БИОХИМИЯ, 2022, том 87, вып. 3, с. 400–418
УДК 577.112.7;617.741
Агрегация белков при катаракте: роль возрастных модификаций и мутаций α‑кристаллинов*
Обзор
Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad 500007, India
Поступила в редакцию 05.10.2021
После доработки 02.02.2022
Принята к публикации 02.02.2022
DOI: 10.31857/S0320972522030071
КЛЮЧЕВЫЕ СЛОВА: катаракта, агрегация, α‑кристаллин.
Аннотация
Катаракта является основной причиной слепоты. Из‑за нарушения процесса обновления белков в хрусталике глаза накапливаются возрастные и экологические модификации белков, которые изменяют их нативную конформацию, что приводит к образованию склонных к агрегации промежуточных продуктов, а также нерастворимых и светорассеивающих агрегатов, снижающих прозрачность хрусталика. Белок хрусталика, α‑кристаллин, является молекулярным шапероном, который предотвращает агрегацию белка, тем самым поддерживая прозрачность хрусталика. Однако мутации или посттрансляционные модификации, такие как окисление, деамидирование, усечение и перекрёстные сшивки, могут сделать α‑кристаллины неэффективными и привести к обострению болезни. В настоящей работе нами описаны такие мутации и изменения, а также их последствия. Возрастные модификации α‑кристаллинов влияют на их структуру, олигомеризацию и шаперонную функцию. Мутации α‑кристаллинов могут привести к агрегации/внутриклеточным включениям, связанным с нарушением структуры и сборки олигомеров, что приводит к перестройке областей, склонных к агрегации. Такие структурные перестройки могут привести к обнажению до сих пор скрытых участков, склонных к агрегации, тем самым заполняя склонное к агрегации состояние (-я) и облегчая аморфную/амилоидную агрегацию и/или несоответствующие взаимодействия с клеточными компонентами. Изучение вызванных мутациями изменений в структуре, сборке олигомеров, механизмах агрегации и интерактомах α‑кристаллинов будут полезны в борьбе с заболеваниями, связанными с агрегацией белков.
Текст статьи
Сноски
* Статья опубликована в рамках специального выпуска «Неправильный фолдинг и агрегация белков при катаракте» (том 87, № 2, 2022).
** Адресат для корреспонденции.
Конфликт интересов
Авторы заявляют об отсутствии конфликта интересов.
Соблюдение этических норм
Настоящая статья не содержит описания каких-либо исследований с участием людей или животных в качестве объектов.
Список литературы
1. Chou, C. F., Cotch, M. F., Vitale, S., Zhang, X., Klein, R., et al. (2013) Age-related eye diseases and visual impairment among U.S. adults, Am. J. Prev. Med., 45, 29-35, doi: 10.1016/j.amepre.2013.02.018.
2. Bloemendal, H., de Jong, W., Jaenicke, R., Lubsen, N. H., Slingsby, C., et al. (2004) Ageing and vision: structure, stability and function of lens crystallins, Prog. Biophys. Mol. Biol., 86, 407-485, doi: 10.1016/j.pbiomolbio.2003.11.012.
3. Delaye, M., and Tardieu, A. (1983) Short-range order of crystallin proteins accounts for eye lens transparency, Nature, 302, 415-417, doi: 10.1038/302415a0.
4. Benedek, G. B. (1971) Theory of transparency of the eye, Appl. Opt., 10, 459-473, doi: 10.1364/AO.10.000459.
5. Hanson, S. R., Hasan, A., Smith, D. L., and Smith, J. B. (2000) The major in vivo modifications of the human water-insoluble lens crystallins are disulfide bonds, deamidation, methionine oxidation and backbone cleavage, Exp. Eye Res., 71, 195-207, doi: 10.1006/exer.2000.0868.
6. Harding, J. J. (2002) Viewing molecular mechanisms of ageing through a lens, Ageing Res. Rev., 1, 465-479, doi: 10.1016/s1568-1637(02)00012-0.
7. Zhang, T. O., Alperstein, A. M., and Zanni, M. T. (2017) Amyloid beta-sheet secondary structure identified in UV-induced cataracts of porcine lenses using 2D IR spectroscopy, J. Mol. Biol., 429, 1705-1721, doi: 10.1016/j.jmb.2017.04.014.
8. Alperstein, A. M., Ostrander, J. S., Zhang, T. O., and Zanni, M. T. (2019) Amyloid found in human cataracts with two-dimensional infrared spectroscopy, Proc. Natl. Acad. Sci. USA, 116, 6602-6607, doi: 10.1073/pnas.1821534116.
9. Alperstein, A. M., Molnar, K. S., Dicke, S. S., Farrell, K. M., Makley, L. N., et al. (2021) Analysis of amyloid-like secondary structure in the Cryab-R120G knock-in mouse model of hereditary cataracts by two-dimensional infrared spectroscopy, PLoS One, 16, e0257098, doi: 10.1371/journal.pone.0257098.
10. Mörner, C. T. (1894) Untersuchung der Proteїnsubstanzen in den leichtbrechenden Medien des Auges I [in German], bchm, 18, 61-106, doi: 10.1515/bchm1.1894.18.1.61.
11. Roy, D., and Spector, A. (1976) Absence of low-molecular-weight alpha crystallin in nuclear region of old human lenses, Proc. Natl. Acad. Sci. USA, 73, 3484-3487, doi: 10.1073/pnas.73.10.3484.
12. Horwitz, J., Bova, M. P., Ding, L. L., Haley, D. A., and Stewart, P. L. (1999) Lens alpha-crystallin: Function and structure, Eye (Lond), 13 (Pt. 3b), 403-408, doi: 10.1038/eye.1999.114.
13. Bakthisaran, R., Tangirala, R., and Rao, Ch. M. (2015) Small heat shock proteins: Role in cellular functions and pathology, Biochim. Biophys. Acta, 1854, 291-319, doi: 10.1016/j.bbapap.2014.12.019.
14. Kappe, G., Franck, E., Verschuure, P., Boelens, W. C., Leunissen, J. A., et al. (2003) The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1-10, Cell Stress Chaperones, 8, 53-61, doi: 10.1379/1466-1268(2003)8<53:thgecs>2.0.co;2.
15. Ingolia, T. D., and Craig, E. A. (1982) Four small Drosophila heat shock proteins are related to each other and to mammalian alpha-crystallin, Proc. Natl. Acad. Sci. USA, 79, 2360-2364, doi: 10.1073/pnas.79.7.2360.
16. Horwitz, J. (1992) Alpha-crystallin can function as a molecular chaperone, Proc. Natl. Acad. Sci. USA, 89, 10449-10453, doi: 10.1073/pnas.89.21.10449.
17. Raman, B., and Rao, C. M. (1994) Chaperone-like activity and quaternary structure of alpha-crystallin, J. Biol. Chem., 269, 27264-27268.
18. Raman, B., Ramakrishna, T., and Rao, C. M. (1995) Temperature dependent chaperone-like activity of alpha-crystallin, FEBS Lett., 365, 133-136, doi: 10.1016/0014-5793(95)00440-k.
19. Rajaraman, K., Raman, B., Ramakrishna, T., and Rao, C. M. (1998) The chaperone-like alpha-crystallin forms a complex only with the aggregation-prone molten globule state of alpha-lactalbumin, Biochem. Biophys. Res. Commun., 249, 917-921, doi: 10.1006/bbrc.1998.9242.
20. Raman, B., and Rao, C. M. (1997) Chaperone-like activity and temperature-induced structural changes of alpha-crystallin, J. Biol. Chem., 272, 23559-23564, doi: 10.1074/jbc.272.38.23559.
21. Datta, S. A., and Rao, C. M. (1999) Differential temperature-dependent chaperone-like activity of alphaA- and alphaB-crystallin homoaggregates, J. Biol. Chem., 274, 34773-34778, doi: 10.1074/jbc.274.49.34773.
22. Rajaraman, K., Raman, B., Ramakrishna, T., and Rao, C. M. (2001) Interaction of human recombinant alphaA- and alphaB-crystallins with early and late unfolding intermediates of citrate synthase on its thermal denaturation, FEBS Lett., 497, 118-123, doi: 10.1016/s0014-5793(01)02451-6.
23. Goenka, S., Raman, B., Ramakrishna, T., and Rao, C. M. (2001) Unfolding and refolding of a quinone oxidoreductase: alpha-crystallin, a molecular chaperone, assists its reactivation, Biochem. J., 359, 547-556, doi: 10.1042/0264-6021:3590547.
24. Sathish, H. A., Koteiche, H. A., and McHaourab, H. S. (2004) Binding of destabilized betaB2-crystallin mutants to alpha-crystallin: the role of a folding intermediate, J. Biol. Chem., 279, 16425-16432, doi: 10.1074/jbc.M313402200.
25. McHaourab, H. S., Dodson, E. K., and Koteiche, H. A. (2002) Mechanism of chaperone function in small heat shock proteins. Two-mode binding of the excited states of T4 lysozyme mutants by alphaA-crystallin, J. Biol. Chem., 277, 40557-40566, doi: 10.1074/jbc.M206250200.
26. Koteiche, H. A., and McHaourab, H. S. (2003) Mechanism of chaperone function in small heat-shock proteins. Phosphorylation-induced activation of two-mode binding in alphaB-crystallin, J. Biol. Chem., 278, 10361-10367, doi: 10.1074/jbc.M211851200.
27. Hatters, D. M., Lindner, R. A., Carver, J. A., and Howlett, G. J. (2001) The molecular chaperone, alpha-crystallin, inhibits amyloid formation by apolipoprotein C-II, J. Biol. Chem., 276, 33755-33761, doi: 10.1074/jbc.M105285200.
28. Devlin, G. L., Carver, J. A., and Bottomley, S. P. (2003) The selective inhibition of serpin aggregation by the molecular chaperone, alpha-crystallin, indicates a nucleation-dependent specificity, J. Biol. Chem., 278, 48644-48650, doi: 10.1074/jbc.M308376200.
29. Raman, B., Ban, T., Sakai, M., Pasta, S. Y., Ramakrishna, T., et al. (2005) AlphaB-crystallin, a small heat-shock protein, prevents the amyloid fibril growth of an amyloid beta-peptide and beta2-microglobulin, Biochem. J., 392, 573-581, doi: 10.1042/BJ20050339.
30. Shammas, S. L., Waudby, C. A., Wang, S., Buell, A. K., Knowles, T. P., et al. (2011) Binding of the molecular chaperone alphaB-crystallin to Abeta amyloid fibrils inhibits fibril elongation, Biophys. J., 101, 1681-1689, doi: 10.1016/j.bpj.2011.07.056.
31. Narayan, P., Meehan, S., Carver, J. A., Wilson, M. R., Dobson, C. M., et al. (2012) Amyloid-beta oligomers are sequestered by both intracellular and extracellular chaperones, Biochemistry, 51, 9270-9276, doi: 10.1021/bi301277k.
32. Haslbeck, M., Peschek, J., Buchner, J., and Weinkauf, S. (2016) Structure and function of alpha-crystallins: Traversing from in vitro to in vivo, Biochim. Biophys. Acta, 1860, 149-166, doi: 10.1016/j.bbagen.2015.06.008.
33. Santhoshkumar, P., Murugesan, R., and Sharma, K. K. (2009) Deletion of (54)FLRAPSWF(61) residues decreases the oligomeric size and enhances the chaperone function of alphaB-crystallin, Biochemistry, 48, 5066-5073, doi: 10.1021/bi900085v.
34. Pasta, S. Y., Raman, B., Ramakrishna, T., and Rao, Ch. M. (2003) Role of the conserved SRLFDQFFG region of alpha-crystallin, a small heat shock protein. Effect on oligomeric size, subunit exchange, and chaperone-like activity, J. Biol. Chem., 278, 51159-51166, doi: 10.1074/jbc.M307523200.
35. Jehle, S., Vollmar, B. S., Bardiaux, B., Dove, K. K., Rajagopal, P., et al. (2011) N-terminal domain of alphaB-crystallin provides a conformational switch for multimerization and structural heterogeneity, Proc. Natl. Acad. Sci. USA, 108, 6409-6414, doi: 10.1073/pnas.1014656108.
36. Pasta, S. Y., Raman, B., Ramakrishna, T., and Rao, Ch., M. (2002) Role of the C-terminal extensions of alpha-crystallins. Swapping the C-terminal extension of alpha-crystallin to alphaB-crystallin results in enhanced chaperone activity, J. Biol. Chem., 277, 45821-45828, doi: 10.1074/jbc.M206499200.
37. Treweek, T. M., Ecroyd, H., Williams, D. M., Meehan, S., Carver, J. A., and Walker, M. J. (2007) Site-directed mutations in the C-terminal extension of human alphaB-crystallin affect chaperone function and block amyloid fibril formation, PLoS One, 2, e1046, doi: 10.1371/journal.pone.0001046.
38. Kumar, L. V., and Rao, C. M. (2000) Domain swapping in human alpha A and alpha B crystallins affects oligomerization and enhances chaperone-like activity, J. Biol. Chem., 275, 22009-22013, doi: 10.1074/jbc.M003307200.
39. Peschek, J., Braun, N., Franzmann, T. M., Georgalis, Y., Haslbeck, M., et al. (2009) The eye lens chaperone alpha-crystallin forms defined globular assemblies, Proc. Natl. Acad. Sci. USA, 106, 13272-13277, doi: 10.1073/pnas.0902651106.
40. Kaiser, C. J. O., Peters, C., Schmid, P. W. N., Stavropoulou, M., Zou, J., et al. (2019) The structure and oxidation of the eye lens chaperone alphaA-crystallin, Nat. Struct. Mol. Biol., 26, 1141-1150, doi: 10.1038/s41594-019-0332-9.
41. McCarty, C. A., and Taylor, H. R. (2002) A review of the epidemiologic evidence linking ultraviolet radiation and cataracts, Dev. Ophthalmol., 35, 21-31, doi: 10.1159/000060807.
42. Kamei, A. (1990) Characterization of water-insoluble proteins in normal and cataractous human lens, Jpn. J. Ophthalmol., 34, 216-224.
43. Harrington, V., McCall, S., Huynh, S., Srivastava, K., and Srivastava, O. P. (2004) Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses, Mol. Vis., 10, 476-489.
44. Sharma, K. K., and Santhoshkumar, P. (2009) Lens aging: Effects of crystallins, Biochim. Biophys. Acta, 1790, 1095-1108, doi: 10.1016/j.bbagen.2009.05.008.
45. Wilmarth, P. A., Tanner, S., Dasari, S., Nagalla, S. R., Riviere, M. A., et al. (2006) Age-related changes in human crystallins determined from comparative analysis of post-translational modifications in young and aged lens: Does deamidation contribute to crystallin insolubility? J. Proteome Res., 5, 2554-2566, doi: 10.1021/pr050473a.
46. Lapko, V. N., Smith, D. L., and Smith, J. B. (2001) In vivo carbamylation and acetylation of water-soluble human lens alphaB-crystallin lysine 92, Protein Sci., 10, 1130-1136, doi: 10.1110/ps.40901.
47. Taylor, H. R., West, S. K., Rosenthal, F. S., Munoz, B., Newland, H. S., et al. (1988) Effect of ultraviolet radiation on cataract formation, N. Engl. J. Med., 319, 1429-1433, doi: 10.1056/NEJM198812013192201.
48. Korlimbinis, A., Hains, P. G., Truscott, R. J., and Aquilina, J. A. (2006) 3-Hydroxykynurenine oxidizes alpha-crystallin: Potential role in cataractogenesis, Biochemistry, 45, 1852-1860, doi: 10.1021/bi051737+.
49. Anbaraki, A., Ghahramani, M., Muranov, K. O., Kurganov, B. I., and Yousefi, R. (2018) Structural and functional alteration of human alphaA-crystallin after exposure to full spectrum solar radiation and preventive role of lens antioxidants, Int. J. Biol. Macromol., 118, 1120-1130, doi: 10.1016/j.ijbiomac.2018.06.136.
50. Lin, S. Y., Ho, C. J., and Li, M. J. (1999) UV-B-induced secondary conformational changes in lens alpha-crystallin, J. Photochem. Photobiol. B, 49, 29-34, doi: 10.1016/S1011-1344(99)00010-X.
51. Rajan, S., Horn, C., and Abraham, E. C. (2006) Effect of oxidation of alphaA- and alphaB-crystallins on their structure, oligomerization and chaperone function, Mol. Cell. Biochem., 288, 125-134, doi: 10.1007/s11010-006-9128-4.
52. Chaves, J. M., Srivastava, K., Gupta, R., and Srivastava, O. P. (2008) Structural and functional roles of deamidation and/or truncation of N- or C-termini in human alpha A-crystallin, Biochemistry, 47, 10069-10083, doi: 10.1021/bi8001902.
53. Gupta, R., and Srivastava, O. P. (2004) Deamidation affects structural and functional properties of human alphaA-crystallin and its oligomerization with alphaB-crystallin, J. Biol. Chem., 279, 44258-44269, doi: 10.1074/jbc.M405648200.
54. Gupta, R., and Srivastava, O. P. (2004) Effect of deamidation of asparagine 146 on functional and structural properties of human lens alphaB-crystallin, Invest. Ophthalmol. Vis. Sci., 45, 206-214, doi: 10.1167/iovs.03-0720.
55. Grey, A. C., and Schey, K. L. (2009) Age-related changes in the spatial distribution of human lens alpha-crystallin products by MALDI imaging mass spectrometry, Invest. Ophthalmol. Vis. Sci., 50, 4319-4329, doi: 10.1167/iovs.09-3522.
56. MacCoss, M. J., McDonald, W. H., Saraf, A., Sadygov, R., Clark, J. M., et al. (2002) Shotgun identification of protein modifications from protein complexes and lens tissue, Proc. Natl. Acad. Sci. USA, 99, 7900-7905, doi: 10.1073/pnas.122231399.
57. Huang, C. H., Wang, Y. T., Tsai, C. F., Chen, Y. J., Lee, J. S., et al. (2011) Phosphoproteomics characterization of novel phosphorylated sites of lens proteins from normal and cataractous human eye lenses, Mol. Vis., 17, 186-198.
58. Bakthisaran, R., Akula, K. K., Tangirala, R., and Rao, Ch., M. (2016) Phosphorylation of alphaB-crystallin: Role in stress, aging and patho-physiological conditions, Biochim. Biophys. Acta, 1860, 167-182, doi: 10.1016/j.bbagen.2015.09.017.
59. Muranova, L. K., Sudnitsyna, M. V., and Gusev, N. B. (2018) AlphaB-crystallin phosphorylation: advances and problems, Biochemistry (Moscow), 83, 1196-1206, doi: 10.1134/S000629791810005X.
60. Carver, J. A., Nicholls, K. A., Aquilina, J. A., and Truscott, R. J. (1996) Age-related changes in bovine alpha-crystallin and high-molecular-weight protein, Exp. Eye Res., 63, 639-647, doi: 10.1006/exer.1996.0158.
61. Den Engelsman, J., Gerrits, D., de Jong, W. W., Robbins, J., Kato, K., et al. (2005) Nuclear import of {alpha}B-crystallin is phosphorylation-dependent and hampered by hyperphosphorylation of the myopathy-related mutant R120G, J. Biol. Chem., 280, 37139-37148, doi: 10.1074/jbc.M504106200.
62. Simon, S., Fontaine, J. M., Martin, J. L., Sun, X., Hoppe, A. D., et al. (2007) Myopathy-associated alphaB-crystallin mutants: Abnormal phosphorylation, intracellular location, and interactions with other small heat shock proteins, J. Biol. Chem., 282, 34276-34287, doi: 10.1074/jbc.M703267200.
63. Lyon, Y. A., Sabbah, G. M., and Julian, R. R. (2018) Differences in alpha-Crystallin isomerization reveal the activity of protein isoaspartyl methyltransferase (PIMT) in the nucleus and cortex of human lenses, Exp. Eye Res., 171, 131-141, doi: 10.1016/j.exer.2018.03.018.
64. Takata, T., and Fujii, N. (2016) Isomerization of Asp residues plays an important role in alphaA-crystallin dissociation, FEBS J., 283, 850-859, doi: 10.1111/febs.13635.
65. Hooi, M. Y., Raftery, M. J., and Truscott, R. J. (2013) Age-dependent racemization of serine residues in a human chaperone protein, Protein Sci., 22, 93-100, doi: 10.1002/pro.2191.
66. Lyon, Y. A., Collier, M. P., Riggs, D. L., Degiacomi, M. T., Benesch, J. L. P., et al. (2019) Structural and functional consequences of age-related isomerization in alpha-crystallins, J. Biol. Chem., 294, 7546-7555, doi: 10.1074/jbc.RA118.007052.
67. Lyons, T. J., Silvestri, G., Dunn, J. A., Dyer, D. G., and Baynes, J. W. (1991) Role of glycation in modification of lens crystallins in diabetic and nondiabetic senile cataracts, Diabetes, 40, 1010-1015, doi: 10.2337/diab.40.8.1010.
68. Thorpe, S. R., and Baynes, J. W. (1996) Role of the Maillard reaction in diabetes mellitus and diseases of aging, Drugs Aging, 9, 69-77, doi: 10.2165/00002512-199609020-00001.
69. Stevens, V. J., Rouzer, C. A., Monnier, V. M., and Cerami, A. (1978) Diabetic cataract formation: Potential role of glycosylation of lens crystallins, Proc. Natl. Acad. Sci. USA, 75, 2918-2922, doi: 10.1073/pnas.75.6.2918.
70. Kumar, P. A., Kumar, M. S., and Reddy, G. B. (2007) Effect of glycation on alpha-crystallin structure and chaperone-like function, Biochem. J., 408, 251-258, doi: 10.1042/BJ20070989.
71. Schey, K. L., Wang, Z., Friedrich, M. G., Garland, D. L., and Truscott, R. J. W. (2020) Spatiotemporal changes in the human lens proteome: Critical insights into long-lived proteins, Prog. Retin. Eye Res., 76, 100802, doi: 10.1016/j.preteyeres.2019.100802.
72. Kamei, A., Iwase, H., and Masuda, K. (1997) Cleavage of amino acid residue(s) from the N-terminal region of alpha A- and alpha B-crystallins in human crystalline lens during aging, Biochem. Biophys. Res. Commun., 231, 373-378, doi: 10.1006/bbrc.1997.6105.
73. Jimenez-Asensio, J., Colvis, C. M., Kowalak, J. A., Duglas-Tabor, Y., Datiles, M. B., et al. (1999) An atypical form of alphaB-crystallin is present in high concentration in some human cataractous lenses. Identification and characterization of aberrant N- and C-terminal processing, J. Biol. Chem., 274, 32287-32294, doi: 10.1074/jbc.274.45.32287.
74. Takemoto, L., Emmons, T., and Horwitz, J. (1993) The C-terminal region of alpha-crystallin: involvement in protection against heat-induced denaturation, Biochem. J., 294 (Pt. 2), 435-438, doi: 10.1042/bj2940435.
75. Santhoshkumar, P., Udupa, P., Murugesan, R., and Sharma, K. K. (2008) Significance of interactions of low molecular weight crystallin fragments in lens aging and cataract formation, J. Biol. Chem., 283, 8477-8485, doi: 10.1074/jbc.M705876200.
76. Su, S. P., McArthur, J. D., and Andrew Aquilina, J. (2010) Localization of low molecular weight crystallin peptides in the aging human lens using a MALDI mass spectrometry imaging approach, Exp. Eye Res., 91, 97-103, doi: 10.1016/j.exer.2010.04.010.
77. Kannan, R., Santhoshkumar, P., Mooney, B. P., and Sharma, K. K. (2013) The alphaA66-80 peptide interacts with soluble alpha-crystallin and induces its aggregation and precipitation: a contribution to age-related cataract formation, Biochemistry, 52, 3638-3650, doi: 10.1021/bi301662w.
78. Raju, M., Santhoshkumar, P., and Sharma, K. K. (2017) Lens endogenous peptide alphaA66-80 generates hydrogen peroxide and induces cell apoptosis, Aging Dis., 8, 57-70, doi: 10.14336/AD.2016.0805.
79. Nagaraj, R. H., Nahomi, R. B., Shanthakumar, S., Linetsky, M., Padmanabha, S., et al. (2012) Acetylation of alphaA-crystallin in the human lens: effects on structure and chaperone function, Biochim. Biophys. Acta, 1822, 120-129, doi: 10.1016/j.bbadis.2011.11.011.
80. Wang, Z., Friedrich, M. G., Truscott, R. J. W., and Schey, K. L. (2019) Cleavage C-terminal to Asp leads to covalent crosslinking of long-lived human proteins, Biochim Biophys Acta Proteins Proteom., 1867, 831-839, doi: 10.1016/j.bbapap.2019.06.009.
81. Litt, M., Kramer, P., LaMorticella, D. M., Murphey, W., Lovrien, E. W., and et al. (1998) Autosomal dominant congenital cataract associated with a missense mutation in the human alpha crystallin gene CRYAA, Hum. Mol. Genet., 7, 471-474, doi: 10.1093/hmg/7.3.471.
82. Pras, E., Frydman, M., Levy-Nissenbaum, E., Bakhan, T., Raz, J., et al. (2000) A nonsense mutation (W9X) in CRYAA causes autosomal recessive cataract in an inbred Jewish Persian family, Invest. Ophthalmol. Vis. Sci., 41, 3511-3515.
83. Hansen, L., Yao, W., Eiberg, H., Kjaer, K. W., Baggesen, K., et al. (2007) Genetic heterogeneity in microcornea-cataract: five novel mutations in CRYAA, CRYGD, and GJA8, Invest. Ophthalmol. Vis. Sci., 48, 3937-3944, doi: 10.1167/iovs.07-0013.
84. Devi, R. R., Yao, W., Vijayalakshmi, P., Sergeev, Y. V., Sundaresan, P., et al. (2008) Crystallin gene mutations in Indian families with inherited pediatric cataract, Mol. Vis., 14, 1157-1170.
85. Song, Z., Si, N., and Xiao, W. (2018) A novel mutation in the CRYAA gene associated with congenital cataract and microphthalmia in a Chinese family, BMC Med. Genet., 19, 190, doi: 10.1186/s12881-018-0695-5.
86. Graw, J., Klopp, N., Illig, T., Preising, M. N., and Lorenz, B. (2006) Congenital cataract and macular hypoplasia in humans associated with a de novo mutation in CRYAA and compound heterozygous mutations in P, Graefes Arch. Clin. Exp. Ophthalmol., 244, 912-919, doi: 10.1007/s00417-005-0234-x.
87. Hansen, L., Mikkelsen, A., Nurnberg, P., Nurnberg, G., Anjum, I., et al. (2009) Comprehensive mutational screening in a cohort of Danish families with hereditary congenital cataract, Invest. Ophthalmol. Vis. Sci., 50, 3291-3303, doi: 10.1167/iovs.08-3149.
88. Laurie, K. J., Dave, A., Straga, T., Souzeau, E., Chataway, T., et al. (2013) Identification of a novel oligomerization disrupting mutation in CRYAlphaA associated with congenital cataract in a South Australian family, Hum. Mutat., 34, 435-438, doi: 10.1002/humu.22260.
89. Mackay, D. S., Andley, U. P., and Shiels, A. (2003) Cell death triggered by a novel mutation in the alphaA-crystallin gene underlies autosomal dominant cataract linked to chromosome 21q, Eur. J. Hum. Genet., 11, 784-793, doi: 10.1038/sj.ejhg.5201046.
90. Khan, A. O., Aldahmesh, M. A., and Meyer, B. (2007) Recessive congenital total cataract with microcornea and heterozygote carrier signs caused by a novel missense CRYAA mutation (R54C), Am. J. Ophthalmol., 144, 949-952, doi: 10.1016/j.ajo.2007.08.005.
91. Su, D., Guo, Y., Li, Q., Guan, L., Zhu, S., et al. (2012) A novel mutation in CRYAA is associated with autosomal dominant suture cataracts in a Chinese family, Mol. Vis., 18, 3057-3063.
92. Yang, Z., Su, D., Li, Q., Ma, Z., Yang, F., et al. (2013) A R54L mutation of CRYAA associated with autosomal dominant nuclear cataracts in a Chinese family, Curr. Eye Res., 38, 1221-1228, doi: 10.3109/02713683.2013.811260.
93. Patel, R., Zenith, R. K., Chandra, A., and Ali, A. (2017) Novel mutations in the crystallin gene in age-related cataract patients from a North Indian population, Mol. Syndromol., 8, 179-186, doi: 10.1159/000471992.
94. Bhagyalaxmi, S. G., Srinivas, P., Barton, K. A., Kumar, K. R., Vidyavathi, M., et al. (2009) A novel mutation (F71L) in alphaA-crystallin with defective chaperone-like function associated with age-related cataract, Biochim. Biophys. Acta, 1792, 974-981, doi: 10.1016/j.bbadis.2009.06.011.
95. Santhiya, S. T., Soker, T., Klopp, N., Illig, T., Prakash, M. V., et al. (2006) Identification of a novel, putative cataract-causing allele in CRYAA (G98R) in an Indian family, Mol. Vis., 12, 768-773.
96. Vanita, V., Singh, J. R., Hejtmancik, J. F., Nuernberg, P., Hennies, H. C., et al. (2006) A novel fan-shaped cataract-microcornea syndrome caused by a mutation of CRYAA in an Indian family, Mol. Vis., 12, 518-522.
97. Li, F. F., Yang, M., Ma, X., Zhang, Q., Zhang, M., et al. (2010) Autosomal dominant congenital nuclear cataracts caused by a CRYAA gene mutation, Curr. Eye Res., 35, 492-498, doi: 10.3109/02713681003624901.
98. Gu, F., Luo, W., Li, X., Wang, Z., Lu, S., et al. (2008) A novel mutation in AlphaA-crystallin (CRYAA) caused autosomal dominant congenital cataract in a large Chinese family, Hum. Mutat., 29, 769, doi: 10.1002/humu.20724.
99. Richter, L., Flodman, P., Barria von-Bischhoffshausen, F., Burch, D., Brown, S., et al. (2008) Clinical variability of autosomal dominant cataract, microcornea and corneal opacity and novel mutation in the alpha A crystallin gene (CRYAA), Am. J. Med. Genet. A, 146A, 833-842, doi: 10.1002/ajmg.a.32236.
100. Li, L., Fan, D. B., Zhao, Y. T., Li, Y., Kong, D. Q., et al. (2017) Two novel mutations identified in ADCC families impair crystallin protein distribution and induce apoptosis in human lens epithelial cells, Sci. Rep., 7, 17848, doi: 10.1038/s41598-017-18222-z.
101. Sun, W., Xiao, X., Li, S., Guo, X., and Zhang, Q. (2011) Mutation analysis of 12 genes in Chinese families with congenital cataracts, Mol. Vis., 17, 2197-2206.
102. Kong, X. D., Liu, N., Shi, H. R., Dong, J. M., Zhao, Z. H., et al. (2015) A novel 3-base pair deletion of the CRYAA gene identified in a large Chinese pedigree featuring autosomal dominant congenital perinuclear cataract, Genet. Mol. Res., 14, 426-432, doi: 10.4238/2015.
103. Berry, V., Ionides, A., Pontikos, N., Georgiou, M., Yu, J., et al. (2020) The genetic landscape of crystallins in congenital cataract, Orphanet. J. Rare Dis., 15, 333, doi: 10.1186/s13023-020-01613-3.
104. Chen, Q., Ma, J., Yan, M., Mothobi, M. E., Liu, Y., et al. (2009) A novel mutation in CRYAB associated with autosomal dominant congenital nuclear cataract in a Chinese family, Mol. Vis., 15, 1359-1365.
105. Jiao, X., Khan, S. Y., Irum, B., Khan, A. O., Wang, Q., et al. (2015) Missense mutations in CRYAB are liable for recessive congenital cataracts, PLoS One, 10, e0137973, doi: 10.1371/journal.pone.0137973.
106. Liu, M., Ke, T., Wang, Z., Yang, Q., Chang, W., et al. (2006) Identification of a CRYAB mutation associated with autosomal dominant posterior polar cataract in a Chinese family, Invest. Ophthalmol. Vis. Sci., 47, 3461-3466, doi: 10.1167/iovs.05-1438.
107. Xia, X. Y., Wu, Q. Y., An, L. M., Li, W. W., Li, N., et al. (2014) A novel P20R mutation in the alpha-B crystallin gene causes autosomal dominant congenital posterior polar cataracts in a Chinese family, BMC Ophthalmol., 14, 108, doi: 10.1186/1471-2415-14-108.
108. Del Bigio, M. R., Chudley, A. E., Sarnat, H. B., Campbell, C., Goobie, S., et al. (2011) Infantile muscular dystrophy in Canadian aboriginals is an alphaB-crystallinopathy, Ann. Neurol., 69, 866-871, doi: 10.1002/ana.22331.
109. Khan, A. O., Abu Safieh, L., and Alkuraya, F. S. (2010) Later retinal degeneration following childhood surgical aphakia in a family with recessive CRYAB mutation (p.R56W), Ophthalmic Genet., 31, 30-36, doi: 10.3109/13816810903452047.
110. Fichna, J. P., Potulska-Chromik, A., Miszta, P., Redowicz, M. J., Kaminska, A. M., et al. (2017) A novel dominant D109A CRYAB mutation in a family with myofibrillar myopathy affects alphaB-crystallin structure, BBA Clin., 7, 1-7, doi: 10.1016/j.bbacli.2016.11.004.
111. Brodehl, A., Gaertner-Rommel, A., Klauke, B., Grewe, S. A., Schirmer, I., et al. (2017) The novel alphaB-crystallin (CRYAB) mutation p.D109G causes restrictive cardiomyopathy, Hum. Mutat., 38, 947-952, doi: 10.1002/humu.23248.
112. Sacconi, S., Feasson, L., Antoine, J. C., Pecheux, C., Bernard, R., et al. (2012) A novel CRYAB mutation resulting in multisystemic disease, Neuromuscul. Disord., 22, 66-72, doi: 10.1016/j.nmd.2011.07.004.
113. Vicart, P., Caron, A., Guicheney, P., Li, Z., Prevost, M. C., et al. (1998) A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy, Nat. Genet., 20, 92-95, doi: 10.1038/1765.
114. Liu, Y., Zhang, X., Luo, L., Wu, M., Zeng, R., et al. (2006) A novel alphaB-crystallin mutation associated with autosomal dominant congenital lamellar cataract, Invest. Ophthalmol. Vis. Sci., 47, 1069-1075, doi: 10.1167/iovs.05-1004.
115. Selcen, D., and Engel, A. G. (2003) Myofibrillar myopathy caused by novel dominant negative alpha B-crystallin mutations, Ann. Neurol., 54, 804-810, doi: 10.1002/ana.10767.
116. Reilich, P., Schoser, B., Schramm, N., Krause, S., Schessl, J., et al. (2010) The p. G154S mutation of the alpha-B crystallin gene (CRYAB) causes late-onset distal myopathy, Neuromuscul. Disord., 20, 255-259, doi: 10.1016/j.nmd.2010.01.012.
117. Inagaki, N., Hayashi, T., Arimura, T., Koga, Y., Takahashi, M., et al. (2006) Alpha B-crystallin mutation in dilated cardiomyopathy, Biochem. Biophys. Res. Commun., 342, 379-386, doi: 10.1016/j.bbrc.2006.01.154.
118. Berry, V., Francis, P., Reddy, M. A., Collyer, D., Vithana, E., et al. (2001) Alpha-B crystallin gene (CRYAB) mutation causes dominant congenital posterior polar cataract in humans, Am. J. Hum. Genet., 69, 1141-1145, doi: 10.1086/324158.
119. Forrest, K. M., Al-Sarraj, S., Sewry, C., Buk, S., Tan, S. V., et al. (2011) Infantile onset myofibrillar myopathy due to recessive CRYAB mutations, Neuromuscul. Disord., 21, 37-40, doi: 10.1016/j.nmd.2010.11.003.
120. Marcos, A. T., Amoros, D., Munoz-Cabello, B., Galan, F., Rivas Infante, E., et al. (2020) A novel dominant mutation in CRYAB gene leading to a severe phenotype with childhood onset, Mol. Genet. Genomic Med., 8, e1290, doi: 10.1002/mgg3.1290.
121. Van der Smagt, J. J., Vink, A., Kirkels, J. H., Nelen, M., ter Heide, H., et al. (2014) Congenital posterior pole cataract and adult onset dilating cardiomyopathy: Expanding the phenotype of alphaB-crystallinopathies, Clin. Genet., 85, 381-385, doi: 10.1111/cge.12169.
122. Yu, Y., Xu, J., Qiao, Y., Li, J., and Yao, K. (2021) A new heterozygous mutation in the stop codon of CRYAB (p. X176Y) is liable for congenital posterior pole cataract in a Chinese family, Ophthalmic Genet., 42, 139-143, doi: 10.1080/13816810.2020.1855665.
123. Muranova, L. K., Strelkov, S. V., and Gusev, N. B. (2020) Effect of cataract-associated mutations in the N-terminal domain of alphaB-crystallin (HspB5), Exp. Eye Res., 197, 108091, doi: 10.1016/j.exer.2020.108091.
124. Cobb, B. A., and Petrash, J. M. (2000) Structural and functional changes in the alpha A-crystallin R116C mutant in hereditary cataracts, Biochemistry, 39, 15791-15798, doi: 10.1021/bi001453j.
125. Kumar, L. V., Ramakrishna, T., and Rao, C. M. (1999) Structural and functional consequences of the mutation of a conserved arginine residue in alphaA and alphaB crystallins, J. Biol. Chem., 274, 24137-24141, doi: 10.1074/jbc.274.34.24137.
126. Singh, D., Raman, B., Ramakrishna, T., and Rao, Ch. M. (2006) The cataract-causing mutation G98R in human alphaA-crystallin leads to folding defects and loss of chaperone activity, Mol. Vis., 12, 1372-1379.
127. Bova, M. P., Yaron, O., Huang, Q., Ding, L., Haley, D. A., et al. (1999) Mutation R120G in alphaB-crystallin, which is linked to a desmin-related myopathy, results in an irregular structure and defective chaperone-like function, Proc. Natl. Acad. Sci. USA, 96, 6137-6142, doi: 10.1073/pnas.96.11.6137.
128. Perng, M. D., Wen, S. F., van IJssel, P., Prescott, A. R., and Quinlan, R. A. (2004) Desmin aggregate formation by R120G alphaB-crystallin is caused by altered filament interactions and is dependent upon network status in cells, Mol. Biol. Cell, 15, 2335-2346, doi: 10.1091/mbc.e03-12-0893.
129. Ghahramani, M., Yousefi, R., Krivandin, A., Muranov, K., Kurganov, B., et al. (2020) Structural and functional characterization of D109H and R69C mutant versions of human alphaB-crystallin: The biochemical pathomechanism underlying cataract and myopathy development, Int. J. Biol. Macromol., 146, 1142-1160, doi: 10.1016/j.ijbiomac.2019.09.239.
130. Clark, A. R., Lubsen, N. H., and Slingsby, C. (2012) sHSP in the eye lens: crystallin mutations, cataract and proteostasis, Int. J. Biochem. Cell Biol., 44, 1687-1697, doi: 10.1016/j.biocel.2012.02.015.
131. Gerasimovich, E. S., Strelkov, S. V., and Gusev, N. B. (2017) Some properties of three alphaB-crystallin mutants carrying point substitutions in the C-terminal domain and associated with congenital diseases, Biochimie, 142, 168-178, doi: 10.1016/j.biochi.2017.09.008.
132. Raju, I., and Abraham, E. C. (2011) Congenital cataract causing mutants of alphaA-crystallin/sHSP form aggregates and aggresomes degraded through ubiquitin–proteasome pathway, PLoS One, 6, e28085, doi: 10.1371/journal.pone.0028085.
133. Ahsan, S. M., Bakthisaran, R., Tangirala, R., and Rao, C. M. (2021) Nucleosomal association and altered interactome underlie the mechanism of cataract caused by the R54C mutation of alphaA-crystallin, Biochim. Biophys. Acta Gen. Subj., 1865, 129846, doi: 10.1016/j.bbagen.2021.129846.
134. Gong, B., Zhang, L. Y., Pang, C. P., Lam, D. S., and Yam, G. H. (2009) Trimethylamine N-oxide alleviates the severe aggregation and ER stress caused by G98R alphaA-crystallin, Mol. Vis., 15, 2829-2840.
135. Raju, I., and Abraham, E. C. (2013) Mutants of human alphaB-crystallin cause enhanced protein aggregation and apoptosis in mammalian cells: Influence of co-expression of HspB1, Biochem. Biophys. Res. Commun., 430, 107-112, doi: 10.1016/j.bbrc.2012.11.051.
136. Chavez Zobel, A. T., Loranger, A., Marceau, N., Theriault, J. R., Lambert, H., et al. (2003) Distinct chaperone mechanisms can delay the formation of aggresomes by the myopathy-causing R120G alphaB-crystallin mutant, Hum. Mol. Genet., 12, 1609-1620, doi: 10.1093/hmg/ddg173.
137. Sanbe, A., Osinska, H., Saffitz, J. E., Glabe, C. G., Kayed, R., et al. (2004) Desmin-related cardiomyopathy in transgenic mice: a cardiac amyloidosis, Proc. Natl. Acad. Sci. USA, 101, 10132-10136, doi: 10.1073/pnas.0401900101.
138. Hayes, V. H., Devlin, G., and Quinlan, R. A. (2008) Truncation of alphaB-crystallin by the myopathy-causing Q151X mutation significantly destabilizes the protein leading to aggregate formation in transfected cells, J. Biol. Chem., 283, 10500-10512, doi: 10.1074/jbc.M706453200.
139. Mitzelfelt, K. A., Limphong, P., Choi, M. J., Kondrat, F. D., Lai, S., et al. (2016) The human 343delT HSPB5 chaperone associated with early-onset skeletal myopathy causes defects in protein solubility, J. Biol. Chem., 291, 14939-14953, doi: 10.1074/jbc.M116.730481.
140. Zhang, H., Rajasekaran, N. S., Orosz, A., Xiao, X., Rechsteiner, M., et al. (2010) Selective degradation of aggregate-prone CryAB mutants by HSPB1 is mediated by ubiquitin-proteasome pathways, J. Mol. Cell. Cardiol., 49, 918-930, doi: 10.1016/j.yjmcc.2010.09.004.
141. Andley, U. P., Hamilton, P. D., and Ravi, N. (2008) Mechanism of insolubilization by a single-point mutation in alphaA-crystallin linked with hereditary human cataracts, Biochemistry, 47, 9697-9706, doi: 10.1021/bi800594t.
142. Kore, R., Hedges, R. A., Oonthonpan, L., Santhoshkumar, P., Sharma, K. K., et al. (2012) Quaternary structural parameters of the congenital cataract causing mutants of alphaA-crystallin, Mol. Cell Biochem., 362, 93-102, doi: 10.1007/s11010-011-1131-8.
143. Khoshaman, K., Yousefi, R., Tamaddon, A. M., Abolmaali, S. S., Oryan, A., et al. (2017) The impact of different mutations at Arg54 on structure, chaperone-like activity and oligomerization state of human alphaA-crystallin: the pathomechanism underlying congenital cataract-causing mutations R54L, R54P and R54C, Biochim. Biophys. Acta Proteins Proteom., 1865, 604-618, doi: 10.1016/j.bbapap.2017.02.003.
144. Murugesan, R., Santhoshkumar, P., and Sharma, K. K. (2007) Cataract-causing alphaAG98R mutant shows substrate-dependent chaperone activity, Mol. Vis., 13, 2301-2309.
145. Singh, D., Tangirala, R., Bakthisaran, R., and Chintalagiri, M. R. (2009) Synergistic effects of metal ion and the pre-senile cataract-causing G98R alphaA-crystallin: Self-aggregation propensities and chaperone activity, Mol. Vis., 15, 2050-2060.
146. Wang, X., Osinska, H., Klevitsky, R., Gerdes, A. M., Nieman, M., et al. (2001) Expression of R120G-alphaB-crystallin causes aberrant desmin and alphaB-crystallin aggregation and cardiomyopathy in mice, Circ. Res., 89, 84-91, doi: 10.1161/hh1301.092688.
147. Meehan, S., Berry, Y., Luisi, B., Dobson, C. M., Carver, J. A., et al. (2004) Amyloid fibril formation by lens crystallin proteins and its implications for cataract formation, J. Biol. Chem., 279, 3413-3419, doi: 10.1074/jbc.M308203200.
148. Lee, C. F. (2009) Self-assembly of protein amyloids: a competition between amorphous and ordered aggregation, Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 80, 031922, doi: 10.1103/PhysRevE.80.031922.
149. Sandilands, A., Hutcheson, A. M., Long, H. A., Prescott, A. R., Vrensen, G., et al. (2002) Altered aggregation properties of mutant gamma-crystallins cause inherited cataract, EMBO J., 21, 6005-6014, doi: 10.1093/emboj/cdf609.
150. Meehan, S., Knowles, T. P., Baldwin, A. J., Smith, J. F., Squires, A. M., et al. (2007) Characterisation of amyloid fibril formation by small heat-shock chaperone proteins human alphaA-, alphaB- and R120G alphaB-crystallins, J. Mol. Biol., 372, 470-484, doi: 10.1016/j.jmb.2007.06.060.
151. Makley, L. N., McMenimen, K. A., DeVree, B. T., Goldman, J. W., McGlasson, B. N., et al. (2015) Pharmacological chaperone for alpha-crystallin partially restores transparency in cataract models, Science, 350, 674-677, doi: 10.1126/science.aac9145.
152. Zhao, L., Chen, X. J., Zhu, J., Xi, Y. B., Yang, X., et al. (2015) Lanosterol reverses protein aggregation in cataracts, Nature, 523, 607-611, doi: 10.1038/nature14650.
153. Raju, M., Santhoshkumar, P., and Sharma, K. (2016) Alpha-crystallin-derived peptides as therapeutic chaperones, Biochim. Biophys. Acta, 1860, 246-251, doi: 10.1016/j.bbagen.2015.06.010.