j.febslet.2005.06.078.

100. Jones, K. J., Chetram, M. A., Bethea, D. A., Bryant, L. K., Odero-Marah, V., et al. (2013) Cysteine (C)-X-C Receptor 4 regulates NADPH Oxidase-2 during oxidative stress in prostate cancer cells, Cancer Microenvironment, 6, 277-288, doi: 10.1007/s12307-013-0136-0.