БИОХИМИЯ, 2022, том 87, вып. 3, с. 337–355

УДК 576.5

Неапоптотическая роль апоптотических процессов

Обзор

© 2022 М.А. Савицкая, И.И. Захаров, Г.Е. Онищенко *galina22@mail.ru

Московский государственный университет имени М.В. Ломоносова, биологический факультет, 119234 Москва, Россия

Поступила в редакцию 21.06.2021
После доработки 02.01.2022
Принята к публикации 15.01.2022

DOI: 10.31857/S0320972522030034

КЛЮЧЕВЫЕ СЛОВА: апоптоз, активация каспаз, MOMP, экстернализация фосфатидилсерина, блеббинг.

Аннотация

Апоптоз – наиболее подробно охарактеризованный вариант регулируемой клеточной гибели. Ряд событий, которые широко используются исследователями для идентификации апоптоза и которые традиционно считались необратимыми, такие как появление фосфатидилсерина во внешнем монослое плазматической мембраны, пермеабилизация внешней мембраны митохондрий, активация каспаз, фрагментация ДНК и блеббинг цитоплазмы, как выясняется, также могут участвовать в процессах нормальной жизнедеятельности клетки, не связанных с индукцией апоптоза и с гибелью клеток в целом. Более того, такие процессы нередко оказываются обратимыми. В данном обзоре описаны события, характерные для апоптоза, однако не приводящие к гибели, но играющие немаловажную роль в дифференцировке, делении и подвижности клеток, а также участвующие в процессах воспаления, клиренса стареющих эритроцитов и свертывания крови, в инфицировании клеток вирусами и в неапоптотической гибели клеток. В статье уделяется внимание трем процессам: экстернализации фосфатидилсерина, блеббингу и активации каспаз. Нарушение проницаемости внешней митохондриальной мембраны и фрагментация ДНК в настоящем обзоре не обсуждаются.

Текст статьи

Пожалуйста, введите код, чтобы получить PDF файл с полным текстом статьи:

captcha

Сноски

* Адресат для корреспонденции.

Финансирование

Работа выполнена при поддержке гранта РФФИ 19‑015‑00233а.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических норм

Настоящая статья не содержит описания выполненных авторами исследований с участием людей или использованием животных в качестве объектов.

Список литературы

1. Galluzzi, L., Vitale, I., Aaronson, S. A., Abrams, J. M., Adam, D., et al. (2018) Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death, Cell Death. Differ., 25, 486-541, doi: 10.1038/s41418-017-0012-4.

2. Saraste, A., and Pulkki, K. (2000) Morphologic and biochemical hallmarks of apoptosis, Cardiovasc. Res., 45, 528-537, doi: 10.1016/s0008-6363(99)00384-3.

3. Захаров И. И., Савицкая М. А., Онищенко Г. Е. (2020) Проблема обратимости апоптотических процессов, Биохимия, 85, 1344-1360, doi: 10.31857/S0320972520100036.

4. Whitlock, J. M., and Chernomordik, L. V. (2021) Flagging fusion: Phosphatidylserine signaling in cell-cell fusion, J. Biol. Chem., 296, 100411, doi: 10.1016/j.jbc.2021.100411.

5. Fadok, V. A., Voelker, D. R., Campbell, P. A., Cohen, J. J., Bratton, D. L., et al. (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages, J. Immunol., 148, 2207-2216.

6. Segawa, K., and Nagata, S. (2015) An apoptotic “Eat Me” signal: Phosphatidylserine exposure, Trends Cell Biol., 25, 639-650, doi: 10.1016/j.tcb.2015.08.003.

7. Sessions, A., and Horwitz, A. F. (1981) Myoblast aminophospholipid asymmetry differs from that of fibroblasts, FEBS Lett., 134, 75-78, doi: 10.1016/0014-5793(81)80554-6.

8. Van den Eijnde, S.M., van den Hoff, M. J., Reutelingsperger, C. P., van Heerde, W. L, Henfling, M. E., et al. (2001) Transient expression of phosphatidylserine at cell-cell contact areas is required for myotube formation, J. Cell. Sci., 114 (Pt. 20), 3631-3642.

9. Ehlen, H. W., Chinenkova, M., Moser, M., Munter, H. M., Krause, Y., et al. (2013) Inactivation of anoctamin-6/Tmem16f, a regulator of phosphatidylserine scrambling in osteoblasts, leads to decreased mineral deposition in skeletal tissues, J. Bone Miner. Res., 28, 246-259, doi: 10.1002/jbmr.1751.

10. Curia, C. A., Ernesto, J. I., Stein, P., Busso, D., Schultz, R. M., Cuasnicu, P. S., et al. (2013) Fertilization induces a transient exposure of phosphatidylserine in mouse eggs, PLoS One, 8, e71995, doi: 10.1371/journal.pone.0071995.

11. Zwaal, R. F., Bevers, E. M., Comfurius, P., Rosing, J., Tilly, R. H., et al. (1989) Loss of membrane phospholipid asymmetry during activation of blood platelets and sickled red cells; mechanisms and physiological significance, Mol. Cell. Biochem., 91, 23-31, doi: 10.1007/BF00228075.

12. Boyle, E. M., Pohlman, T. H., Cornejo, C. J., and Verrier, E. D. (1996) Endothelial cell injury in cardiovascular surgery: Ischemia-reperfusion, Ann. Thor. Surg., 62, 1868-1875, doi: 10.1016/s0003-4975(96)00950-2.

13. Park, M., and Kang, K. W. (2019) Phosphatidylserine receptor-targeting therapies for the treatment of cancer, Arch. Pharm. Res., 42, 617-628, doi: 10.1007/s12272-019-01167-4.

14. Riedl, S., Rinner, B., Asslaber, M., Schaider, H., Walzer, S., et al. (2011) In search of a novel target – phosphatidylserine exposed by non-apoptotic tumor cells and metastases of malignancies with poor treatment efficacy, Biochim. Biophys. Acta, 1808, 2638-2645, doi: 10.1016/j.bbamem.2011.07.026.

15. Vogt, E., Ng, A. K., and Rote, N. S. (1996) A model for the antiphospholipid antibody syndrome: Monoclonal antiphosphatidylserine antibody induces intrauterine growth restriction in mice, Am. J. Obstet. Gynecol., 174, 700-777, doi: 10.1016/s0002-9378(96)70453-2.

16. Gong, Y. N., Crawford, J. C., Heckmann, B. L., and Green, D. R. (2019) To the edge of cell death and back, FEBS J., 286, 430-440, doi: 10.1111/febs.14714.

17. Segawa, K., Suzuki, J., and Nagata, S. (2014) Flippases and scramblases in the plasma membrane, Cell Cycle, 13, 2990-2991, doi: 10.4161/15384101.2014.962865.

18. Damek-Poprawa, M., Golub, E., Otis, L., Harrison, G., Phillips, C., et al. (2006) Chondrocytes utilize a cholesterol-dependent lipid translocator to externalize phosphatidylserine, Biochemistry, 45, 3325-3336, doi: 10.1021/bi0515927.

19. Segawa, K., Yanagihashi, Y., Yamada, K., Suzuki, C., Uchiyama, Y., et al. (2018) Phospholipid flippases enable precursor B cells to flee engulfment by macrophages, Proc. Natl. Acad. Sci. USA, 115, 12212-12217, doi: 10.1073/pnas.1814323115.

20. Tsuchiya, M., Hara, Y., Okuda, M., Itoh, K., Nishioka, R., et al. (2018) Cell surface flip-flop of phosphatidylserine is critical for PIEZO1-mediated myotube formation, Nat. Commun., 9, 2049, doi: 10.1038/s41467-018-04436-w.

21. Jeong, J., and Conboy, I. M. (2011) Phosphatidylserine directly and positively regulates fusion of myoblasts into myotubes, Biochem. Biophys. Res. Commun., 414, 9-13, doi: 10.1016/j.bbrc.2011.08.128.

22. Shin, H.-W., and Takatsu, H. (2020) Phosphatidylserine exposure in living cells, Crit. Rev. Biochem. Mol. Biol., 55, 166-178, doi: 10.1080/10409238.2020.1758624.

23. Verma, S. K., Leikina, E., Melikov, K., Gebert, C., Kram, V., et al. (2018) Cell-surface phosphatidylserine regulates osteoclast precursor fusion, J. Biol. Chem., 293, 254-270, doi: 10.1074/jbc.M117.809681.

24. Helming, L., Winter, J., and Gordon, S. (2009) The scavenger receptor CD36 plays a role in cytokine-induced macrophage fusion, J. Cell Sci., 122(Pt 4), 453-459, doi: 10.1242/jcs.037200.

25. Lyden, T. W., Ng, A. K., and Rote, N. S. (1993) Modulation of phosphatidylserine epitope expression by BeWo cells during forskolin treatment, Placenta, 14, 177-186, doi: 10.1016/s0143-4004(05)80259-0.

26. Das, M., Xu, B., Lin, L., Chakrabarti, S., Shivaswamy, V., et al. (2004) Phosphatidylserine efflux and intercellular fusion in a BeWo model of human villous cytotrophoblast, Placenta, 25, 396-407, doi: 10.1016/j.placenta.2003.11.004.

27. Gadella, B. M., and Harrison, R. A. (2002) Capacitation induces cyclic adenosine 3′,5′-monophosphate-dependent, but apoptosis-unrelated, exposure of aminophospholipids at the apical head plasma membrane of boar sperm cells, Biol. Reprod., 67, 340-350, doi: 10.1095/biolreprod67.1.340.

28. Clarke, R. J., Hossain, K. R., and Cao, K. (2020) Physiological roles of transverse lipid asymmetry of animal membranes, Biochim. Biophys. Acta, 1862, 183382, doi: 10.1016/j.bbamem.2020.183382.

29. Thiagarajan, P., Parker, C. J., and Prchal, J. T. (2021) How do red blood cells die? Front. Physiol., 12, 655393, doi: 10.3389/fphys.2021.655393.

30. Test, S. T., and Mitsuyoshi, J. (1997) Activation of the alternative pathway of complement by calcium-loaded erythrocytes resulting from loss of membrane phospholipid asymmetry, J. Lab. Clin. Med., 130, 169-182, doi: 10.1016/s0022-2143(97)90093-7.

31. Zwaal, R. F., Comfurius, P., and Bevers, E. M. (2005) Surface exposure of phosphatidylserine in pathological cells, Cell. Mol. Life Sci., 62, 971-988, doi: 10.1007/s00018-005-4527-3.

32. Qu, J., Conroy, L. A., Walker, J. H., Wooding, F. B., and Lucy, J. A. (1996) Phosphatidylserine-mediated adhesion of T-cells to endothelial cells, Biochem. J., 317 (Pt. 2), 343-346, doi: 10.1042/bj3170343.

33. Lupu, F., Moldovan, N., Ryan, J., Stern, D., and Simionescu, N. (1993) Intrinsic procoagulant surface induced by hypercholesterolaemia on rabbit aortic endothelium, Blood Coagul. Fibrinol. Int J. Haemost. Thromb., 4, 743-752.

34. Christiansen, V. J., Sims, P. J., and Hamilton, K. K. (1997) Complement C5b-9 increases plasminogen binding and activation on human endothelial cells, Arterioscler. Thromb. Vasc. Biol., 17, 164-171, doi: 10.1161/01.atv.17.1.164.

35. Bevers, E. M., Rosing, J., and Zwaal, R. F. (1985) Development of procoagulant binding sites on the platelet surface, Adv. Exp. Med. Biol., 192, 359-371, doi: 10.1007/978-1-4615-9442-0_25.

36. Martin, S., Pombo, I., Poncet, P., David, B., Arock, M., et al. (2000) Immunologic stimulation of mast cells leads to the reversible exposure of phosphatidylserine in the absence of apoptosis, Int. Arch. Allergy Immunol., 123, 249-258, doi: 10.1159/000024451.

37. Connor, J., Bucana, C., Fidler, I. J., and Schroit, A. J. (1989) Differentiation-dependent expression of phosphatidylserine in mammalian plasma membranes: quantitative assessment of outer-leaflet lipid by prothrombinase complex formation, Proc. Natl. Acad. Sci. USA, 86, 3184-3188, doi: 10.1073/pnas.86.9.3184.

38. Utsugi, T., Schroit, A. J., Connor, J., Bucana, C. D., and Fidler, I. J. (1991) Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes, Cancer Res., 51, 3062-3066.

39. Woehlecke, H., Pohl, A., Alder-Baerens, N., Lage, H., and Herrmann, A. (2003) Enhanced exposure of phosphatidylserine in human gastric carcinoma cells overexpressing the half-size ABC transporter BCRP (ABCG2), Biochem. J., 376 (Pt. 2), 489-495, doi: 10.1042/BJ20030886.

40. Schröder-Borm, H., Bakalova, R., and Andrä, J. (2005) The NK-lysin derived peptide NK-2 preferentially kills cancer cells with increased surface levels of negatively charged phosphatidylserine, FEBS Lett., 579, 6128-6134, doi: 10.1016/j.febslet.2005.09.084.

41. Comfurius, P., Senden, J. M., Tilly, R. H., Schroit, A. J., Bevers, E. M., et al. (1990) Loss of membrane phospholipid asymmetry in platelets and red cells may be associated with calcium-induced shedding of plasma membrane and inhibition of aminophospholipid translocase, Biochim. Biophys. Acta, 1026, 153-160, doi: 10.1016/0005-2736(90)90058-v.

42. Ran, S., Downes, A., and Thorpe, P. E. (2002) Increased exposure of anionic phospholipids on the surface of tumor blood vessels, Cancer Res., 62, 6132-6140.

43. Zargarian, S., Shlomovitz, I., Erlich, Z., Hourizadeh, A., Ofir-Birin, Y., et al. (2017) Phosphatidylserine externalization, “necroptotic bodies” release, and phagocytosis during necroptosis, PLoS Biol., 15, e2002711, doi: 10.1371/journal.pbio.2002711.

44. Maeda, A., and Fadeel, B. (2014) Mitochondria released by cells undergoing TNF-α-induced necroptosis act as danger signals, Cell Death Dis., 5, e1312, doi: 10.1038/cddis.2014.277.

45. Wang, Q., Imamura, R., Motani, K., Kushiyama, H., Nagata, S., et al. (2013) Pyroptotic cells externalize eat-me and release find-me signals and are efficiently engulfed by macrophages, Int. Immunol., 25, 363-372, doi: 10.1093/intimm/dxs161.

46. Klöditz, K., and Fadeel, B. (2019) Three cell deaths and a funeral: Macrophage clearance of cells undergoing distinct modes of cell death, Cell Death Discov., 5, 65, doi: 10.1038/s41420-019-0146-x.

47. Krysko, O., De Ridder, L., and Cornelissen, M. (2004) Phosphatidylserine exposure during early primary necrosis (oncosis) in JB6 cells as evidenced by immunogold labeling technique, Apoptosis Int. J. Programm. Cell Death, 9, 495-500, doi: 10.1023/B:APPT.0000031452.75162.75.

48. Young, M. M., Bui, V., Chen, C., and Wang, H. G. (2019) FTY720 induces non-canonical phosphatidylserine externalization and cell death in acute myeloid leukemia, Cell Death Dis., 10, 847, doi: 10.1038/s41419-019-2080-5.

49. Ikenouchi, J., and Aoki, K. (2017) Membrane bleb: A seesaw game of two small GTPases, Small GTPases, 8, 85-89, doi: 10.1080/21541248.2016.1199266.

50. Khajah, M. A., and Luqmani, Y. A. (2016) Involvement of membrane blebbing in immunological disorders and cancer, Med. Princ. Pract., 25 Suppl. 2, 18-27, doi: 10.1159/000441848.

51. Charras, G., and Paluch, E. (2008) Blebs lead the way: How to migrate without lamellipodia, Nat. Rev. Mol. Cell. Biol., 9, 730-736, doi: 10.1038/nrm2453.

52. Norman, L. L., Brugués, J., Sengupta, K., Sens, P., and Aranda-Espinoza, H. (2010) Cell blebbing and membrane area homeostasis in spreading and retracting cells, Biophys. J., 99, 1726-1733, doi: 10.1016/j.bpj.2010.07.031.

53. Ridley, A. J. (2011) Life at the leading edge, Cell, 145, 1012-1022, doi: 10.1016/j.cell.2011.06.010.

54. Zatulovskiy, E., Tyson, R., Bretschneider, T., and Kay, R. R. (2014) Bleb-driven chemotaxis of Dictyostelium cells, J. Cell Biol., 204, 1027-1044, doi: 10.1083/jcb.201306147.

55. Khajah, M. A., Mathew, P. M., Alam-Eldin, N. S., and Luqmani, Y. A. (2015) Bleb formation is induced by alkaline but not acidic pH in estrogen receptor silenced breast cancer cells, Int. J. Oncol., 46, 1685-1698, doi: 10.3892/ijo.2015.2884.

56. Karlsson, T., Bolshakova, A., Magalhães, M. A., Loitto, V. M., and Magnusson, K. E. (2013) Fluxes of water through aquaporin 9 weaken membrane-cytoskeleton anchorage and promote formation of membrane protrusions, PLoS One, 8, e59901, doi: 10.1371/journal.pone.0059901.

57. Blaser, H., Reichman-Fried, M., Castanon, I., Dumstrei, K., Marlow, F. L., et al. (2006) Migration of zebrafish primordial germ cells: A role for myosin contraction and cytoplasmic flow, Dev. Cell, 11, 613-627, doi: 10.1016/j.devcel.2006.09.023.

58. D’Andrea-Winslow, L., and Novitski, A. K. (2008) Active bleb formation is abated in Lytechinus variegatus red spherule coelomocytes after disruption of acto-myosin contractility, Integr. Zool., 3, 115-122, doi: 10.1111/j.1749-4877.2008.00086.x.

59. Haston, W. S., and Shields, J. M. (1984) Contraction waves in lymphocyte locomotion, J. Cell Sci., 68, 227-241.

60. Zatulovskiy, E., and Kay, R. R. (2016) Chemotactic blebbing in dictyostelium cells, Methods Mol. Biol., 1407, 97-105, doi: 10.1007/978-1-4939-3480-5_7.

61. Wolf, K., Mazo, I., Leung, H., Engelke, K., von Andrian, U. H., et al. (2003) Compensation mechanism in tumor cell migration: Mesenchymal-amoeboid transition after blocking of pericellular proteolysis, J. Cell Biol., 160, 267-277, doi: 10.1083/jcb.200209006.

62. Bergert, M., Chandradoss, S. D., Desai, R. A., and Paluch, E. (2012) Cell mechanics control rapid transitions between blebs and lamellipodia during migration, Proc. Natl. Acad. Sci. USA, 109, 14434-14439, doi: 10.1073/pnas.1207968109.

63. Derivery, E., Fink, J., Martin, D., Houdusse, A., Piel, M., et al. (2008) Free Brick1 is a trimeric precursor in the assembly of a functional wave complex, PLoS One, 3, e2462, doi: 10.1371/journal.pone.0002462.

64. Gadea, G., de Toledo, M., Anguille, C., and Roux, P. (2007) Loss of p53 promotes RhoA-ROCK-dependent cell migration and invasion in 3D matrices, J. Cell Biol., 178, 23-30, doi: 10.1083/jcb.200701120.

65. Voura, E. B., Sandig, M., Kalnins, V. I., and Siu, C. (1998) Cell shape changes and cytoskeleton reorganization during transendothelial migration of human melanoma cells, Cell Tissue Res., 293, 375-387, doi: 10.1007/s004410051129.

66. Maugis, B., Brugués, J., Nassoy, P., Guillen, N., Sens, P., et al. (2010) Dynamic instability of the intracellular pressure drives bleb-based motility, J. Cell Sci., 123 (Pt. 22), 3884-3892, doi: 10.1242/jcs.065672.

67. Olson, E. C. (1996) Onset of electrical excitability during a period of circus plasma membrane movements in differentiating Xenopus neurons, J. Neurosci., 16, 5117-5129, doi: 10.1523/JNEUROSCI.16-16-05117.1996.

68. Kardash, E., Reichman-Fried, M., Maître, J. L., Boldajipour, B., Papusheva, E., et al. (2010) A role for Rho GTPases and cell-cell adhesion in single-cell motility in vivo, Nat. Cell Biol., 12, 47-53, doi: 10.1038/ncb2003.

69. Charras, G. T. (2008) A short history of blebbing, J. Microsc., 231, 466-478, doi: 10.1111/j.1365-2818.2008.02059.x.

70. Mercer, J., and Helenius, A. (2008) Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells, Science, 320, 531-535, doi: 10.1126/science.1155164.

71. Babiychuk, E. B., Monastyrskaya, K., Potez, S., and Draeger, A. (2011) Blebbing confers resistance against cell lysis, Cell Death Differ., 18, 80-89, doi: 10.1038/cdd.2010.81.

72. Nganga, R., Oleinik, N., Kim, J., Selvam, S. P., De Palma, R., et al. (2019) Receptor-interacting Ser/Thr kinase 1 (RIPK1) and myosin IIA-dependent ceramidosomes form membrane pores that mediate blebbing and necroptosis, J. Biol. Chem., 294, 502-519, doi: 10.1074/jbc.RA118.005865.

73. Chen, X., He, W. T., Hu, L., Li, J., Fang, Y., et al. (2016) Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis, Cell Res., 26, 1007-1020, doi: 10.1038/cr.2016.100.

74. Sun, Y., Yu, J., Liu, X., Zhang, C., Cao, J., et al. (2018) Oncosis-like cell death is induced by berberine through ERK1/2-mediated impairment of mitochondrial aerobic respiration in gliomas, Biomed. Pharmacother., 102, 699-710, doi: 10.1016/j.biopha.2018.03.132.

75. Ma, L. S., Jiang, C. Y., Cui, M., Lu, R., Liu, S. S., et al. (2013) Fluopsin C induces oncosis of human breast adenocarcinoma cells, Acta Pharmacol. Sin., 34, 1093-1100, doi: 10.1038/aps.2013.44.

76. Sun, L., Zhao, Y., Yuan, H., Li, X., Cheng, A., et al. (2010) Solamargine, a steroidal alkaloid glycoside, induces oncosis in human K562 leukemia and squamous cell carcinoma KB cells, Cancer Chemother. Pharmacol., 67, 813-821, doi: 10.1007/s00280-010-1387-9.

77. Simard, J. M., Woo, S. K., and Gerzanich, V. (2012) Transient receptor potential melastatin 4 and cell death, Pflüg. Arch. Eur. J. Physiol., 464, 573-582, doi: 10.1007/s00424-012-1166-z.

78. Repsold, L., and Joubert, A. M. (2018) Eryptosis: An erythrocyte’s suicidal type of cell death, BioMed Res. Int., 2018, 1-10, doi: 10.1155/2018/9405617.

79. Naveed, A., Jilani, K., Siddique, A. B., Akbar, M., Riaz, M., et al. (2020) Induction of erythrocyte shrinkage by omeprazole, Dose Response, 18, doi: 10.1177/1559325820946941.

80. Shalini, S., Dorstyn, L., Dawar, S., and Kumar, S. (2015) Old, new and emerging functions of caspases, Cell Death Differ., 22, 526-539, doi: 10.1038/cdd.2014.216.

81. Julien, O., and Wells, J. A. (2017) Caspases and their substrates, Cell Death Differ., 24, 1380-1389, doi: 10.1038/cdd.2017.44.

82. Lamkanfi, M., Festjens, N., Declercq, W., Vanden Berghe, T., and Vandenabeele, P. (2007) Caspases in cell survival, proliferation and differentiation, Cell Death Differ., 14, 44-55, doi: 10.1038/sj.cdd.4402047.

83. Fan, W., Dai, Y., Xu, H., Zhu, X., Cai, P., et al. (2014) Caspase-3 modulates regenerative response after stroke, Stem Cells, 32, 473-486, doi: 10.1002/stem.1503.

84. Baena-Lopez, L. A., Arthurton, L., Xu, D. C., and Galasso, A. (2018) Non-apoptotic Caspase regulation of stem cell properties, Semin. Cell Dev. Biol., 82, 118-126, doi: 10.1016/j.semcdb.2017.10.034.

85. Fujita, J., Crane, A. M., Souza, M. K., Dejosez, M., Kyba, M., et al. (2008) Caspase activity mediates the differentiation of embryonic stem cells, Cell Stem Cell, 2, 595-601, doi: 10.1016/j.stem.2008.04.001.

86. Fernando, P., Kelly, J. F., Balazsi, K., Slack, R. S., and Megeney, L. A. (2002) Caspase 3 activity is required for skeletal muscle differentiation, Proc. Natl. Acad. Sci. USA, 99, 11025-11030, doi: 10.1073/pnas.162172899.

87. Kim, J.-S., Ha, J.-Y., Yang, S., and Son, J. H. (2017) A novel non-apoptotic role of procaspase-3 in the regulation of mitochondrial biogenesis activators, J. Cell. Biochem., 119, 347-357, doi: 10.1002/jcb.26186.

88. Huang, Q., Li, F., Liu, X., Li, W., Shi, W., et al. (2011) Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy, Nat. Med., 17, 860-866, doi: 10.1038/nm.2385.

89. Shen, X., Venero, J. L., Joseph, B., and Burguillos, M. A. (2018) Caspases orchestrate microglia instrumental functions, Progr. Neurobiol., 171, 50-71, doi: 10.1016/j.pneurobio.2018.09.007.

90. Maelfait, J., Vercammen, E., Janssens, S., Schotte, P., Haegman, M., et al. (2008) Stimulation of Toll-like receptor 3 and 4 induces interleukin-1beta maturation by caspase-8, J. Exp. Med., 205, 1967-1973, doi: 10.1084/jem.20071632.

91. Gurung, P., and Kanneganti, T. D. (2015) Novel roles for caspase-8 in IL-1β and inflammasome regulation, Am. J. Pathol., 185, 17-25, doi: 10.1016/j.ajpath.2014.08.025.

92. Schwarzer, R., Laurien, L., and Pasparakis, M. (2020) New insights into the regulation of apoptosis, necroptosis, and pyroptosis by receptor interacting protein kinase 1 and caspase-8, Curr. Opin. Cell Biol., 63, 186-193, doi: 10.1016/j.ceb.2020.02.004.

93. Xia, S., Hollingsworth, L. R., 4th, and Wu, H. (2020) Mechanism and regulation of gasdermin-mediated cell death, Cold Spring Harb Perspect Biol., 12, a036400, doi: 10.1101/cshperspect.a036400.

94. Geisbrecht, E. R., and Montell, D. J. (2004) A role for Drosophila IAP1-mediated caspase in-hibition in Rac-dependent cell migration, Cell, 118, 111-125, doi: 10.1016/j.cell.2004.06.020.

95. Graf, R. P., Keller, N., Barbero, S., and Stupack, D. (2014) Caspase-8 as a regulator of tumor cell motility, Curr. Mol. Med., 14, 246-254, doi: 10.2174/1566524014666140128111951.

96. Torres, V. A., Mielgo, A., Barbero, S., Hsiao, R., Wilkins, J. A., et al. (2010) Rab5 mediates caspase-8-promoted cell motility and metastasis, Mol. Biol. Cell, 21, 369-376, doi: 10.1091/mbc.e09-09-0769.

97. Aram, L., Yakobi-Sharon, K., and Arama, E. (2017) CDPs: Caspase-dependent non-lethal cellular processes, Cell Death Differ., 24, 1307-1310, doi: 10.1038/cdd.2017.111.

98. Espinosa-Oliva, A.M., García-Revilla, J., Alonso-Bellido, I. M., and Burguillos, M. A. (2019) Brainiac caspases: Beyond the wall of apoptosis, Front. Cell Neurosci., 13, 500, doi: 10.3389/fncel.2019.00500.