БИОХИМИЯ, 2022, том 87, вып. 2, с. 160–176

УДК 577.112.7;617.741

Связь между структурой и шаперонной активностью αA‑кристаллина человека после его модификации ассоциированными с сахарным диабетом окислительными агентами и защитная роль антиоксидантных молекул

© 2022 S.S. Moghadam 1, M. Ghahramani 1, K. Khoshaman 1, A. Oryan 2, A.A. Moosavi-Movahedi 3, Б.И. Курганов 4, R. Yousefi 1,3*ryousefi@shirazu.ac.ir; r.yousefi2000@gmail.com

Protein Chemistry Laboratory, Department of Biology, College of Sciences Shiraz University, Shiraz, Iran

Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran

Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran

Институт биохимии имени А.Н. Баха, ФГУ ФИЦ «Фундаментальные основы биотехнологии» РАН, 119071 Москва, Россия

Поступила в редакцию 12.09.2021
После доработки 16.10.2021
Принята к публикации 16.10.2021

DOI: 10.31857/S0320972522020026

КЛЮЧЕВЫЕ СЛОВА: αA-кристаллин человека, диабетическая катаракта, антиоксиданты хрусталика глаза, структура белка, шаперонная активность.

Аннотация

Целью исследования было оценить влияние пероксинитрита (PON, агент окислительного стресса при диабете), метилглиоксаля (MGO, диабет-ассоциированное реактивное карбонильное соединение) и их одновременного воздействия на структурные и функциональные характеристики αA‑кристаллина человека (αA‑Cry) с помощью различных методов спектроскопии. Кроме того, с помощью метода тензиометрического анализа и метода динамического светорассеяния были определены такие параметры, как поверхностное натяжение и размеры олигомеров обработанного и необработанного белка. Наши результаты показали, что инкубация PON и MGO с αA‑Cry человека приводит к образованию новых хромофоров, вызывает изменения в структурах этого белка (от вторичной и до четвертичной), уменьшение размера белковых олигомеров и значительное усиление шаперонной активности αA‑Cry. Для отмены действия протестированных химических соединений применяли аскорбиновую кислоту и глутатион (основные компоненты антиоксидантной защиты хрусталика глаза). Как ожидалось, оба изученных антиоксиданта в значительной степени предотвращают образование высокомолекулярных агрегатов белка αA‑Cry (по результатам SDS-ПААГ). Полученные нами результаты свидетельствуют о том, что антиоксидантная защита клеток хрусталика, в частности глутатион, может обеспечивать эффективную защиту от быстрого возникновения и прогрессирования диабетической катаракты, предотвращая деструктивные реакции высокореактивных метаболитов, ассоциированных с сахарным диабетом.

Текст статьи

Пожалуйста, введите код, чтобы получить PDF файл с полным текстом статьи:

captcha

Сноски

* Адресат для корреспонденции.

Финансирование

Проведение настоящей работы было поддержано Ученым советом университета Шираза, Научным фондом Ирана (INSF) (проекты 9914455 и 9610387), Национальным институтом медицинских исследований (NIMAD) (проект 964854) и Министерством науки и высшего образования Российской Федерации (Б.И.К).

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических норм

Настоящая статья не содержит описания каких-либо исследований с участием людей или животных в качестве объектов.

Список литературы

1. Nowotny, K., Jung, T., Höhn, A., Weber, D., and Grune, T. (2015) Advanced glycation end products and oxidative stress in type 2 diabetes mellitus, Biomolecules, 5, 194-222, doi: 10.3390/biom5010194.

2. Semchyshyn, H. M. (2014) Reactive carbonyl species in vivo: Generation and dual biological effects, Sci. World J., 2014, 1-10, doi: 10.1155/2014/417842.

3. Vander Jagt, D. L. (2008) Methylglyoxal, diabetes mellitus and diabetic complications, Drug Metabol. Drug Interact., 23, 93-124, doi: 10.1515/dmdi.2008.23.1-2.93.

4. Pacher, P., Beckman, J. S., and Liaudet, L. (2007) Nitric oxide and peroxynitrite in health and disease, Physiol. Rev., 87, 315-424, doi: 10.1152/physrev.00029.2006.

5. Sasaki, K., Sasaki, H., Jonasson, F., Kojima, M., and Cheng, H. M. (2004) Racial differences of lens transparency properties with aging and prevalence of age-related cataract applying the WHO classification system, Ophthalmic. Res., 36, 332-340, doi: 10.1159/000081636.

6. Linetsky, M., Shipova, E., Cheng, R., and Ortwerth, B. J. (2008) Glycation by ascorbic acid oxidation products leads to the aggregation of lens proteins, Biochim. Biophys. Acta, 1782, 22-34.

7. Kiziltoprak, H., Tekin, K., Inanc, M., and Sakir Goker, Y. (2019) Cataract in diabetes mellitus, World J. Diabetes, 10, 140-153.

8. Šimunović, M., Paradžik, M., Škrabić, R., Unić, I., Bućan, K., et al. (2018) Cataract as early ocular complication in children and adolescents with type 1 diabetes mellitus, Int. J. Endocrinol., 2018, 1-6, doi: 10.1155/2018/6763586.

9. Benedek, G. B. (1971) Theory of transparency of the eye, Appl. Opt., 10, 459-473, doi: 10.1364/AO.10.000459.

10. Delaye, M., and Tardieu, A. (1983) Short-range order of crystallin proteins accounts for eye lens transparency, Nature, 302, 415-417, doi: 10.1038/302415a0.

11. Bhat, S. P., and Nagineni, C. N. (1989) Alpha B subunit of lens-specific protein alpha crystallin is present in other ocular and non-ocular tissues, Biochem. Biophys. Res. Commun., 158, 319-325, doi: 10.1016/s0006-291x(89)80215-3.

12. Robman, L., and Taylor, H. (2005) External factors in the development of cataract, Eye (Lond), 19, 1074-1082, doi: 10.1038/sj.eye.6701964.

13. Ma, Z., Hanson, S. R., Lampi, K. J., David, L. L., and Smith, J. B. (1998) Age-related changes in human lens crystallins identified by HPLC and mass spectrometry, Exp. Eye Res., 67, 21-30, doi: 10.1006/exer.1998.0482.

14. Fu, L., and Liang, J. J. (2003) Alteration of protein–protein interactions of congenital cataract crystallin mutants, Invest. Ophthalmol. Vis. Sci., 44, 1155-1159, doi: 10.1167/iovs.02-0950.

15. Reddy, V. S., Kumar, C. U., and Reddy, G. B. (2014) Effect of chronic hyperglycemia on crystallin levels in rat lens, Biochem. Biophys. Res. Commun., 446, 602-607, doi: 10.1016/j.bbrc.2014.03.012.

16. Wang, Y., and Ho, C.-T. (2012) Flavour chemistry of methylglyoxal and glyoxal, Chem. Soc. Rev., 41, 4140-4149, doi: 10.1039/c2cs35025d.

17. Alvarez, B., and Radi, R. (2003) Peroxynitrite reactivity with amino acids and proteins, Amino Acids, 25, 295-311, doi: 10.1007/s00726-003-0018-8.

18. Dalle-Donne, I., Rossi, R., Giustarini, D., Milzani, A., and Colombo, R. (2003) Protein carbonyl groups as biomarkers of oxidative stress, Clin. Chim. Acta, 329, 23-38, doi: 10.1016/s0009-8981(03)00003-2.

19. Dayanand, C. D., Pradeep, K. V., and Kutty, A. V. (2012) Protein carbonyl content as a stable oxidative stress marker in type II diabetes, Int. J. Biol. Med. Res., 3, 2362-2365.

20. Ghahramani, M., Yousefi, R., Khoshaman, K., Sasan Moghadam, S., and Kurganov, B. I. (2016) Evaluation of structure, chaperone-like activity and protective ability of peroxynitrite modified human α-crystallin subunits against copper-mediated ascorbic acid oxidation, Int. J. Biol. Macromol., 87, 208-221, doi: 10.1016/j.ijbiomac.2016.02.040.

21. Chang, W., Wang, R., and Wu, L. (2005) Methylglyoxal-induced nitric oxide and peroxynitrite production in vascular smooth muscle cells, Free Radic. Biol. Med., 38, 286-293, doi: 10.1016/j.freeradbiomed.2004.10.034.

22. Moghadam, S., Oryan, A., Kurganov, B. I., Tamaddon, A. M., Alavianehr, M. M., et al. (2017) The structural damages of lens crystallins induced by peroxynitrite and methylglyoxal, two causative players in diabetic complications and preventive role of lens antioxidant components, Int. J. Biol. Macromol., 103, 74-88, doi: 10.1016/j.ijbiomac.2017.04.090.

23. Chen, Y., Mehta, G., and Vasiliou, V. (2014) Antioxidant defenses in the ocular surface, Ocul. Surf., 7, 176-185, doi: 10.1016/s1542-0124(12)70185-4.

24. Merck, K. B., Groenen, P. J., Voorter, C. E., de Haard-Hoekman, W. A., Horwitz, J., et al. (1993) Structural and functional similarities of bovine alpha-crystallin and mouse small heat-shock protein. A family of chaperones, J. Biol. Chem., 268, 1046-1052.

25. Biswas, A., and Das, K. P. (2004) Role of ATP on the interaction of α-crystallin with its substrates and its implications for the molecular chaperone function, J. Biol. Chem., 279, 42648-42657, doi: 10.1074/jbc.M404444200.

26. Nagaraj, R. H., Panda, A. K., Shanthakumar, S., Santhoshkumar, P., Pasupuleti, N., et al. (2012) Hydroimidazolone modification of the conserved Arg12 in small heat shock proteins: studies on the structure and chaperone function using mutant mimics, PLoS One, 7, 1-10, doi: 10.1371/journal.pone.0030257.

27. Robinson, K. M., and Beckman, J. S. (2005) Synthesis of peroxynitrite from nitrite and hydrogen peroxide, Methods Enzymol., 396, 207-214, doi: 10.1016/S0076-6879(05)96019-9.

28. Ghahramani, M., Yousefi, R., Khoshaman, K., and Alavianmehr, M. M. (2015) The impact of calcium ion on structure and aggregation propensity of peroxynitrite-modified lens crystallins: new insights into the pathogenesis of cataract disorders, Colloids Surf. B Biointerfaces, 125, 170-180, doi: 10.1016/j.colsurfb.2014.11.002.

29. Ischiropoulos, H., and Al-Mehdi, A. B. (1995) Peroxynitrite-mediated oxidative protein modifications, FEBS Lett., 364, 279-282, doi: 10.1016/0014-5793(95)00307-u.

30. Alvarez, B., Rubbo, H., Kirk, M., Barnes, S., Freeman, B. A., et al. (1996) Peroxynitrite dependent tryptophan nitration, Chem. Res. Toxicol., 9, 390-396, doi: 10.1021/tx950133b.

31. Kumar, P. A., Kumar, M. S., and Reddy, G. B. (2007) Effect of glycation on alpha-crystallin structure and chaperone-like function, Biochem. J., 408, 251-258, doi: 10.1042/BJ20070989.

32. Al-Hilaly, Y. K., Williams, T. L., Stewart-Parker, M., Ford, L., Skaria, E., et al. (2013) A central role for dityrosine crosslinking of amyloid-β in Alzheimer’s disease, Acta Neuropathol. Commun., 1, 83, doi: 10.1186/2051-5960-1-83.

33. Hospes, M., Hendriks, J., and Hellingwerf, K. J. (2013) Tryptophan fluorescence as a reporter for structural changes in photoactive yellow protein elicited by photo-activation, Photochem. Photobiol. Sci., 12, 479-488, doi: 10.1039/c2pp25222h.

34. Heinecke, J. W., Li, W., Daehnke, H. L. 3rd, and Goldstein, J. A. (1993) Dityrosine, a specific marker of oxidation, is synthesized by the myeloperoxidase-hydrogen peroxide system of human neutrophils and macrophages, J. Biol. Chem., 268, 4069-4077.

35. Paoli, P., Sbrana, F., Tiribilli, B., Caselli, A., Pantera, B., et al. (2010) Protein N-homocysteinylation induces the formation of toxic amyloid-like protofibrils, J. Mol. Biol., 400, 889-907, doi: 10.1016/j.jmb.2010.05.039.

36. Meehan, S., Knowles, T. P., Baldwin, A. J., Smith, J. F., Squires, A. M., et al. (2007) Characterisation of amyloid fibril formation by small heat-shock chaperone proteins human αA-, αB- and R120G αB-crystallins, J. Mol. Biol., 372, 470-484, doi: 10.1016/j.jmb.2007.06.060.

37. Whitmore, L., and Wallace, B. A. (2004) DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data, Nucleic Acids Res., 32, W668-W673, doi: 10.1093/nar/gkh371.

38. Gakamsky, A., Duncan, R. R., Howarth, N. M., Dhillon, B., Buttenschön, K. K., et al. (2017) Tryptophan and non-tryptophan fluorescence of the eye lens proteins provides diagnostics of cataract at the molecular level, Sci. Rep., 7, 40375, doi: 10.1038/srep40375.

39. Kessel, L., Kalinin, S., Nagaraj, R. H., Larsen, M., and Johansson, L. B. (2002) Time-resolved and steady-state fluorescence spectroscopic studies of the human lens with comparison to argpyrimidine, pentosidine and 3-OH-kynurenine, Photochem. Photobiol., 76, 549-554, doi: 10.1562/0031-8655(2002)076<0549:trassf>2.0.co;2.

40. Coussons, P. J., Jacoby, J., Mckay, A., Kelly, S. M., Price, N. C., et al. (1997) Glucose modification of human serum albumin: A structural study, Free Radic. Bio. Med., 22, 1217-1227, doi: 10.1016/s0891-5849(96)00557-6.

41. Munch, G., Keis, R., Wessels, A., Riederer, P., Bahner, U., et al. (1997) Determination of advanced glycation end products in serum by fluorescence spectroscopy and competitive ELISA, Eur. J. Clin. Chem. Clin. Biochem., 35, 669-677, doi: 10.1515/cclm.1997.35.9.669.

42. Cheng, R., Feng, Q., Argirov, O. K., and Ortwerth, B. J. (2005) K2P – a novel cross-link from human lens protein, Ann. N. Y. Acad. Sci., 1043, 184-194, doi: 10.1196/annals.1333.023.

43. Alavi, P., Yousefi, R., Amirghofran, S., Karbalaei-Heidari, H. R., and Moosavi-Movahedi, A. A. (2013) Structural analysis and aggregation propensity of reduced and nonreduced glycated insulin adducts, Appl. Biochem. Biotechnol., 170, 623-638, doi: 10.1007/s12010-013-0207-1.

44. Zhou, C., Qi, W., Lewis, E. N., and Carpenter, J. F. (2015) Concomitant Raman spectroscopy and dynamic light scattering for characterization of therapeutic proteins at high concentrations, Anal. Biochem., 472, 7-20, doi: 10.1016/j.ab.2014.11.016.

45. Bumagina, Z., Gurvits, B., Artemova, N., Muranov, K., and Kurganov, B. I. (2010) Paradoxical acceleration of dithiothreitol-induced aggregation of insulin in the presence of a chaperone, Int. J. Mol. Sci., 11, 4556-4579, doi: 10.3390/ijms11114556.

46. Kurganov, B. I. (2002) Kinetics of protein aggregation. Quantitative estimation of the chaperone-like activity in test-systems based on suppression of protein aggregation, Biochemistry (Moscow), 67, 409-422, doi: 10.1023/a:1015277805345.

47. Biswas, A., and Das, K. P. (2007) Alpha-crystallin assisted refolding of enzyme substrates: Optimization of external parameters, Protein J., 4, 247-255, doi: 10.1007/s10930-006-9066-8.

48. Khoshaman, K., Yousefi, R., Niazi, A., Oryan, A., Moosavi-Movahedi, A. A., et al. (2018) Importance of the positively charged residue at position 54 to the chaperoning function, conformational stability and amyloidogenic nature of human αA-crystallin, J. Biochem., 163, 187-199, doi: 10.1093/jb/mvx071.

49. Jakob, U., Gaestel, M., Engel, K., and Buchner, J. (1993) Small heat shock proteins are molecular chaperones, J. Biol. Chem., 268, 1517-1520.

50. Weber, K., and Osborn, M. (1969) The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis, J. Biol. Chem., 244, 4406-4412.

51. Schägger, H., and von Jagow, G. (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa, Anal. Biochem., 166, 368-379, doi: 10.1016/0003-2697(87)90587-2.

52. Porter, R. R. (1953) Partition chromatography of insulin and other proteins, Biochem. J., 53, 320-328, doi: 10.1042/bj0530320.

53. Pace, C. N., Vajdos, F., Fee, L., Grimsley, G., and Gray, T. (1995) How to measure and predict the molar absorption coefficient of a protein, Protein. Sci., 4, 2411-2423, doi: 10.1002/pro.5560041120.

54. Scientist for Experimental Data Fitting (1995) Microsoft Windows Version 2.0. Salt Lake City: Micro Math, Inc.

55. Moreau, K. L., and King, J. A. (2012) Protein misfolding and aggregation in cataract disease and prospects for prevention, Trends Mol. Med., 18, 273-282, doi: 10.1016/j.molmed.2012.03.005.

56. Argirova, M., and Breipohl, W. (2002) Comparison between modifications of lens proteins resulted from glycation with methylglyoxal, glyoxal, ascorbic acid, and fructose, J. Biochem. Mol. Toxicol., 16, 140-145, doi: 10.1002/jbt.10031.

57. Thiagarajan, G., Lakshmanan, J., Chalasani, M., and Balasubramanian, D. (2004) Peroxynitrite reaction with eye lens proteins: α-crystallin retains its activity despite modification, Biochem. Mol. Biol., 45, 2115-2121, doi: 10.1167/iovs.03-0929.

58. Cubillos-Rojas, M., Schneider, T., Sánchez-Tena, S., Bartrons, R., Ventura, F., et al. (2016) Analysis of protein oligomerization by electrophoresis, Methods Mol. Biol., 1449, 341-348, doi: 10.1007/978-1-4939-3756-1_22.

59. Nowak, P., Zbikowska, H. M., Ponczek, M., Kolodziejczyk, J., and Wachowicz, B. (2007) Different vulnerability of fibrinogen subunits to oxidative/nitrative modifications induced by peroxynitrite: Functional consequences, Thromb. Res., 121, 163-174, doi: 10.1016/j.thromres.2007.03.017.

60. Akhand, A. A., Hossain, K., Cato, M., Miyata, T., Du, J., et al. (2001) Glyoxal and methylglyoxal induce lyoxal and methyglyoxal induce aggergation and inactivation of ERK in human endothelial cells, Free Radic. Biol. Med., 31, 1228-1235, doi: 10.1016/s0891-5849(01)00702-x.

61. Bray, M. R., and Clarke, A. J. (1995) Identification of an essential tyrosyl residue in the binding site of Schizophyllum commune xylanase A, Biochemistry, 34, 2006-2014, doi: 10.1021/bi00006a022.

62. Ye, Y., Quijano, C., Robinson, K. M., Ricart, K. C., Strayer, A. L., et al. (2007) Prevention of peroxynitrite-induced apoptosis of motor neurons and pc12 cells by tyrosine-containing peptides, J. Biol. Chem., 282, 6324-6337, doi: 10.1074/jbc.M610800200.

63. Annibal, A., Colombo, G., Milzani, A., Dalle-Donne, I., Fedorova, M., et al. (2016) Identification of dityrosine cross-linked sites in oxidized human serum albumin, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 1019, 147-155, doi: 10.1016/j.jchromb.2015.12.022.

64. Maina, M. B., Al-Hilaly, Y. K., Burra, G., Rickard, J., Harrington, C., et al. (2021) Oxidative stress conditions result in trapping of PHF-core tau (297-391) intermediates, Cells, 10, 703, doi: 10.3390/cells10030703.

65. Hawe, A., Sutter, M., and Jiskoot, W. (2008) Extrinsic fluorescent dyes as tools for protein characterization, Pharm. Res., 25, 1487-1499, doi: 10.1007/s11095-007-9516-9.

66. Xue, C., Lin, T. Y., Chang, D., and Guo, Z. (2017) Thioflavin T as an amyloid dye: Fibril quantification, optimal concentration and effect on aggregation, R. Soc. Open. Sci., 4, 1-12, doi: 10.1098/rsos.160696.

67. Greenfield, N. J. (2006) Using circular dichroism spectra to estimate protein secondary structure, Nat. Protoc., 1, 2876-2890, doi: 10.1038/nprot.2006.202.

68. Schor, M., Reid, J. L., MacPhee, C. E., and Stanley-Wall, N. R. (2016) The diverse structures and functions of surfactant proteins, Trends Biochem. Sci., 41, 610-620, doi: 10.1016/j.tibs.2016.04.009.

69. Sattarahmady, N., Moosavi-Movahedi, A. A., and Habibi-Rezaei, M. (2011) A biophysical comparison of human serum albumin to be glycated in vivo and in vitro, J. Med. Biochem., 30, 5-10, doi: 10.2478/v10011-010-0026-7.

70. Yousefi, R., Javadi, S., Amirghofran, S., Oryan, A., and Moosavi-Movahedi, A. A. (2016) Assessment of structure, stability and aggregation of soluble lens proteins and alpha-crystallin upon non-enzymatic glycation: The pathomechanisms underlying cataract development in diabetic patients, Int. J. Biol. Macromol., 82, 328-338, doi: 10.1016/j.ijbiomac.2015.10.036.

71. Ho, M.-C., Peng Y.-J., Chen, S.-J., and Chiou, S.-H. (2010) Senile cataracts and oxidative stress, J. Clin. Gerontol. Geriatr., 1, 17-21, doi: 10.1016/j.jcgg.2010.10.006.

72. Javadi, S., Yousefi, R., Hosseinkhani, S., Tamaddon, A. M., and Uversky, V. N. (2017) Protective effects of carnosine on dehydroascorbate-induced structural alteration and opacity of lens crystallins: Important implications of carnosine pleiotropic functions to combat cataractogenesis, J. Biomol. Struct. Dyn., 35, 1766-1784, doi: 10.1080/07391102.2016.1194230.

73. Das, K. P., and Surewicz, W. K. (1995) On the substrate specificity of α-crystallin as a molecular chaperone, Biochem. J., 311, 367-370, doi: 10.1042/bj3110367.

74. Hook, D. W. A., and Harding, J. J. (1998) Protection of enzymes by α-crystallin acting as a molecular chaperone, Int. J. Biol. Macromol., 22, 295-306, doi: 10.1016/s0141-8130(98)00027-0.

75. Reddy, G. B., Das, K. P., Petrash, J. M., and Surewicz, W. K. (2000) Temperature-dependent chaperone activity and structural properties of human alphaA- and alphaB-crystallins, J. Biol. Chem., 275, 4565-4570, doi: 10.1074/jbc.275.7.4565.

76. Khoshaman, K., Yousefi, R., Tamaddon, A. M., Abolmaali, S. S., Oryan, A., et al. (2017) The impact of different mutations at Arg54 on structure, chaperone-like activity and oligomerization state of human αA-crystallin: The pathomechanism underlying congenital cataract-causing mutations R54L, R54P and R54C, Biochim. Biophys. Acta Proteins Proteom., 1865, 604-618, doi: 10.1016/j.bbapap.2017.02.003.

77. Kisic, B., Miric, D., Zoric, L., Ilic, A., and Dragojevic, I. (2012) Antioxidant capacity of lenses with age-related cataract, Oxid. Med. Cell. Longev., 2012, 467130, doi: 10.1155/2012/467130.

78. Donma, O., Yorulmaz, E. Ö., Pekel, H., and Suyugül, N. (2002) Blood and lens lipid peroxidation and antioxidant status in normal individuals, senile and diabetic cataractous patients, Curr. Eye Res., 25, 9-16, doi: 10.1076/ceyr.25.1.9.9960.

79. Amin, S., Barnett, G., Pathak, J., Roberts, C., and Sarangpani, P. (2014) Protein aggregation, particle formation, characterization & rheology, Curr. Opin. Colloid Interface Sci., 19, 438-449, doi: 10.1016/j.cocis.2014.10.002.

80. Singh, V. P., Bali, A., Singh, N., and Jaggi, A. S. (2014) Advanced glycation end products and diabetic complications, Korean J. Physiol. Pharmacol., 18, 1-14, doi: 10.4196/kjpp.2014.18.1.1.

81. Gul, A., Rahman, M. A., Hasnain, S. N., Salim, A., and Simjee, S. U. (2008) Could oxidative stress associate with age products in cataractogenesis? Curr. Eye Res., 33, 669-675, doi: 10.1080/02713680802250939.

82. Beswick, H. T., and Harding, J. J. (1987) Conformational changes induced in lens alpha- and gamma-crystallins by modification with glucose 6-phosphate. Implications for cataract, Biochem. J., 246, 761-769, doi: 10.1042/bj2460761.

83. Baynes, J. W., and Thorpe, S. R. (1999) Role of oxidative stress in diabetic complications: A new perspective on an old paradigm, Diabetes, 48, 1-9, doi: 10.2337/diabetes.48.1.1.

84. Bizzozero, O. A. (2009) Protein carbonylation in neurodegenerative and demyelinating CNS diseases, Handbook Neurochem. Mol. Neurobiol., 543-562, doi: 10.1007/978-0-387-30375-8_23.

85. Luthra, M., and Balasubramanian, D. (1993) Nonenzymatic glycation alters protein structure and stability. A study of two eye lens crystallins, J. Biol. Chem., 268, 18119-18127.

86. Asmat, U., Abad, K., and Ismail, K. (2015) Diabetes mellitus and oxidative stress-A concise review, Saudi Pharm. J., 24, 547-553, doi: 10.1016/j.jsps.2015.03.013.

87. Bartesaghi, S., and Radi, R. (2018) Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration, Redox Biol., 14, 618-625, doi: 10.1016/j.redox.2017.09.009.

88. Nuriel, T., Hansler, A., and Gross, S. S. (2011) Protein nitrotryptophan: formation, significance and identification, J. Proteomics, 74, 2300-2312, doi: 10.1016/j.jprot.2011.05.032.

89. Nagai, R., Unno, Y., Hayashi, M. C., Masuda, S., Hayase, F., et al. (2002) Peroxynitrite induces formation of Nε-(carboxymethyl) lysine by the cleavage of Amadori product and generation of glucosone and glyoxal from glucose, Diabetes, 51, 2833-2839, doi: 10.2337/diabetes.51.9.2833.

90. Kumar, M. S., Mrudula, T., Mitra, N., and Reddy, G. B. (2004) Enhanced degradation and decreased stability of eye lens alpha-crystallin upon methylglyoxal modification, Exp. Eye Res., 79, 577-583, doi: 10.1016/j.exer.2004.07.003.

91. Raman, B., and Rao, C. M. (1994) Chaperone-like activity and quaternary structure of alpha-crystallin, J. Biol. Chem., 269, 27264-27268.

92. Boelens, W. C. (2020) Structural aspects of the human small heat shock proteins related to their functional activities, Cell Stress Chaperones, 25, 581-591, doi: 10.1007/s12192-020-01093-1.

93. Nagaraj, R. H., Nahomi, R. B., Mueller, N. H., Raghavan, C. T., Ammar, D. A., et al. (2016) Therapeutic potential of α-crystallin, Biochim. Biophys. Acta, 1860, 252-257, doi: 10.1016/j.bbagen.2015.03.012.

94. Sharma, K. K., and Santhoshkumar, P. (2009) Lens aging: Effects of crystallins, Biochim. Biophys. Acta, 1790, 1095-1108, doi: 10.1016/j.bbagen.2009.05.008.

95. Cabrera, M. P., and Chihuailaf, R. H. (2011) Antioxidants and the integrity of ocular tissues, Vet. Med. Int., 2011, 905153, doi: 10.4061/2011/905153.