БИОХИМИЯ, 2022, том 87, вып. 2, с. 289–304
УДК 577.24;577.217;577.25
В фокусе молекулярные функции антивозрастной деацетилазы SIRT3
Biochemistry, Molecular, and Cell Biology Unit, Biochemworld Co., 74394 Skyttorp, Uppsala County, Sweden
Поступила в редакцию 11.11.2021
После доработки 20.12.2021
Принята к публикации 22.12.2021
DOI: 10.31857/S0320972522020105
КЛЮЧЕВЫЕ СЛОВА: SIRT3, NAD+-зависимая деацетилаза, сеть белковых взаимодействий, анализ обогащения путей, старение, дыхательная цепь транспорта электронов, митохондрии, возрастные заболевания.
Аннотация
Белок сиртуин 3 (SIRT3) представляет собой лизиндеацетилазу, играющую важную роль в поддержании целостности митохондрий, являющихся уязвимой мишенью при многих заболеваниях. Интересно, что клеточное старение может быть обращено только лишь путём суперэкспрессии SIRT3, что вызывает много вопросов о роли SIRT3 в молекулярных механизмах борьбы со старением. Анализ функционирования SIRT3 мы провели на основе имеющихся данных по взаимодействию 407 субстратов этого белка. Результаты изучения многообразия путей и прогнозирования функций генов подтвердили роль SIRT3 в первичном метаболизме и производстве ATP митохондриями. Кроме того, SIRT3, предположительно, задействован в термогенезе, при развитии дегенеративных заболеваний головного мозга, таких как болезнь Альцгеймера, болезнь Паркинсона, болезнь Хантингтона, а также неалкогольной жировой болезни печени. Приоритизация белков в узлах исследуемого пути продемонстрировала, что субъединицы комплекса I дыхательной цепи митохондрий (MRC) являются основными регуляторными точками во всей сети взаимодействий. Дополнительными приоритетными узлами оказались субъединица сукцинатдегидрогеназы B (SDHB) комплекса II и ATP5F1 комплекса V MRC. Проведенный анализ подтверждает существование NADH/NAD+-зависимой регуляторной петли обратной связи между SIRT3, комплексом I MRC и ацетил-КоА-синтетазами, а также наличие ядерных субстратов SIRT3. Малоисследованные функции субстратов SIRT3, таких как LMNA и LMNB, HIF‑1α, p53, DNA‑PK и PARK7, отмечены как перспективные для дальнейших научных исследований. SIRT3 действует как репрессор BACE1 через SIRT3-LKB1-AMPK-CREB-PGC1A-PPARG-BACE1 (SIRT3-BACE1), функции которого наилучшим образом соответствуют механизмам циркадного ритма. Формируется новая рабочая гипотеза терапевтической мишени для лечения болезни Альцгеймера. Также обозначены другие важные пути терапевтических вмешательств, ассоциированные с активностью SIRT3.
Текст статьи
Благодарности
Исследование было выполнено при поддержке Biochemworld Co., округ Уппсала, Швеция.
Конфликт интересов
Автор заявляет об отсутствии конфликта интересов.
Соблюдение этических норм
Настоящая статья не содержит описания каких-либо исследований с участием людей или животных в качестве объектов.
Дополнительные материалы
Приложение к статье на английском языке опубликовано на сайте журнала «Biochemistry» (Moscow) (http://protein.bio.msu.ru/biokhimiya/) и на сайте издательства Springer (www.springer.com/journal/10541), том 87, вып. 1, 2022.
Список литературы
1. Lombard, D. B., Alt, F. W., Cheng, H.-L., Bunkenborg, J., Streeper, R. S., et al. (2007) Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation, Mol. Cell. Biol., 27, 8807-8814, doi: 10.1128/mcb.01636-07.
2. McDonnell, E., Peterson, B. S., Bomze, H. M., and Hirschey, M. D. (2015) SIRT3 regulates progression and development of diseases of aging, Trends Endocrinol. Metab., 26, 486-492, doi: 10.1016/j.tem.2015.06.001.
3. Zhu, Y., Yan, Y., Principe, D. R., Zou, X., Vassilopoulos, A., et al. (2014) SIRT3 and SIRT4 are mitochondrial tumor suppressor proteins that connect mitochondrial metabolism and carcinogenesis, Cancer Metab., 2, 15, doi: 10.1186/2049-3002-2-15.
4. Vassilopoulos, A., Pennington, J. D., Andresson, T., Rees, D. M., Bosley, A. D., et al. (2013) SIRT3 deacetylates ATP synthase F1 complex proteins in response to nutrient- and exercise-induced stress, Antioxid. Redox Signal., 21, 551-564, doi: 10.1089/ars.2013.5420.
5. Brown, K., Xie, S., Qiu, X., Mohrin, M., Shin, J., et al. (2013) SIRT3 reverses aging-associated degeneration, Cell Rep., 3, 319-327, doi: 10.1016/j.celrep.2013.01.005.
6. Braidy, N., Poljak, A., Grant, R., Jayasena, T., Mansour, H., et al. (2015) Differential expression of sirtuins in the aging rat brain, Front Cell Neurosci., 9, 167, doi: 10.3389/fncel.2015.00167.
7. Weir, H. J. M., Murray, T. K., Kehoe, P. G., Love, S., Verdin, E. M., et al. (2012) CNS SIRT3 expression is altered by reactive oxygen species and in Alzheimer’s disease, PLoS One, 7, 3-9, doi: 10.1371/journal.pone.0048225.
8. Oti, M. (2006) Predicting disease genes using protein–protein interactions, J. Med. Genet., 43, 691-698, doi: 10.1136/jmg.2006.041376.
9. Poulose, N., and Raju, R. (2015) Sirtuin regulation in aging and injury, Biochim. Biophys. Acta, 1852, 2442-2455, doi: 10.1016/j.bbadis.2015.08.017.
10. Hallows, W. C., Lee, S., and Denu, J. M. (2006) Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases, Proc. Natl. Acad. Sci. USA, 103, 10230-10235, doi: 10.1073/pnas.0604392103.
11. Shimazu, T., Hirschey, M. D., Hua, L., Dittenhafer-Reed, K. E., Schwer, B., et al. (2010) SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production, Cell Metab., 12, 654-661, doi: 10.1016/j.cmet.2010.11.003.
12. Bharathi, S. S., Zhang, Y., Mohsen, A. W., Uppala, R., Balasubramani, M., et al. (2013) Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site, J. Biol. Chem., 288, 33837-33847, doi: 10.1074/jbc.M113.510354.
13. Finley, L. W. S., Carracedo, A., Lee, J., Souza, A., Egia, A., et al. (2011) SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization, Cancer Cell, 19, 416-428, doi: 10.1016/j.ccr.2011.02.014.
14. Sundaresan, N. R., Samant, S. A., Pillai, V. B., Rajamohan, S. B., and Gupta, M. P. (2008) SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70, Mol. Cell. Biol., 28, 6384-6401, doi: 10.1128/mcb.00426-08.
15. Qiu, X., Brown, K., Hirschey, M. D., Verdin, E., and Chen, D. (2010) Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation, Cell Metab., 12, 662-667, doi: 10.1016/j.cmet.2010.11.015.
16. Yu, W., Dittenhafer-Reed, K. E., and Denu, J. M. (2012) SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status, J. Biol. Chem., 287, 14078-14086, doi: 10.1074/jbc.M112.355206.
17. Schlicker, C., Gertz, M., Papatheodorou, P., Kachholz, B., Becker, C. F. W., et al. (2008) Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5, J. Mol. Biol., 382, 790-801, doi: 10.1016/j.jmb.2008.07.048.
18. Pillai, V. B., Sundaresan, N. R., Kim, G., Gupta, M. M. P., Rajamohan, S. B., et al. (2010) Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway, J. Biol. Chem., 285, 3133-3144, doi: 10.1074/jbc.M109.077271.
19. Yang, Y., Cimen, H., Han, M. J., Shi, T., Deng, J. H., et al. (2010) NAD+-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10, J. Biol. Chem., 285, 7417-7429, doi: 10.1074/jbc.M109.053421.
20. Hirschey, M. D., Shimazu, T., Goetzman, E., Jing, E., Schwer, B., et al. (2010) SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation, Nature, 464, 121-125, doi: 10.1038/nature08778.
21. Xue, L., Xu, F., Meng, L., Wei, S., Wang, J., et al. (2012) Acetylation-dependent regulation of mitochondrial ALDH2 activation by SIRT3 mediates acute ethanol-induced eNOS activation, FEBS Lett., 586, 137-142, doi: 10.1016/j.febslet.2011.11.031.
22. Wang, Z., Inuzuka, H., Zhong, J., Liu, P., Sarkar, F. H., et al. (2012) Identification of acetylation-dependent regulatory mechanisms that govern the oncogenic functions of Skp2, Oncotarget, 3, 1294-1300, doi: 10.18632/oncotarget.740.
23. Tseng, A. H. H., Shieh, S. S., and Wang, D. L. (2013) SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage, Free Radic. Biol. Med., 63, 222-234, doi: 10.1016/j.freeradbiomed.2013.05.002.
24. Jing, E., O’Neill, B. T., Rardin, M. J., Kleinridders, A., Ilkeyeva, O. R., et al. (2013) Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation, Diabetes, 62, 3404-3417, doi: 10.2337/db12-1650.
25. Cheng, Y., Ren, X., Gowda, A. S. P., Shan, Y., Zhang, L., et al. (2013) Interaction of Sirt3 with OGG1 contributes to repair of mitochondrial DNA and protects from apoptotic cell death under oxidative stress, Cell Death Dis., 4, 1-11, doi: 10.1038/cddis.2013.254.
26. Samant, S. A., Zhang, H. J., Hong, Z., Pillai, V. B., Sundaresan, N. R., et al. (2014) SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress, Mol. Cell. Biol., 3, 807-819, doi: 10.1128/mcb.01483-13.
27. Lu, Z., Chen, Y., Aponte, A. M., Battaglia, V., Gucek, M., et al. (2015) Prolonged fasting identifies heat shock protein 10 as a sirtuin 3 substrate: Elucidating a new mechanism linking mitochondrial protein acetylation to fatty acid oxidation enzyme folding and function, J. Biol. Chem., 290, 2466-2476, doi: 10.1074/jbc.M114.606228.
28. Rauh, D., Fischer, F., Gertz, M., Lakshminarasimhan, M., Bergbrede, T., et al. (2013) An acetylome peptide microarray reveals specificities and deacetylation substrates for all human sirtuin isoforms, Nat. Commun., 4, 2327-2337, doi: 10.1038/ncomms3327.
29. Yang, H., Zhou, L., Shi, Q., Zhao, Y., Lin, H., et al. (2015) SIRT 3-dependent GOT2 acetylation status affects the malate-aspartate NADH shuttle activity and pancreatic tumor growth, EMBO J., 34, 1110-1125, doi: 10.15252/embj.201591041.
30. Rardin, M. J., Newman, J. C., Held, J. M., Cusack, M. P., Sorensen, D. J., et al. (2013) Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways, Proc. Natl. Acad. Sci. USA, 110, 6601-6606, doi: 10.1073/pnas.1302961110.
31. Hebert, A. S., Dittenhafer-Reed, K. E., Yu, W., Bailey, D. J., Selen, E. S., et al. (2013) Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome, Mol. Cell., 49, 186-199, doi: 10.1016/j.molcel.2012.10.024.
32. Sol, E. M., Wagner, S. A., Weinert, B. T., Kumar, A., Kim, H. S., et al. (2012) Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase Sirt3, PLoS One, 7, 1-9, doi: 10.1371/journal.pone.0050545.
33. Consortium, T. U. (2021) UniProt: The universal protein knowledgebase in 2021, Nucleic Acids Res., 49, D480-D489, doi: 10.1093/nar/gkaa1100.
34. Amberger, J. S., Bocchini, C. A., Scott A. F., and Hamosh, A. (2019) OMIM. org: Leveraging knowledge across phenotype-gene relationships, Nucleic Acids Res., 47, D1038-D1043, doi: 10.1093/nar/gky1151.
35. Zuberi, K., Franz, M., Rodriguez, H., Montojo, J., Lopes, C. T., et al. (2013) GeneMANIA prediction server 2013 update, Nucleic Acids Res., 41, 115-122, doi: 10.1093/nar/gkt533.
36. Warde-Farley, D., Donaldson, S. L., Comes, O., Zuberi, K., Badrawi, R., et al. (2010) The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function, Nucleic Acids Res., 38, 214-220, doi: 10.1093/nar/gkq537.
37. Franz, M., Rodriguez, H., Lopes, C., Zuberi, K., Montojo, J., et al. (2018) GeneMANIA update 2018, Nucleic Acids Res., 46, W60-W64, doi: 10.1093/nar/gky311.
38. Lopes, C. T., Franz, M., Kazi, F., Donaldson, S. L., Morris, Q., et al. (2010) Cytoscape Web: An interactive web-based network browser, Bioinformatics, 26, 2347-2348, doi: 10.1093/bioinformatics/btq430.
39. Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., et al. (2019) STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets, Nucleic Acids Res., 47, D607-D613, doi: 10.1093/nar/gky1131.
40. Enright, A. J., Van Dongen, S., and Ouzounis, C. A. (2002) An efficient algorithm for large-scale detection of protein families, Nucleic Acids Res., 30, 1575-1584, doi: 10.1093/nar/30.7.1575.
41. Chin, C.-H., Chen, S.-H., Wu, H.-H., Ho, C.-W., Ko, M.-T., et al. (2014) CytoHubba: Identifying hub objects and sub-networks from complex interactome, BMC Syst. Biol., 8, 1-7, doi: 10.1186/1752-0509-8-S4-S11.
42. Bader, G. D., and Hogue, C. W. V. (2003) An automated method for finding molecular complexes in large protein interaction networks, BMC Bioinformatics, 4, 1-27, doi: 10.1186/1471-2105-4-2.
43. Kutmon, M., Lotia, S., Evelo, C. T., and Pico, A. R. (2014) WikiPathways App for Cytoscape: Making biological pathways amenable to network analysis and visualization, F1000Res., 3, 152, doi: 10.12688/f1000research.4254.2.
44. Liu, L., Peritore, C., Ginsberg, J., Kayhan, M., and Donmez, G. (2015) SIRT3 attenuates MPTP-induced nigrostriatal degeneration via enhancing mitochondrial antioxidant capacity, Neurochem. Res., 40, 600-608, doi: 10.1007/s11064-014-1507-8.
45. Bader, J. S., Chaudhuri, A., Rothberg, J. M., and Chant, J. (2004) Gaining confidence in high-throughput protein interaction networks, Nat. Biotechnol., 22, 78-85, doi: 10.1038/nbt924.
46. Franceschini, A., Szklarczyk, D., Frankild, S., Kuhn, M., Simonovic, M., et al. (2013) STRING v9.1: Protein–protein interaction networks, with increased coverage and integration, Nucleic Acids Res., 41, 808-815, doi: 10.1093/nar/gks1094.
47. Szklarczyk, D., Morris, J. H., Cook, H., Kuhn, M., Wyder, S., et al. (2017) The STRING database in 2017: Quality-controlled protein–protein association networks, made broadly accessible, Nucleic Acids Res., 45, D362-D368, doi: 10.1093/nar/gkw937.
48. Van Dongen, S. M. (2000) Graph Clustering by Flow Simulation, Utrecht University Repository. Dissertation [English]. Utrecht University, Utrecht.
49. Ahn, B. H., Kim, H. S., Song, S., In, H. L., Liu, J., et al. (2008) A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis, Proc. Natl. Acad. Sci. USA, 105, 14447-14452, doi: 10.1073/pnas.0803790105.
50. Fujino, T., Kondo, J., Ishikawa, M., Morikawa, K., and Yamamoto, T. T. (2001) Acetyl-CoA Synthetase 2, a mitochondrial matrix enzyme involved in the oxidation of acetate, J. Biol. Chem., 276, 11420-11426, doi: 10.1074/jbc.M008782200.
51. Bao, J., Scott, I., Lu, Z., Pang, L., Dimond, C. C., et al. (2010) SIRT3 is regulated by nutrient excess and modulates hepatic susceptibility to lipotoxicity, Free Radic. Biol. Med., 49, 1230-1237, doi: 10.1016/j.freeradbiomed.2010.07.009.
52. Finley, L. W. S., Haas, W., Desquiret-Dumas, V., Wallace, D. C., Procaccio, V., et al. (2011) Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity, PLoS One, 6, 4-9, doi: 10.1371/journal.pone.0023295.
53. Cimen, H., Han, M.-J., Yang, Y., Tong, Q., Koc, H., et al. (2010) Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria, Biochemistry, 49, 304-311, doi: 10.1021/bi901627u.
54. Yang, W., Nagasawa, K., Münch, C., Xu, Y., Satterstrom, K., et al. (2016) Mitochondrial sirtuin network reveals dynamic SIRT3-dependent deacetylation in response to membrane depolarization, Cell, 167, 985-1000.e21, doi: 10.1016/j.cell.2016.10.016.
55. Bubber, P., Haroutunian, V., Fisch, G., Blass, J. P., and Gibson, G. E. (2005) Mitochondrial abnormalities in Alzheimer brain: Mechanistic implications, Ann. Neurol., 57, 695-703, doi: 10.1002/ana.20474.
56. Ozden, O., Park, S.-H., Wagner, B. A., Song, H. Y., Zhu, Y., et al. (2014) SIRT3 deacetylates and increases pyruvate dehydrogenase activity in cancer cells, Free Radic. Biol. Med., 76, 163-172, doi: 10.1016/j.freeradbiomed.2014.08.001.
57. Warburg, O., Wind, F., Negelein, E., and Shirlaw, J. T. (1927) The metabolism of tumors in the body, J. Gen. Physiol., 8, 519-530, doi: 10.1085/jgp.8.6.519.
58. Stacpoole, P. W. (2012) The pyruvate dehydrogenase complex as a therapeutic target for age-related diseases, Aging Cell, 11, 371-377, doi: 10.1111/j.1474-9726.2012.00805.x.
59. Zhou, Q., Lam, P. Y., Han, D., and Cadenas, E. (2009) Activation of c-Jun-N-terminal kinase and decline of mitochondrial pyruvate dehydrogenase activity during brain aging, FEBS Lett., 583, 1132-1140, doi: 10.1016/j.febslet.2009.02.043.
60. Scher, M. B., Vaquero, A., and Reinberg, D. (2007) SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress, Genes Dev., 21, 920-928, doi: 10.1101/gad.1527307.
61. Cooper, H. M., and Spelbrink, J. N. (2008) The human SIRT3 protein deacetylase is exclusively mitochondrial, Biochem. J., 411, 279-285, doi: 10.1042/BJ20071624.
62. Gurd, B. J., Holloway, G. P., Yoshida, Y., and Bonen, A. (2012) In mammalian muscle, SIRT3 is present in mitochondria and not in the nucleus; and SIRT3 is upregulated by chronic muscle contraction in an adenosine monophosphate-activated protein kinase-independent manner, Metabolism, 61, 733-741, doi: 10.1016/j.metabol.2011.09.016.
63. Vedrenne, V., Gowher, A., De Lonlay, P., Nitschke, P., Serre, V., et al. (2012) Mutation in PNPT1, which encodes a Polyribonucleotide Nucleotidyltransferase, impairs RNA import into mitochondria and causes respiratory-chain deficiency, Am. J. Hum. Genet., 91, 912-918, doi: 10.1016/j.ajhg.2012.09.001.
64. Palmieri, L., Pardo, B., Lasorsa, F. M., del Arco, A., Kobayashi, K., et al. (2001) Citrin and aralar1 are Ca2+-stimulated aspartate/glutamate transporters in mitochondria, EMBO J., 20, 5060-5069, doi: 10.1093/emboj/20.18.5060.
65. Galmiche, L., Serre, V., Beinat, M., Zossou, R., Assouline, Z., et al. (2012) Toward genotype phenotype correlations in GFM1 mutations, Mitochondrion, 12, 242-247.
66. Fukumura, S., Ohba, C., Watanabe, T., Minagawa, K., Shimura, M., et al. (2015) Compound heterozygous GFM2 mutations with Leigh syndrome complicated by arthrogryposis multiplex congenita, J. Hum. Genet., 60, 509-513, doi: 10.1038/jhg.2015.57.
67. Perli, E., Pisano, A., Glasgow, R. I. C., Carbo, M., Hardy, S. A., et al. (2019) Novel compound mutations in the mitochondrial translation elongation factor (TSFM) gene cause severe cardiomyopathy with myocardial fibro-adipose replacement, Sci. Rep., 9, 1-13, doi: 10.1038/s41598-019-41483-9.
68. Shi, H., Hayes, M., Kirana, C., Miller, R., Keating, J., et al. (2012) TUFM is a potential new prognostic indicator for colorectal carcinoma, Pathology, 44, 506-512, doi: 10.1097/PAT.0b013e3283559cbe.
69. Sengupta, A., and Haldar, D. (2018) Human sirtuin 3 (SIRT3) deacetylates histone H3 lysine 56 to promote nonhomologous end-joining repair, DNA Repair (Amst.), 61, 1-16, doi: 10.1016/j.dnarep.2017.11.003.
70. Nakamura, Y., Ogura, M., Tanaka, D., and Inagaki, N. (2008) Localization of mouse mitochondrial SIRT proteins: Shift of SIRT3 to the nucleus by co-expression with SIRT5, Biochem. Biophys. Res. Commun., 366, 174-179, doi: 10.1016/j.bbrc.2007.11.122.
71. Redwood, A. B., Perkins, S. M., Vanderwaal, R. P., Feng, Z., Biehl, K. J., et al. (2011) A dual role for A-type lamins in DNA double-strand break repair, Cell Cycle, 10, 2549-2560, doi: 10.4161/cc.10.15.16531.
72. Murray-Nerger, L. A., Justice, J. L., Rekapalli, P., Hutton, J. E., and Cristea, I. M. M. (2021) Lamin B1 acetylation slows the G1 to S cell cycle transition through inhibition of DNA repair, Nucleic Acids Res., 49, 2044-2064, doi: 10.1093/nar/gkab019.
73. Maynard, S., Keijzers, G., Akbari, M., Ezra, M. B., Hall, A., et al. (2019) Lamin A/C promotes DNA base excision repair, Nucleic Acids Res., 47, 11709-11728, doi: 10.1093/nar/gkz912.
74. Laemmle, A., Lechleiter, A., Roh, V., Schwarz, C., Portmann, S., et al. (2012) Inhibition of SIRT1 impairs the accumulation and transcriptional activity of HIF-1α protein under hypoxic conditions, PLoS One, 7, e33433, doi: 10.1371/journal.pone.0033433.
75. Joo, H.-Y., Yun, M., Jeong, J., Park, E.-R., Shin, H.-J., et al. (2015) SIRT1 deacetylates and stabilizes hypoxia-inducible factor-1α (HIF-1α) via direct interactions during hypoxia, Biochem. Biophys. Res. Commun., 462, 294-300, doi: 10.1016/j.bbrc.2015.04.119.
76. Xiong, Y., Wang, L., Wang, S., Wang, M., Zhao, J., et al. (2018) SIRT3 deacetylates and promotes degradation of P53 in PTEN-defective non-small cell lung cancer, J. Cancer Res. Clin. Oncol., 144, 189-198, doi: 10.1007/s00432-017-2537-9.
77. Lee, J., Kim, Y., Liu, T., Hwang, Y. J., Hyeon, S. J., et al. (2018) SIRT3 deregulation is linked to mitochondrial dysfunction in Alzheimer’s disease, Aging Cell, 17, 1-12, doi: 10.1111/acel.12679.
78. Polischouk, A. G., Cedervall, B., Ljungquist, S., Flygare, J., Hellgren, D., et al. (1999) DNA double-strand break repair, DNA-PK, and DNA ligases in two human squamous carcinoma cell lines with different radiosensitivity, Int. J. Radiat. Oncol., 43, 191-198, doi: 10.1016/S0360-3016(98)00362-9.
79. Chaplin, A. K., Hardwick, S. W., Liang, S., Kefala Stavridi, A., Hnizda, A., et al. (2021) Dimers of DNA-PK create a stage for DNA double-strand break repair, Nat. Struct. Mol. Biol., 28, 13-19, doi: 10.1038/s41594-020-00517-x.
80. Park, S. J., Gavrilova, O., Brown, A. L., Soto, J. E., Bremner, S., et al. (2017) DNA-PK promotes the mitochondrial, metabolic, and physical decline that occurs during aging, Cell Metab., 25, 1135-1146.e7, doi: 10.1016/j.cmet.2017.04.008.
81. Sui, J., Zhang, S., and Chen, B. P. C. (2020) DNA-dependent protein kinase in telomere maintenance and protection, Cell. Mol. Biol. Lett., 25, 1-14, doi: 10.1186/s11658-020-0199-0.
82. Schrader, M., Kamoshita, M., and Islinger, M. (2020) Organelle interplay-peroxisome interactions in health and disease, J. Inherit. Metab. Dis., 43, 71-89, doi: 10.1002/jimd.12083.
83. Palacios, O. M., Carmona, J. J., Michan, S., Chen, K. Y., Manabe, Y., et al. (2009) Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle, Aging (Albany NY), 1, 771-783, doi: 10.18632/aging.100075.
84. Ramesh, S., Govindarajulu, M., Lynd, T., Briggs, G., Adamek, D., et al. (2018) SIRT3 activator Honokiol attenuates β-amyloid by modulating amyloidogenic pathway, PLoS One, 13, 1, doi: 10.1371/journal.pone.0190350.
85. Shi, T., Wang, F., Stieren, E., and Tong, Q. (2005) SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes, J. Biol. Chem., 280, 13560-13567, doi: 10.1074/jbc.M414670200.
86. Katsouri, L., Parr, C., Bogdanovic, N., Willem, M., and Sastre, M. (2011) PPARγ co-activator-1α (PGC-1α) reduces amyloid-β generation through a PPARγ-dependent mechanism, J. Alzheimer’s Dis., 25, 151-162, doi: 10.3233/JAD-2011-101356.
87. Liu, C., Li, S., Liu, T., Borjigin, J., and Lin, J. D. (2007) Transcriptional coactivator PGC-1α integrates the mammalian clock and energy metabolism, Nature, 447, 477-481, doi: 10.1038/nature05767.
88. Song, C., Zhao, J., Zhang, J., Mao, T., Fu, B., et al. (2017) SIRT3-dependent mitochondrial oxidative stress in sodium fluoride-induced hepatotoxicity and salvage by melatonin, BioRxiv, doi: 10.1101/107813.
89. Mauvoisin, D., Atger, F., Dayon, L., Núñez Galindo, A., Wang, J., et al. (2017) Circadian and feeding rhythms orchestrate the diurnal liver acetylome, Cell Rep., 20, 1729-1743, doi: 10.1016/j.celrep.2017.07.065.
90. Kondratova, A. A., and Kondratov, R. V. (2012) The circadian clock and pathology of the ageing brain, Nat. Rev. Neurosci., 13, 325-335, doi: 10.1038/nrn3208.
91. Tomita, T. (2017) Aberrant proteolytic processing and therapeutic strategies in Alzheimer’s disease, Adv. Biol. Regul., 64, 33-38, doi: 10.1016/j.jbior.2017.01.001.
92. Chaves, I., van der Horst, G. T. J., Schellevis, R., Nijman, R. M., Koerkamp, M. G., et al. (2014) Insulin-FOXO3 signaling modulates circadian rhythms via regulation of clock transcription, Curr. Biol., 24, 1248-1255, doi: 10.1016/j.cub.2014.04.018.
93. Tong, W., Ju, L., Qiu, M., Xie, Q., Chen, Y., et al. (2016) Liraglutide ameliorates non-alcoholic fatty liver disease by enhancing mitochondrial architecture and promoting autophagy through the SIRT1/SIRT3-FOXO3a pathway, Hepatol. Res., 46, 933-943, doi: 10.1111/hepr.12634.
94. Jacobs, K. M., Pennington, J. D., Bisht, K. S., Aykin-Burns, N., Kim, H.-S., et al. (2008) SIRT3 interacts with the daf-16 homolog FOXO3a in the mitochondria, as well as increases FOXO3a dependent gene expression, Int. J. Biol. Sci., 4, 4291-4299, doi: 10.7150/ijbs.4.291.