БИОХИМИЯ, 2022, том 87, вып. 2, с. 230–257
УДК 575.113
Исследования молекулярной регуляции процессов развития низших многоклеточных на примере стрекающих с использованием технологий высокопроизводительного секвенирования
Обзор
1 Научный центр генетики и наук о жизни, направление генетика, АНО ВО «Научно-технологический университет “Сириус”», 354349 Краснодарский край, Сочи, Россия
2 Институт общей генетики им. Н.И. Вавилова РАН, 119991 Москва, Россия
3 Московский государственный университет имени М.В. Ломоносова, биологический факультет, 119234 Москва, Россия
4 Медицинская школа Чен Массачусетского университета, департамент психиатрии, 01545 Шрусбери, США
Поступила в редакцию 28.10.2021
После доработки 13.12.2021
Принята к публикации 17.01.2022
DOI: 10.31857/S0320972522020075
КЛЮЧЕВЫЕ СЛОВА: Cnidaria, развитие, методы секвенирования, геномика, сигнальные каскады.
Аннотация
Исключительный набор особенностей и характеристик представителей типа Cnidaria (Стрекающие) делает их модельным объектом для широкого круга исследований. Особый научный интерес представляют пластичность жизненного цикла и связанные с ним процессы клеточной дифференцировки и развития целостного многоклеточного организма. Новый уровень развития молекулярно-генетических методов, в том числе использование методов широкомасштабного секвенирования геномов, транскриптомов и эпигеномов, как на уровне целого организма, так и на уровне отдельных клеток, делает возможным получение детальной картины развития этих животных. В представленном обзоре рассматриваются современные подходы и достижения с использованием методов широкомасштабного секвенирования в реконструкции процессов онтогенеза Cnidaria путём изучения регуляторных путей клеточной трансдукции и их взаимодействий.
Текст статьи
Сноски
* Адресат для корреспонденции.
Финансирование
Исследование выполнено при поддержке НТУ «Сириус» и Российского фонда фундаментальных исследований в рамках научного проекта № 19-315-51015. Гусев Ф.Е. (описание эпигенетических подходов) был поддержан Научно-технологическим университетом «Сириус».
Конфликт интересов
Авторы заявляют об отсутствии конфликта интересов.
Соблюдение этических норм
Настоящая статья не содержит описания каких-либо исследований с участием людей или животных в качестве объектов.
Список литературы
1. Schierwater, B., Eitel, M., Jakob, W., Osigus, H.-J., Hadrys, H., et al. (2009) Concatenated analysis sheds light on early metazoan evolution and fuels a modern “urmetazoon” hypothesis, PLoS Biol., 7, e20-e20, doi: 10.1371/journal.pbio.1000020.
2. Ozbek, S., Balasubramanian, P. G., and Holstein, T. W. (2009) Cnidocyst structure and the biomechanics of discharge, Toxicon, 54, 1038-1045, doi: 10.1016/j.toxicon.2009.03.006.
3. Davy, S. K., Allemand, D., and Weis, V. M. (2012) Cell biology of cnidarian-dinoflagellate symbiosis, Microbiol. Mol. Biol. Rev., 76, 229-261, doi: 10.1128/MMBR.05014-11.
4. Goulet, T. L., and Goulet, D. (2021) Climate change leads to a reduction in symbiotic derived cnidarian biodiversity on coral reefs, Front. Ecol. Evol., 9, doi: 10.3389/fevo.2021.636279.
5. Horton, T., Kroh, A., Ahyong, S., Bailly, N., Bieler, R., et al. (2021) World Register of Marine Species (WoRMS), WoRMS Editorial Board.
6. Diller, W. F. (1940) The Invertebrates: The Invertebrates: Protozoa through Ctenophora (Hyman, L. B., ed.) 726 pp. McGraw-Hill Publications in the Zoological Sciences. A. Franklin Shull, consulting editor, Science, 92, 219-220, doi: 10.1126/science.92.2384.219.b.
7. Folino-Rorem, N. C. (2015) Chapter 9 – Phylum Cnidaria. in Thorp and Covich’s Freshwater Invertebrates (Fourth Edition) (Thorp, J. H., and Rogers, D. C., eds.) Academic Press, Boston, pp. 159-179.
8. Grimmelikhuijzen, C. J., and Westfall, J. A. (1995) The nervous systems of cnidarians, EXS, 72, 7-24, doi: 10.1007/978-3-0348-9219-3_2.
9. Galliot, B., and Quiquand, M. (2011) A two-step process in the emergence of neurogenesis, Eur. J. Neurosci., 34, 847-862, doi: 10.1111/j.1460-9568.2011.07829.x.
10. Khabibulina, V. R., and Starunov, V. V. (2020) FMRFamide immunoreactive nervous system in the adult Cassiopeia xamachana scyphopolyp and at the early stages of planuloid formation, Invertebr. Zool., 17, 371-384, doi: 10.15298/invertzool.17.4.03.
11. Rentzsch, F., Juliano, C., and Galliot, B. (2019) Modern genomic tools reveal the structural and cellular diversity of cnidarian nervous systems, Curr. Opin. Neurobiol., 56, 87-96, doi: 10.1016/j.conb.2018.12.004.
12. Tournière, O., Dolan, D., Richards, G. S., Sunagar, K., Columbus-Shenkar, Y. Y., et al. (2020) NvPOU4/Brain3 Functions as a terminal selector gene in the nervous system of the cnidarian Nematostella vectensis, Cell Rep., 30, 4473-4489.e4475, doi: 10.1016/j.celrep.2020.03.031.
13. Watanabe, H., Fujisawa, T., and Holstein, T. W. (2009) Cnidarians and the evolutionary origin of the nervous system, Dev. Growth Differ., 51, 167-183, doi: 10.1111/j.1440-169X.2009.01103.x.
14. Leclère, L., and Röttinger, E. (2016) Diversity of cnidarian muscles: Function, anatomy, development and regeneration, Front. Cell Dev. Biol., 4, 157, doi: 10.3389/fcell.2016.00157.
15. Berzins, I. K., Yanong, R. P. E., LaDouceur, E. E. B., and Peters, E. C. (2021) Cnidaria, in Invertebrate Histology, John Wiley & Sons, Inc., Hoboken, New Jersey, pp. 55-86.
16. Cole, A. G., Kaul, S., Jahnel, S. M., Steger, J., Zimmerman, B., et al. (2020) Muscle cell type diversification facilitated by extensive gene duplications, bioRxiv, doi: 10.1101/2020.07.19.210658.
17. Okamura, B., and Gruhl, A. (2021) Evolution, Origins and Diversification of Parasitic Cnidarians, in The Evolution and Fossil Record of Parasitism: Identification and Macroevolution of Parasites (De Baets, K., and Huntley, J. W., eds.) Springer International Publishing, Cham, pp. 109-152.
18. Chang, E. S., Neuhof, M., Rubinstein, N. D., Diamant, A., Philippe, H., et al. (2015) Genomic insights into the evolutionary origin of Myxozoa within Cnidaria, Proc. Natl. Acad. Sci. USA, 112, 14912-14917, doi: 10.1073/pnas.1511468112.
19. Kayal, E., Bentlage, B., Sabrina Pankey, M., Ohdera, A. H., Medina, M., et al. (2018) Phylogenomics provides a robust topology of the major cnidarian lineages and insights on the origins of key organismal traits, BMC Evol. Biol., 18, 68, doi: 10.1186/s12862-018-1142-0.
20. Kayal, E., Roure, B., Philippe, H., Collins, A. G., and Lavrov, D. V. (2013) Cnidarian phylogenetic relationships as revealed by mitogenomics, BMC Evol. Biol., 13, 5, doi: 10.1186/1471-2148-13-5.
21. Zapata, F., Goetz, F. E., Smith, S. A., Howison, M., Siebert, S., et al. (2015) Phylogenomic analyses support traditional relationships within Cnidaria, PLoS One, 10, e0139068, doi: 10.1371/journal.pone.0139068.
22. Technau, U., and Steele, R. E. (2011) Evolutionary crossroads in developmental biology: Cnidaria, Development, 138, 1447-1458, doi: 10.1242/dev.048959.
23. Osadchenko, B. V., and Kraus, Y. A. (2018) Trachylina: The group that remains enigmatic despite 150 years of investigations, Russ. J. Dev. Biol., 49, 134-145, doi: 10.1134/S1062360418030074.
24. Maronna, M. M., Miranda, T. P., Peña Cantero, Á. L., Barbeitos, M. S., and Marques, A. C. (2016) Towards a phylogenetic classification of Leptothecata (Cnidaria, Hydrozoa), Sci. Rep., 6, 18075, doi: 10.1038/srep18075.
25. Piraino, S., Vito, D. D., Schmich, J. R., Bouillon, J. P., and Boero, F. (2004) Reverse development in Cnidaria, Can. J. Zool., 82, 1748-1754, doi: 10.1139/z04-174.
26. Ballesteros, A., Östman, C., Santín, A., Marambio, M., Narda, M., et al. (2021) Cnidome and morphological features of Pelagia noctiluca (Cnidaria: Scyphozoa) throughout the different life cycle stages, Front. Mar. Sci., 8, 1059, doi: 10.3389/fmars.2021.714503.
27. Piraino, S., Boero, F., Aeschbach, B., and Schmid, V. (1996) Reversing the life cycle: Medusae transforming into polyps and cell transdifferentiation in Turritopsis nutricula (Cnidaria, Hydrozoa), Biol. Bull., 190, 302-312, doi: 10.2307/1543022.
28. He, J., Zheng, L., Zhang, W., and Lin, Y. (2015) Life Cycle Reversal in Aurelia sp. 1 (Cnidaria, Scyphozoa), PLoS One, 10, e0145314, doi: 10.1371/journal.pone.0145314.
29. Babonis, L. S., and Martindale, M. Q. (2017) Phylogenetic evidence for the modular evolution of metazoan signalling pathways, Philos. Trans. R. Soc. B Biol. Sci., 372, 20150477, doi: 10.1098/rstb.2015.0477.
30. Chapman, J. A., Kirkness, E. F., Simakov, O., Hampson, S. E., Mitros, T., et al. (2010) The dynamic genome of Hydra, Nature, 464, 592-596, doi: 10.1038/nature08830.
31. Putnam, N. H., Srivastava, M., Hellsten, U., Dirks, B., Chapman, J., et al. (2007) Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization, Science, 317, 86-94, doi: 10.1126/science.1139158.
32. Kanehisa, M., and Goto, S. (2000) KEGG: kyoto encyclopedia of genes and genomes, Nucleic Acids Res., 28, 27-30, doi: 10.1093/nar/28.1.27.
33. Khalturin, K., Shinzato, C., Khalturina, M., Hamada, M., Fujie, M., et al. (2019) Medusozoan genomes inform the evolution of the jellyfish body plan, Nat. Ecol. Evol., 3, 811-822, doi: 10.1038/s41559-019-0853-y.
34. Kim, H. M., Weber, J. A., Lee, N., Park, S. G., Cho, Y. S., et al. (2019) The genome of the giant Nomura’s jellyfish sheds light on the early evolution of active predation, BMC Biol., 17, 28, doi: 10.1186/s12915-019-0643-7.
35. Brekhman, V., Malik, A., Haas, B., Sher, N., and Lotan, T. (2015) Transcriptome profiling of the dynamic life cycle of the scypohozoan jellyfish Aurelia aurita, BMC Genom., 16, 74, doi: 10.1186/s12864-015-1320-z.
36. Avila Soria, G. (2009) Molecular characterization of Carukia barnesi and Malo kingi, Cnidaria; Cubozoa; Carybdeidae. PhD thesis, James Cook University.
37. Ohdera, A., Ames, C. L., Dikow, R. B., Kayal, E., Chiodin, M., et al. (2019) Box, stalked, and upside-down? Draft genomes from diverse jellyfish (Cnidaria, Acraspeda) lineages: Alatina alata (Cubozoa), Calvadosia cruxmelitensis (Staurozoa), and Cassiopea xamachana (Scyphozoa), Gigascience, 8, giz069, doi: 10.1093/gigascience/giz069.
38. Martindale, M. Q., Finnerty, J. R., and Henry, J. Q. (2002) The Radiata and the evolutionary origins of the bilaterian body plan, Mol. Phylogenet. Evol., 24, 358-365, doi: 10.1016/S1055-7903(02)00208-7.
39. Arendt, D., Tosches, M. A., and Marlow, H. (2016) From nerve net to nerve ring, nerve cord and brain – evolution of the nervous system, Nat. Rev. Neurosci., 17, 61-72, doi: 10.1038/nrn.2015.15.
40. Finnerty, J. R., Pang, K., Burton, P., Paulson, D., and Martindale, M. Q. (2004) Origins of bilateral symmetry: Hox and Dpp expression in a sea anemone, Science, 304, 1335-1337, doi: 10.1126/science.1091946.
41. Genikhovich, G., and Technau, U. (2017) On the evolution of bilaterality, Development, 144, 3392-3404, doi: 10.1242/dev.141507.
42. He, S., Del Viso, F., Chen, C. Y., Ikmi, A., Kroesen, A. E., et al. (2018) An axial Hox code controls tissue segmentation and body patterning in Nematostella vectensis, Science, 361, 1377-1380, doi: 10.1126/science.aar8384.
43. Lebedeva, T., Aman, A. J., Graf, T., Niedermoser, I., Zimmermann, B., et al. (2021) Cnidarian-bilaterian comparison reveals the ancestral regulatory logic of the beta-catenin dependent axial patterning, Nat. Commun., 12, 4032, doi: 10.1038/s41467-021-24346-8.
44. DuBuc, T. Q., Stephenson, T. B., Rock, A. Q., and Martindale, M. Q. (2018) Hox and Wnt pattern the primary body axis of an anthozoan cnidarian before gastrulation, Nat. Commun., 9, 2007, doi: 10.1038/s41467-018-04184-x.
45. Momose, T., Derelle, R., and Houliston, E. (2008) A maternally localised Wnt ligand required for axial patterning in the cnidarian Clytia hemisphaerica, Development, 135, 2105-2113, doi: 10.1242/dev.021543.
46. Plickert, G., Jacoby, V., Frank, U., Muller, W. A., and Mokady, O. (2006) Wnt signaling in hydroid development: formation of the primary body axis in embryogenesis and its subsequent patterning, Dev. Biol., 298, 368-378, doi: 10.1016/j.ydbio.2006.06.043.
47. Hobmayer, B., Rentzsch, F., Kuhn, K., Happel, C. M., von Laue, C. C., et al. (2000) WNT signalling molecules act in axis formation in the diploblastic metazoan Hydra, Nature, 407, 186-189, doi: 10.1038/35025063.
48. Broun, M., Gee, L., Reinhardt, B., and Bode, H. R. (2005) Formation of the head organizer in hydra involves the canonical Wnt pathway, Development, 132, 2907-2916, doi: 10.1242/dev.01848.
49. Philipp, I., Aufschnaiter, R., Ozbek, S., Pontasch, S., Jenewein, M., et al. (2009) Wnt/beta-catenin and noncanonical Wnt signaling interact in tissue evagination in the simple eumetazoan Hydra, Proc. Natl. Acad. Sci. USA, 106, 4290-4295, doi: 10.1073/pnas.0812847106.
50. Lengfeld, T., Watanabe, H., Simakov, O., Lindgens, D., Gee, L., et al. (2009) Multiple Wnts are involved in Hydra organizer formation and regeneration, Dev. Biol., 330, 186-199, doi: 10.1016/j.ydbio.2009.02.004.
51. Nakamura, Y., Tsiairis, C. D., Özbek, S., and Holstein, T. W. (2011) Autoregulatory and repressive inputs localize Hydra Wnt3 to the head organizer, Proc. Natl. Acad. Sci. USA, 108, 9137-9142, doi: 10.1073/pnas.1018109108.
52. Reddy, P. C., Gungi, A., Ubhe, S., Pradhan, S. J., Kolte, A., et al. (2019) Molecular signature of an ancient organizer regulated by Wnt/β-catenin signalling during primary body axis patterning in Hydra, Commun. Biol., 2, 1-11, doi: 10.1038/s42003-019-0680-3.
53. Wang, R., Steele, R. E., and Collins, E.-M. S. (2020) Wnt signaling determines body axis polarity in regenerating Hydra tissue fragments, Dev. Biol., 467, 88-94, doi: 10.1016/j.ydbio.2020.08.012.
54. Moneer, J., Siebert, S., Krebs, S., Cazet, J., Prexl, A., et al. (2021) Differential gene regulation in DAPT-treated Hydra reveals candidate direct Notch signalling targets, J. Cell Sci., 134, jcs258768, doi: 10.1242/jcs.258768.
55. Kusserow, A., Pang, K., Sturm, C., Hrouda, M., Lentfer, J., et al. (2005) Unexpected complexity of the Wnt gene family in a sea anemone, Nature, 433, 156-160, doi: 10.1038/nature03158.
56. Wikramanayake, A. H., Hong, M., Lee, P. N., Pang, K., Byrum, C. A., et al. (2003) An ancient role for nuclear β-catenin in the evolution of axial polarity and germ layer segregation, Nature, 426, 446-450, doi: 10.1038/nature02113.
57. Lee, P. N., Kumburegama, S., Marlow, H. Q., Martindale, M. Q., and Wikramanayake, A. H. (2007) Asymmetric developmental potential along the animal–vegetal axis in the anthozoan cnidarian, Nematostella vectensis, is mediated by Dishevelled, Dev. Biol., 310, 169-186, doi: 10.1016/j.ydbio.2007.05.040.
58. Trevino, M., Stefanik, D. J., Rodriguez, R., Harmon, S., and Burton, P. M. (2011) Induction of canonical Wnt signaling by alsterpaullone is sufficient for oral tissue fate during regeneration and embryogenesis in Nematostella vectensis, Dev. Dyn., 240, 2673-2679, doi: 10.1002/dvdy.22774.
59. Kirillova, A., Genikhovich, G., Pukhlyakova, E., Demilly, A., Kraus, Y., et al. (2018) Germ-layer commitment and axis formation in sea anemone embryonic cell aggregates, Proc. Natl. Acad. Sci. USA, 115, 1813-1818, doi: 10.1073/pnas.1711516115.
60. Ryan, J. F., Mazza, M. E., Pang, K., Matus, D. Q., Baxevanis, A. D., et al. (2007) Pre-bilaterian origins of the Hox cluster and the Hox code: Evidence from the sea anemone, Nematostella vectensis, PLoS One, 2, e153, doi: 10.1371/journal.pone.0000153.
61. Genikhovich, G., Fried, P., Prünster, M. M., Schinko, J. B., Gilles, A. F., et al. (2015) Axis patterning by BMPs: Cnidarian network reveals evolutionary constraints, Cell Rep., 10, 1646-1654, doi: 10.1016/j.celrep.2015.02.035.
62. Matus, D. Q., Magie, C. R., Pang, K., Martindale, M. Q., and Thomsen, G. H. (2008) The Hedgehog gene family of the cnidarian, Nematostella vectensis, and implications for understanding metazoan Hedgehog pathway evolution, Dev. Biol., 313, 501-518, doi: 10.1016/j.ydbio.2007.09.032.
63. Saina, M., Genikhovich, G., Renfer, E., and Technau, U. (2009) BMPs and chordin regulate patterning of the directive axis in a sea anemone, Proc. Natl. Acad. Sci. USA, 106, 18592-18597, doi: 10.1073/pnas.0900151106.
64. Leclère, L., and Rentzsch, F. (2014) RGM regulates BMP-mediated secondary axis formation in the sea anemone Nematostella vectensis, Cell Rep., 9, 1921-1930, doi: 10.1016/j.celrep.2014.11.009.
65. Kraus, Y., Aman, A., Technau, U., and Genikhovich, G. (2016) Pre-bilaterian origin of the blastoporal axial organizer, Nat. Commun., 7, 11694, doi: 10.1038/ncomms11694.
66. Momose, T., and Schmid, V. (2006) Animal pole determinants define oral–aboral axis polarity and endodermal cell-fate in hydrozoan jellyfish Podocoryne carnea, Dev. Biol., 292, 371-380, doi: 10.1016/j.ydbio.2006.01.012.
67. Duffy, D. J., Plickert, G., Kuenzel, T., Tilmann, W., and Frank, U. (2010) Wnt signaling promotes oral but suppresses aboral structures in Hydractinia metamorphosis and regeneration, Development, 137, 3057-3066, doi: 10.1242/dev.046631.
68. Momose, T., and Houliston, E. (2007) Two oppositely localised frizzled RNAs as axis determinants in a cnidarian embryo, PLoS Biol., 5, e70, doi: 10.1371/journal.pbio.0050070.
69. Technau, U. (2020) Gastrulation and germ layer formation in the sea anemone Nematostella vectensis and other cnidarians, Mech. Dev., 163, 103628, doi: 10.1016/j.mod.2020.103628.
70. Kraus, Y. A., and Markov, A. V. (2017) Gastrulation in Cnidaria: The key to an understanding of phylogeny or the chaos of secondary modifications? Biol. Bull. Rev., 7, 7-25, doi: 10.1134/S2079086417010029.
71. Röttinger, E., Dahlin, P., and Martindale, M. Q. (2012) A framework for the establishment of a cnidarian gene regulatory network for “endomesoderm” specification: The inputs of β-catenin/TCF signaling, PLoS Genet., 8, e1003164, doi: 10.1371/journal.pgen.1003164.
72. Chen, C. Y., McKinney, S. A., Ellington, L. R., and Gibson, M. C. (2020) Hedgehog signaling is required for endomesodermal patterning and germ cell development in the sea anemone Nematostella vectensis, Elife, 9, e54573, doi: 10.7554/eLife.54573.
73. Wijesena, N. M. (2012) Wnt Signaling in the Cnidarian Nematostella vectensis: Insighits into the Evolution of Gastrulation. PhD thesis, University of Miami, Coral Gables.
74. Leclère, L., Bause, M., Sinigaglia, C., Steger, J., and Rentzsch, F. (2016) Development of the aboral domain in Nematostella requires β-catenin and the opposing activities of Six3/6 and Frizzled5/8, Development, 143, 1766-1777, doi: 10.1242/dev.120931.
75. Wijesena, N., Sun, H., Kumburegama, S., and Wikramanayake, A. H. (2021) Distinct Frizzled receptors independently mediate endomesoderm specification and primary arch on invagination during gastrulation in Nematostella, Dev. Biol., 481, 215-225, doi: 10.1016/j.ydbio.2021.11.002.
76. Vetrova, A. A., Lebedeva, T. S., Saidova, A. A., Kupaeva, D. M., Kraus, Y. A., et al. (2021) From apolar gastrula to polarized larva: Embryonic development of a marine hydroid, Dynamena pumila, Dev. Dyn., 1-31, doi: 10.1002/dvdy.439.
77. Kraus, Y., Flici, H., Hensel, K., Plickert, G., Leitz, T., and Frank, U. (2014) The embryonic development of the cnidarian Hydractinia echinata, Evol Dev, 16, 323-338, doi: 10.1111/ede.12100.
78. Momose, T., Kraus, Y., and Houliston, E. (2012) A conserved function for Strabismus in establishing planar cell polarity in the ciliated ectoderm during cnidarian larval development, Development, 139, 4374-4382, doi: 10.1242/dev.084251.
79. Fröbius, A. C., Genikhovich, G., Kürn, U., Anton-Erxleben, F., and Bosch, T. C. G. (2003) Expression of developmental genes during early embryogenesis of Hydra, Dev. Genes Evol., 213, 445-455, doi: 10.1007/s00427-003-0344-6.
80. Siebert, S., and Juliano, C. E. (2017) Sex, polyps, and medusae: Determination and maintenance of sex in cnidarians, Mol. Reprod. Dev., 84, 105-119, doi: 10.1002/mrd.22690.
81. Technau, U., Miller, M. A., Bridge, D., and Steele, R. E. (2003) Arrested apoptosis of nurse cells during Hydra oogenesis and embryogenesis, Dev. Biol., 260, 191-206, doi: 10.1016/S0012-1606(03)00241-0.
82. Айзенштадт Т. Б. (1980) Исследование оогенеза у гидры. IV. Фагоцитарная активность ооцитов, Онтогенез, 11, 31-38.
83. Rentzsch, F., Hobmayer, B., and Holstein, T. W. (2005) Glycogen synthase kinase 3 has a proapoptotic function in Hydra gametogenesis, Dev. Biol., 278, 1-12, doi: 10.1016/j.ydbio.2004.10.007.
84. Kasbauer, T., Towb, P., Alexandrova, O., David, C. N., Dall’armi, E., et al. (2007) The Notch signaling pathway in the cnidarian Hydra, Dev. Biol., 303, 376-390, doi: 10.1016/j.ydbio.2006.11.022.
85. Hobmayer, B., Rentzsch, F., and Holstein, T. W. (2001) Identification and expression of HySmad1, a member of the R-Smad family of TGFbeta signal transducers, in the diploblastic metazoan Hydra, Dev. Genes Evol., 211, 597-602, doi: 10.1007/s00427-001-0198-8.
86. Miller, M. A., and Steele, R. E. (2000) Lemon encodes an unusual receptor protein-tyrosine kinase expressed during gametogenesis in Hydra, Dev. Biol., 224, 286-298, doi: 10.1006/dbio.2000.9786.
87. Amiel, A., and Houliston, E. (2009) Three distinct RNA localization mechanisms contribute to oocyte polarity establishment in the cnidarian Clytia hemisphaerica, Dev. Biol., 327, 191-203, doi: 10.1016/j.ydbio.2008.12.007.
88. Houliston, E., Leclère, L., Munro, C., Copley, R., and Momose, T. (2021) Past, present and future of Clytia hemisphaerica as a laboratory jellyfish, hal-03346217.
89. Sanders, S. M., Shcheglovitova, M., and Cartwright, P. (2014) Differential gene expression between functionally specialized polyps of the colonial hydrozoan Hydractinia symbiolongicarpus (Phylum Cnidaria), BMC Genomics, 15, 406, doi: 10.1186/1471-2164-15-406.
90. Eckelbarger, K. J., Hand, C., and Uhlinger, K. R. (2008) Ultrastructural features of the trophonema and oogenesis in the starlet sea anemone, Nematostella vectensis (Edwardsiidae), Invertebrate Biol., 127, 381-395, doi: 10.1111/j.1744-7410.2008.00146.x.
91. Бочарова Е. С., Косевич И. А. (2011) Варианты размножения актиний (CNIDARIA, ANTHOZOA), Зоологический журнал, 90, 1283-1295.
92. Reuven, S., Rinsky, M., Brekhman, V., Malik, A., Levy, O., et al. (2021) Cellular pathways during spawning induction in the starlet sea anemone Nematostella vectensis, Sci. Rep., 11, 15451, doi: 10.1038/s41598-021-95033-3.
93. Chiu, Y.-L., Shikina, S., Yoshioka, Y., Shinzato, C., and Chang, C.-F. (2020) De novo transcriptome assembly from the gonads of a scleractinian coral, Euphyllia ancora: molecular mechanisms underlying scleractinian gametogenesis, BMC Genomics, 21, 732, doi: 10.1186/s12864-020-07113-9.
94. Rentzsch, F., Layden, M., and Manuel, M. (2017) The cellular and molecular basis of cnidarian neurogenesis, WIREs Dev. Biol., 6, e257, doi: 10.1002/wdev.257.
95. Nakanishi, N., Renfer, E., Technau, U., and Rentzsch, F. (2012) Nervous systems of the sea anemone Nematostella vectensis are generated by ectoderm and endoderm and shaped by distinct mechanisms, Development, 139, 347-357, doi: 10.1242/dev.071902.
96. Al-Shaer, L., Havrilak, J., and Layden, M. (2021) Nematostella vectensis as a Model System. in Handbook of Marine Model Organisms in Experimental Biology, CRC Press, Boca Raton, pp. 107-128.
97. Yuan, D., Nakanishi, N., Jacobs, D. K., and Hartenstein, V. (2008) Embryonic development and metamorphosis of the scyphozoan Aurelia, Dev. Genes Evol., 218, 525-539, doi: 10.1007/s00427-008-0254-8.
98. Galliot, B., Quiquand, M., Ghila, L., de Rosa, R., Miljkovic-Licina, M., et al. (2009) Origins of neurogenesis, a cnidarian view, Dev. Biol., 332, 2-24, doi: 10.1016/j.ydbio.2009.05.563.
99. Gahan, J. M., Schnitzler, C. E., DuBuc, T. Q., Doonan, L. B., Kanska, J., et al. (2017) Functional studies on the role of Notch signaling in Hydractinia development, Dev. Biol., 428, 224-231, doi: 10.1016/j.ydbio.2017.06.006.
100. Wang, W. (2013) Regulation of metamorphosis and the evolution of life cycles: insights from the common moon jelly A. aurita. PhD thesis, Christian-Albrechts-Universität zu Kiel, Kiel.
101. Watanabe, H., Kuhn, A., Fushiki, M., Agata, K., Özbek, S., et al. (2014) Sequential actions of β-catenin and Bmp pattern the oral nerve net in Nematostella vectensis, Nat. Commun., 5, 5536, doi: 10.1038/ncomms6536.
102. Duffy, D. J., and Frank, U. (2011) Modulation of COUP-TF expression in a cnidarian by ectopic Wnt signalling and allorecognition, PLoS One, 6, e19443, doi: 10.1371/journal.pone.0019443.
103. Matus, D. Q., Thomsen, G. H., and Martindale, M. Q. (2007) FGF signaling in gastrulation and neural development in Nematostella vectensis, an anthozoan cnidarian, Dev. Genes Evol., 217, 137-148, doi: 10.1007/s00427-006-0122-3.
104. Rentzsch, F., Fritzenwanker, J. H., Scholz, C. B., and Technau, U. (2008) FGF signalling controls formation of the apical sensory organ in the cnidarian Nematostella vectensis, Development, 135, 1761-1769, doi: 10.1242/dev.020784.
105. Layden, M. J., Johnston, H., Amiel, A. R., Havrilak, J., Steinworth, B., et al. (2016) MAPK signaling is necessary for neurogenesis in Nematostella vectensis, BMC Biol., 14, 61, doi: 10.1186/s12915-016-0282-1.
106. Turwankar, A., and Ghaskadbi, S. (2019) VEGF and FGF signaling during head regeneration in hydra, Gene, 717, 144047, doi: 10.1016/j.gene.2019.144047.
107. Fujita, S., Kuranaga, E., and Nakajima, Y.-I. (2021) Regeneration potential of jellyfish: Cellular mechanisms and molecular insights, Genes, 12, 758, doi: 10.3390/genes12050758.
108. Röttinger, E. (2021) Nematostella vectensis, an emerging model for deciphering the molecular and cellular mechanisms underlying whole-body regeneration, Cells, 10, 2692, doi: 10.3390/cells10102692.
109. Vogg, M. C., Buzgariu, W., Suknovic, N. S., and Galliot, B. (2021) Cellular, metabolic, and developmental dimensions of whole-body regeneration in Hydra, Cold Spring Harb. Perspect. Biol., 13, doi: 10.1101/cshperspect.a040725.
110. Chera, S., Ghila, L., Dobretz, K., Wenger, Y., Bauer, C., et al. (2009) Apoptotic cells provide an unexpected source of Wnt3 signaling to drive hydra head regeneration, Dev. Cell, 17, 279-289, doi: 10.1016/j.devcel.2009.07.014.
111. Gufler, S., Artes, B., Bielen, H., Krainer, I., Eder, M. K., et al. (2018) β-Catenin acts in a position-independent regeneration response in the simple eumetazoan Hydra, Dev. Biol., 433, 310-323, doi: 10.1016/j.ydbio.2017.09.005.
112. Vogg, M. C., Beccari, L., Iglesias Ollé, L., Rampon, C., Vriz, S., et al. (2019) An evolutionarily-conserved Wnt3/β-catenin/Sp5 feedback loop restricts head organizer activity in Hydra, Nat. Commun., 10, 312, doi: 10.1038/s41467-018-08242-2.
113. Technau, U., Cramer von Laue, C., Rentzsch, F., Luft, S., Hobmayer, B., et al. (2000) Parameters of self-organization in Hydra aggregates, Proc. Natl. Acad. Sci. USA, 97, 12127-12131, doi: 10.1073/pnas.97.22.12127.
114. Ferenc, J., Papasaikas, P., Ferralli, J., Nakamura, Y., Smallwood, S., et al. (2020) Wnt3 expression as a readout of tissue stretching during Hydra regeneration, bioRxiv, doi: 10.1101/2020.12.22.423911.
115. Tursch, A., Bartsch, N., and Holstein, T. W. (2020) MAPK signaling links the injury response to Wnt-regulated patterning in Hydra regeneration, bioRxiv, doi: 10.1101/2020.07.06.189795.
116. Chera, S., Ghila, L., Wenger, Y., and Galliot, B. (2011) Injury-induced activation of the MAPK/CREB pathway triggers apoptosis-induced compensatory proliferation in hydra head regeneration, Dev. Growth Differ., 53, 186-201, doi: 10.1111/j.1440-169X.2011.01250.x.
117. Münder, S., Tischer, S., Grundhuber, M., Büchels, N., Bruckmeier, N., et al. (2013) Notch-signalling is required for head regeneration and tentacle patterning in Hydra, Dev. Biol., 383, 146-157, doi: 10.1016/j.ydbio.2013.08.022.
118. Wenger, Y., Buzgariu, W., Perruchoud, C., Loichot, G., and Galliot, B. (2019) Generic and context-dependent gene modulations during Hydra whole body regeneration, bioRxiv, doi: 10.1101/587147.
119. Kaloulis, K. (2001) Molecular Basis of Morphogenetic Events in Hydra: Study of the CREB and Hedgehog Pathways during Budding and Regeneration. PhD thesis, Université de Genève, Genève.
120. Bradshaw, B., Thompson, K., and Frank, U. (2015) Distinct mechanisms underlie oral vs aboral regeneration in the cnidarian Hydractinia echinata, eLife, 4, e05506, doi: 10.7554/eLife.05506.
121. Sinigaglia, C., Peron, S., Eichelbrenner, J., Chevalier, S., Steger, J., et al. (2020) Pattern regulation in a regenerating jellyfish, Elife, 9, e54868, doi: 10.7554/eLife.54868.
122. Cartwright, P., Travert, M. K., and Sanders, S. M. (2021) The evolution and development of coloniality in hydrozoans, J. Exp. Zool. B Mol. Dev. Evol., 336, 293-299, doi: 10.1002/jez.b.22996.
123. Bagaeva, T. S., Kupaeva, D. M., Vetrova, A. A., Kosevich, I. A., Kraus, Y. A., et al. (2019) cWnt signaling modulation results in a change of the colony architecture in a hydrozoan, Dev. Biol., 456, 145-153, doi: 10.1016/j.ydbio.2019.08.019.
124. Muller, W., Frank, U., Teo, R., Mokady, O., Guette, C., et al. (2007) Wnt signaling in hydroid development: ectopic heads and giant buds induced by GSK-3beta inhibitors, Int. J. Dev. Biol., 51, 211-220, doi: 10.1387/ijdb.062247wm.
125. Hou, S., Zhu, J., Shibata, S., Nakamoto, A., and Kumano, G. (2021) Repetitive accumulation of interstitial cells generates the branched structure of Cladonema medusa tentacles, Development, 148, doi: 10.1242/dev.199544.
126. DuBuc, T. Q., Traylor-Knowles, N., and Martindale, M. Q. (2014) Initiating a regenerative response; cellular and molecular features of wound healing in the cnidarian Nematostella vectensis, BMC Biol., 12, 24, doi: 10.1186/1741-7007-12-24.
127. Stewart, Z. K., Pavasovic, A., Hock, D. H., and Prentis, P. J. (2017) Transcriptomic investigation of wound healing and regeneration in the cnidarian Calliactis polypus, Sci. Rep., 7, 41458, doi: 10.1038/srep41458.
128. Luz, B. L. P., Miller, D. J., and Kitahara, M. V. (2021) High regenerative capacity is a general feature within colonial dendrophylliid corals (Anthozoa, Scleractinia), J. Exp. Zool. B Mol. Dev. Evol., 336, 281-292, doi: 10.1002/jez.b.23021.
129. Van der Burg, C. A., and Prentis, P. J. (2021) The Tentacular Spectacular: Evolution of regeneration in sea anemones, Genes, 12, 1072, doi: 10.3390/genes12071072.
130. Böttger, A., and Hassel, M. (2012) Hydra, a model system to trace the emergence of boundaries in developing eumetazoans, Int. J. Dev. Biol., 56, 583-591, doi: 10.1387/ijdb.113454ab.
131. Mortzfeld, B. M., Taubenheim, J., Klimovich, A. V., Fraune, S., Rosenstiel, P., et al. (2019) Temperature and insulin signaling regulate body size in Hydra by the Wnt and TGF-beta pathways, Nat. Commun., 10, 3257, doi: 10.1038/s41467-019-11136-6.
132. Seipel, K., and Schmid, V. (2006) Mesodermal anatomies in cnidarian polyps and medusae, Int. J. Dev. Biol., 50, 589-599, doi: 10.1387/ijdb.062150ks.
133. Pennati, R., Dell’Anna, A., Pagliara, P., Scarì, G., Piraino, S., et al. (2013) Neural system reorganization during metamorphosis in the planula larva of Clava multicornis (Hydrozoa, Cnidaria), Zoomorphology, 132, 227-237, doi: 10.1007/s00435-013-0188-1.
134. Seipp, S., Schmich, J., Will, B., Schetter, E., Plickert, G., et al. (2010) Neuronal cell death during metamorphosis of Hydractina echinata (Cnidaria, Hydrozoa), Invertebrate Neurosci., 10, 77-91, doi: 10.1007/s10158-010-0109-7.
135. Stumpf, M., Will, B., Wittig, K., Kasper, J., Fischer, B., et al. (2010) An organizing region in metamorphosing hydrozoan planula larvae – stimulation of axis formation in both larval and in adult tissue, Int. J. Dev. Biol., 54, 795-802, doi: 10.1387/ijdb.082738ms.
136. Krasovec, G., Pottin, K., Rosello, M., Quéinnec, É., and Chambon, J.-P. (2021) Apoptosis and cell proliferation during metamorphosis of the planula larva of Clytia hemi-sphaerica (Hydrozoa, Cnidaria), Dev. Dyn., 250, 1739-1758, doi: 10.1002/dvdy.376.
137. Seipel, K., Eberhardt, M., Müller, P., Pescia, E., Yanze, N., et al. (2004) Homologs of vascular endothelial growth factor and receptor, VEGF and VEGFR, in the jellyfish Podocoryne carnea, Dev. Dyn., 231, 303-312, doi: 10.1002/dvdy.20139.
138. Sanders, S. M., and Cartwright, P. (2015) Patterns of Wnt signaling in the life cycle of Podocoryna carnea and its implications for medusae evolution in Hydrozoa (Cnidaria), Evol. Dev., 17, 325-336, doi: 10.1111/ede.12165.
139. Nawrocki, A. M., and Cartwright, P. (2013) Expression of Wnt pathway genes in polyps and medusa-like structures of Ectopleura larynx (Cnidaria: Hydrozoa), Evol. Dev., 15, 373-384, doi: 10.1111/ede.12045.
140. Gold, D. A., Nakanishi, N., Hensley, N. M., Hartenstein, V., and Jacobs, D. K. (2016) Cell tracking supports secondary gastrulation in the moon jellyfish Aurelia, Dev. Genes Evol., 226, 383-387, doi: 10.1007/s00427-016-0559-y.
141. Rentzsch, F., Anton, R., Saina, M., Hammerschmidt, M., Holstein, T. W., et al. (2006) Asymmetric expression of the BMP antagonists chordin and gremlin in the sea anemone Nematostella vectensis: Implications for the evolution of axial patterning, Dev. Biol., 296, 375-387, doi: 10.1016/j.ydbio.2006.06.003.
142. Strader, M. E., Aglyamova, G. V., and Matz, M. V. (2018) Molecular characterization of larval development from fertilization to metamorphosis in a reef-building coral, BMC Genom., 19, 17, doi: 10.1186/s12864-017-4392-0.
143. Steele, R. E. (2002) Developmental signaling in Hydra: What does it take to build a “simple” animal? Dev. Biol., 248, 199-219, doi: 10.1006/dbio.2002.0744.
144. Leclère, L., Horin, C., Chevalier, S., Lapebie, P., Dru, P., et al. (2019) The genome of the jellyfish Clytia hemisphaerica and the evolution of the cnidarian life-cycle, Nat. Ecol. Evol., 3, 801-810, doi: 10.1038/s41559-019-0833-2.
145. Lisenkova, A. A., Grigorenko, A. P., Tyazhelova, T. V., Andreeva, T. V., Gusev, F. E., et al. (2017) Complete mitochondrial genome and evolutionary analysis of Turritopsis dohrnii, the “immortal” jellyfish with a reversible life-cycle, Mol. Phylogenet. Evol., 107, 232-238, doi: 10.1016/j.ympev.2016.11.007.
146. Shinzato, C., Khalturin, K., Inoue, J., Zayasu, Y., Kanda, M., et al. (2020) Eighteen coral genomes reveal the evolutionary origin of acropora strategies to accommodate environmental changes, Mol. Biol. Evol., 38, 16-30, doi: 10.1093/molbev/msaa216.
147. Fuchs, B., Wang, W., Graspeuntner, S., Li, Y., Insua, S., et al. (2014) Regulation of polyp-to-jellyfish transition in Aurelia aurita, Curr. Biol., 24, 263-273, doi: 10.1016/j.cub.2013.12.003.
148. Ge, J., Liu, C., Tan, J., Bian, L., and Chen, S. (2018) Transcriptome analysis of scyphozoan jellyfish Rhopilema esculentum from polyp to medusa identifies potential genes regulating strobilation, Dev. Genes Evol., 228, 243-254, doi: 10.1007/s00427-018-0621-z.
149. Nielsen, S. K. D., Koch, T. L., Hauser, F., Garm, A., and Grimmelikhuijzen, C. J. P. (2019) De novo transcriptome assembly of the cubomedusa Tripedalia cystophora, including the analysis of a set of genes involved in peptidergic neurotransmission, BMC Genomics, 20, 175, doi: 10.1186/s12864-019-5514-7.
150. Duncan, E. J., Gluckman, P. D., and Dearden, P. K. (2014) Epigenetics, plasticity, and evolution: How do we link epigenetic change to phenotype?, J. Exp. Zool. B Mol. Dev. Evol., 322, 208-220, doi: 10.1002/jez.b.22571.
151. Moore, L. D., Le, T., and Fan, G. (2013) DNA methylation and its basic function, Neuropsychopharmacology, 38, 23-38, doi: 10.1038/npp.2012.112.
152. Henderson, I. R., and Jacobsen, S. E. (2007) Epigenetic inheritance in plants, Nature, 447, 418-424, doi: 10.1038/nature05917.
153. Sarda, S., Zeng, J., Hunt, B. G., and Yi, S. V. (2012) The evolution of invertebrate gene body methylation, Mol. Biol. Evol., 29, 1907-1916, doi: 10.1093/molbev/mss062.
154. Illumina. Methylation Sequencing, URL: https://www.illumina.com/techniques/sequencing/methylation-sequencing.html, Accessed 25.10.2021.
155. Frommer, M., McDonald, L. E., Millar, D. S., Collis, C. M., Watt, F., et al. (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands, Proc. Natl. Acad. Sci. USA, 89, 1827-1831, doi: 10.1073/pnas.89.5.1827.
156. Masser, D. R., Hadad, N., Porter, H., Stout, M. B., Unnikrishnan, A., et al. (2018) Analysis of DNA modifications in aging research, Geroscience, 40, 11-29, doi: 10.1007/s11357-018-0005-3.
157. Li, Y., Liew, Y. J., Cui, G., Cziesielski, M. J., Zahran, N., et al. (2018) DNA methylation regulates transcriptional homeostasis of algal endosymbiosis in the coral model Aiptasia, Sci. Adv., 4, eaat2142, doi: 10.1126/sciadv.aat2142.
158. Dimond, J. L., Nguyen, N., and Roberts, S. B. (2021) DNA methylation profiling of a cnidarian-algal symbiosis using nanopore sequencing, G3 (Bathesda), 11, jkab148, doi: 10.1093/g3journal/jkab148.
159. Dixon, G. B., Bay, L. K., and Matz, M. V. (2014) Bimodal signatures of germline methylation are linked with gene expression plasticity in the coral Acropora millepora, BMC Genomics, 15, 1109, doi: 10.1186/1471-2164-15-1109.
160. Dixon, G., Liao, Y., Bay, L. K., and Matz, M. V. (2018) Role of gene body methylation in acclimatization and adaptation in a basal metazoan, Proc. Natl. Acad. Sci. USA, 115, 13342-13346, doi: 10.1073/pnas.1813749115.
161. Dixon, G. B., Bay, L. K., and Matz, M. V. (2016) Evolutionary consequences of DNA methylation in a basal metazoan, Mol. Biol. Evol., 33, 2285-2293, doi: 10.1093/molbev/msw100.
162. Hassel, M., Cornelius, M. G., Vom Brocke, J., and Schmeiser, H. H. (2010) Total nucleotide analysis of Hydra DNA and RNA by MEKC with LIF detection and 32P-postlabeling, Electrophoresis, 31, 299-302, doi: 10.1002/elps.200900458.
163. Pillai, A., Gungi, A., Reddy, P. C., and Galande, S. (2021) Epigenetic regulation in Hydra: Conserved and divergent roles, Front. Cell Dev. Biol., 9, 663208, doi: 10.3389/fcell.2021.663208.
164. Kyger, R., Luzuriaga-Neira, A., Layman, T., Milkewitz Sandberg, T. O., Singh, D., et al. (2021) Myxosporea (Myxozoa, Cnidaria) lack DNA cytosine methylation, Mol. Biol. Evol., 38, 393-404, doi: 10.1093/molbev/msaa214.
165. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y., and Greenleaf, W. J. (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position, Nat. Methods, 10, 1213-1218, doi: 10.1038/nmeth.2688.
166. Weizman, E. N., Tannenbaum, M., Tarrant, A. M., Hakim, O., and Levy, O. (2019) Chromatin dynamics enable transcriptional rhythms in the cnidarian Nematostella vectensis, PLoS Genet., 15, e1008397, doi: 10.1371/journal.pgen.1008397.
167. Weizman, E., Rinsky, M., Simon-Blecher, N., Lampert-Karako, S., Yaron, O., et al. (2021) Chromatin dynamics and gene expression response to heat exposure in field-conditioned versus laboratory-cultured Nematostella vectensis, Int. J. Mol. Sci., 22, 7454, doi: 10.3390/ijms22147454.
168. Weizman, E., and Levy, O. (2019) The role of chromatin dynamics under global warming response in the symbiotic coral model Aiptasia, Commun. Biol., 2, 282, doi: 10.1038/s42003-019-0543-y.
169. Murad, R., Macias-Muñoz, A., Wong, A., Ma, X., and Mortazavi, A. (2021) Coordinated gene expression and chromatin regulation during hydra head regeneration, Genome Biol. Evol., 13, doi: 10.1093/gbe/evab221.
170. Robertson, G., Hirst, M., Bainbridge, M., Bilenky, M., Zhao, Y., et al. (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing, Nat. Methods, 4, 651-657, doi: 10.1038/nmeth1068.
171. Illumina. Chromatin Immunoprecipitation Sequencing (ChIP-Seq), URL: https://www.illumina.com/techniques/sequencing/dna-sequencing/chip-seq.html, Accessed 25.10.2021.
172. Park, P. J. (2009) ChIP-seq: Advantages and challenges of a maturing technology, Nat. Rev. Genet., 10, 669-680, doi: 10.1038/nrg2641.
173. Nakato, R., and Sakata, T. (2021) Methods for ChIP-seq analysis: a practical workflow and advanced applications, Methods, 187, 44-53, doi: 10.1016/j.ymeth.2020.03.005.
174. Abcam plc. Histone modifications, URL: https://www.abcam.com/epigenetics/histone-modifications, Accessed 03.12.2021.
175. Cell Signaling Technology, I. Histone Modification Table, URL: https://www.cellsignal.com/learn-and-support/reference-tables/histone-modification-table, Accessed 03.12.2021.
176. Reddy, P. C., Gungi, A., Ubhe, S., and Galande, S. (2020) Epigenomic landscape of enhancer elements during Hydra head organizer formation, Epigenet. Chromatin, 13, 43, doi: 10.1186/s13072-020-00364-6.
177. Schwaiger, M., Schonauer, A., Rendeiro, A. F., Pribitzer, C., Schauer, A., et al. (2014) Evolutionary conservation of the eumetazoan gene regulatory landscape, Genome Res., 24, 639-650, doi: 10.1101/gr.162529.113.
178. Sebe-Pedros, A., Saudemont, B., Chomsky, E., Plessier, F., Mailhe, M. P., et al. (2018) Cnidarian cell type diversity and regulation revealed by whole-organism single-cell RNA-Seq, Cell, 173, 1520-1534.e1520, doi: 10.1016/j.cell.2018.05.019.
179. Jaitin, D. A., Kenigsberg, E., Keren-Shaul, H., Elefant, N., Paul, F., et al. (2014) Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types, Science, 343, 776-779, doi: 10.1126/science.1247651.
180. Keren-Shaul, H., Kenigsberg, E., Jaitin, D. A., David, E., Paul, F., et al. (2019) MARS-seq2.0: An experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing, Nat. Protoc., 14, 1841-1862, doi: 10.1038/s41596-019-0164-4.
181. Siebert, S., Farrell, J. A., Cazet, J. F., Abeykoon, Y., Primack, A. S., et al. (2019) Stem cell differentiation trajectories in Hydra resolved at single-cell resolution, Science, 365, eaav9314, doi: 10.1126/science.aav9314.
182. Macosko, E. Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., et al. (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets, Cell, 161, 1202-1214, doi: 10.1016/j.cell.2015.05.002.
183. Bageritz, J., and Raddi, G. (2019) Single-Cell RNA Sequencing with Drop-Seq. in Single Cell Methods: Sequencing and Proteomics (Proserpio, V. ed.) Springer New York, New York, pp. 73-85.
184. Hu, M., Zheng, X., Fan, C. M., and Zheng, Y. (2020) Lineage dynamics of the endosymbiotic cell type in the soft coral Xenia, Nature, 582, 534-538, doi: 10.1038/s41586-020-2385-7.
185. Qiu, X., Mao, Q., Tang, Y., Wang, L., Chawla, R., et al. (2017) Reversed graph embedding resolves complex single-cell trajectories, Nat. Methods, 14, 979-982, doi: 10.1038/nmeth.4402.
186. La Manno, G., Soldatov, R., Zeisel, A., Braun, E., Hochgerner, H., et al. (2018) RNA velocity of single cells, Nature, 560, 494-498, doi: 10.1038/s41586-018-0414-6.
187. Chari, T., Weissbourd, B., Gehring, J., Ferraioli, A., Leclère, L., et al. (2021) Whole animal multiplexed single-cell RNA-Seq reveals plasticity of Clytia medusa cell types, bioRxiv, doi: 10.1101/2021.01.22.427844.
188. Lapebie, P., Ruggiero, A., Barreau, C., Chevalier, S., Chang, P., et al. (2014) Differential responses to Wnt and PCP disruption predict expression and developmental function of conserved and novel genes in a cnidarian, PLoS Genet., 10, e1004590, doi: 10.1371/journal.pgen.1004590.
189. Marlow, H., Roettinger, E., Boekhout, M., and Martindale, M. Q. (2012) Functional roles of Notch signaling in the cnidarian Nematostella vectensis, Dev. Biol., 362, 295-308, doi: 10.1016/j.ydbio.2011.11.012.
190. Matus, D. Q., Thomsen, G. H., and Martindale, M. Q. (2006) Dorso/ventral genes are asymmetrically expressed and involved in germ-layer demarcation during cnidarian gastrulation, Curr. Biol., 16, 499-505, doi: 10.1016/j.cub.2006.01.052.
191. Suryawanshi, A., Schaefer, K., Holz, O., Apel, D., Lange, E., et al. (2020) What lies beneath: Hydra provides cnidarian perspectives into the evolution of FGFR docking proteins, Dev. Genes Evol., 230, 227-238, doi: 10.1007/s00427-020-00659-4.