БИОХИМИЯ, 2021, том 86, вып. 12, с. 1766–1781

УДК 577.24

Существуют ли доказательства в пользу субтеломерно-теломерной теории старения?

Обзор

© 2021 G. Libertini 1,2*giacinto.libertini@yahoo.com, O. Shubernetskaya 3, G. Corbi 4,5, N. Ferrara 2,6

Member of the Italian Society for Evolutionary Biology (SIBE), 14100 Asti, Italy

Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy

ФГБУН Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН, 117997 Москва, Россия

Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy

Italian Society of Gerontology and Geriatrics (SIGG), 50129 Firenze, Italy

Istituti Clinici Scientifici Maugeri SPA – Società Benefit, IRCCS, 82037 Telese Terme (BN), Italy

Поступила в редакцию 16.06.2021
После доработки 30.07.2021
Принята к публикации 02.09.2021

DOI: 10.31857/S0320972521120022

КЛЮЧЕВЫЕ СЛОВА: старение, феноптоз, теломера, субтеломера, эпигенетические изменения, постепенное клеточное старение, клеточное старение, теломерный гетерохроматиновый кэп.

Аннотация

Теломерная теория описывает механизм клеточного старения, согласно которому старение происходит в основном за счет укорочения теломер при каждой дупликации клеток. Субтеломерно-теломерная теория лишена ряда недостатков первой теории и постулирует значительную роль субтеломерной ДНК в механизмах старения. В настоящей работе проведен углубленный анализ соответствия между положениями и следствиями субтеломерно-теломерной теории и результатами экспериментов. В частности, проанализированы данные касательно взаимосвязи между старением и i) эпигенетическими модификациями; ii) окислением и воспалением; iii) защитой теломеры; iv) теломерным гетерохроматиновым кэпом; v) постепенным клеточным старением; vi) клеточным старением; vii) угасанием организма по мере укорочения теломер. В целом, приведенные в работе данные свидетельствуют в пользу субтеломерно-теломерной теории или, по крайней мере, ей не противоречат. Вкратце, феномен клеточного старения, которое через различные пути в конечном итоге обусловливает старение всего организма, в значительной степени зависит от эпигенетических модификаций, регулируемых системой субтеломера–теломера–теломерный кэп–теломераза. Процессы, опосредующие клеточное старение, по-видимому, не являются случайными, неизбежными и необратимыми, а, скорее, вызываются и регулируются генетически предопределенными механизмами, соответственно, они подвержены изменениям и могут быть обратимы соответствующими способами. В целом, приведенные данные поддерживают тезис о том, что старение является генетически запрограммированным и регулируемым феноптотическим явлением и свидетельствуют против предположения, что старение вызвано случайным и неизбежным действием дегенеративных факторов.

Текст статьи

Пожалуйста, введите код, чтобы получить PDF файл с полным текстом статьи:

captcha

Сноски

* Адресат для корреспонденции.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических норм

В работе не содержатся результаты каких-либо работ с участием людей или животных, выполненные кем-либо из авторов статьи.

Список литературы

1. Libertini, G., Ferrara, N., Rengo, G., and Corbi, G. (2018) Elimination of senescent cells: prospects according to the subtelomere–telomere theory, Biochemistry (Moscow), 83, 1477-1488, doi: 10.1134/S0006297918120064.

2. Libertini, G., Corbi, G., and Ferrara, N. (2020) Importance and meaning of TERRA sequences for aging mechanisms, Biochemistry (Moscow), 85, 1505-1517, doi: 10.1134/S0006297920120044.

3. Libertini, G., Corbi, G., Conti, V., Shubernetskaya, O., and Ferrara, N. (2021) Evolutionary Gerontology and geriatrics – why and how we age, Advances in Studies of Aging and Health, 2, Switzerland, Springer, doi: 10.1007/978-3-030-73774-0.

4. Skulachev, V. P. (1997) Aging is a specific biological function rather than the result of a disorder in complex living systems: biochemical evidence in support of Weismann’s hypothesis, Biochemistry (Moscow), 62, 1191-1195.

5. Libertini, G. (2012) Classification of phenoptotic phenomena, Biochem (Moscow), 77, 707-715, doi: 10.1134/S0006297912070024.

6. Slijepcevic, P., and Hande, M. P. (1999) Chinese hamster telomeres are comparable in size to mouse telomeres, Cytogenet. Cell Genet., 85, 196-199, doi: 10.1159/000015292.

7. Gorbunova, V., Bozzella, M. J., and Seluanov, A. (2008) Rodents for comparative aging studies: from mice to beavers, Age (Dordr.), 30, 111-119, doi: 10.1007/s11357-008-9053-4.

8. Kubota, C., Yamakuchi, H., Todoroki, J., Mizoshita, K., Tabara, N., et al. (2000) Six cloned calves produced from adult fibroblast cells after long-term culture, Proc. Natl. Acad. Sci. USA, 97, 990-995, doi: 10.1073/pnas.97.3.990.

9. Lanza, R. P., Cibelli, J. B., Faber, D., Sweeney, R. W., Henderson, B., et al. (2001) Cloned cattle can be healthy and normal, Science, 294, 1893-1894, doi: 10.1126/science.1063440.

10. Fossel, M. B. (2004) Cells, aging and Human Disease, Oxford University Press, New York.

11. Blackburn, E. H. (2000) Telomere states and cell fates, Nature, 408, 53-56, doi: 10.1038/35040500.

12. Pontèn, J., Stein, W. D., and Shall, S. (1983) A quantitative analysis of the aging of human glial cells in culture, J. Cell Phys., 117, 342-352, doi: 10.1002/jcp.1041170309.

13. Jones, R. B., Whitney, R. G., and Smith, J. R. (1985) Intramitotic variation in proliferative potential: stochastic events in cellular aging, Mech. Ageing Dev., 29, 143-149, doi: 10.1016/0047-6374(85)90014-4.

14. Londoño-Vallejo, J. A., DerSarkissian, H., Cazes, L., and Thomas, G. (2001) Differences in telomere length between homologous chromosomes in humans, Nucleic Acids Res., 29, 3164-3171, doi: 10.1093/nar/29.15.3164.

15. Graakjaer, J., Bischoff, C., Korsholm, L., Holstebroe, S., Vach, W., et al. (2003) The pattern of chromosome-specific variations in telomere length in humans is determined by inherited, telomere-near factors and is maintained throughout life, Mech. Aging Dev., 124, 629-640, doi: 10.1016/s0047-6374(03)00081-2.

16. Hjelmborg, J. B., Dalgård, C., Möller, S., Steenstrup, T., Kimura, M., et al. (2015) The heritability of leucocyte telomere length dynamics, J. Med. Genet., 52, 297-302, doi: 10.1136/jmedgenet-2014-102736.

17. Brown, W. R., MacKinnon, P. J., Villasanté, A., Spurr, N., Buckle, V. J., and Dobson, M. J. (1990) Structure and polymorphism of human telomere-associated DNA, Cell, 63, 119-132, doi: 10.1016/0092-8674(90)90293-n.

18. Nergadze, S. G., Farnung, B. O., Wischnewski, H., Khoriauli, L., Vitelli, V., et al. (2009) CpG-island promoters drive transcription of human telomeres, RNA, 15, 2186-2194, doi: 10.1261/rna.1748309.

19. Diman, A., and Decottignies, A. (2018) Genomic origin and nuclear localization of TERRA telomeric repeat-containing RNA: from Darkness to Dawn, FEBS J., 285, 1389-1398, doi: 10.1111/febs.14363.

20. Chu, H.-P., Cifuentes-Rojas, C., Kesner, B., Aeby, E., Lee, H.-G., et al. (2017) TERRA RNA antagonizes ATRX and protects telomeres, Cell, 170, 86-101, doi: 10.1016/j.cell.2017.06.017.

21. Chu, H.-P., Froberg, J. E., Kesner, B., Oh, H. J., Ji, F., et al. (2017) PAR-TERRA directs homologous sex chromosome pairing, Nat. Struct. Mol. Biol., 24, 620-631, doi: 10.1038/nsmb.3432.

22. Ben-Porath, I., and Weinberg, R. (2005) The signals and pathways activating cellular senescence, Int. J. Biochem. Cell Biol., 37, 961-976, doi: 10.1016/j.biocel.2004.10.013.

23. Coppé, J.-P., Patil, C. K., Rodier, F., Sun, Y., Muñoz, D. P., et al. (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic Russian Academy of Sciences and the p53 tumor suppressor, PLoS Biol., 6, 2853-2868, doi: 10.1371/journal.pbio.0060301.

24. Cristofalo, V. J., and Pignolo, R. J. (1993) Replicative senescence of human fibroblast-like cells in culture, Physiol. Rev., 73, 617-638, doi: 10.1152/physrev.1993.73.3.617.

25. Wang, E. (1995) Senescent human fibroblasts resist programmed cell death, and failure to suppress bcl2 is involved, Cancer Res., 55, 2284-2292.

26. Kirkland, J. L., and Tchkonia, T. (2017) Cellular senescence: a translational perspective, EBioMedicine, 21, 21-28, doi: 10.1016/j.ebiom.2017.04.013.

27. Libertini, G., and Ferrara, N. (2016) Aging of perennial cells and organ parts according to the programmed aging paradigm, Age (Dordr.), 38, 35, doi: 10.1007/s11357-016-9895-0.

28. Horvath, S. (2013) DNA methylation age of human tissues and cell types, Gen. Biol., 14, R115, doi: 10.1186/gb-2013-14-10-r115.

29. Mammalian Methylation Consortium (2021) Universal DNA methylation age across mammalian tissues, bioRxiv, doi: 10.1101/2021.01.18.426733.

30. Bernstein, B. E., Stamatoyannopoulos, J. A., Costello, J. F., Ren, B., Milosavljevic, A., et al. (2010) The NIH roadmap epigenomics mapping consortium, Nat. Biotechnol., 28, 1045-1048, doi: 10.1038/nbt1010-1045.

31. Illingworth, R., Kerr, A., Desousa, D., Jørgensen, H., Ellis, P., et al. (2008) A novel CpG island set identifies tissue-specific methylation at developmental gene loci, PLoS Biol., 6, e22, doi: 10.1371/journal.pbio.0060022.

32. Christensen, B. C., Houseman, E. A., Marsit, C. J., Zheng, S., Wrensch, M. R., et al. (2009) Aging and environmental exposures alter tissue specific DNA methylation dependent upon CpG island context, PLoS Genet., 5, e1000602, doi: 10.1371/journal.pgen.1000602.

33. Thompson, R. F., Atzmon, G., Gheorghe, C., Liang, H. Q., Lowes, C., et al. (2010) Tissue-specific dysregulation of DNA methylation in aging, Aging Cell, 9, 506-518, doi: 10.1111/j.1474-9726.2010.00577.x.

34. Bollati, V., Schwartz, J., Wright, R., Litonjua, A., Tarantini, L., et al. (2009) Decline in genomic DNA methylation through aging in a cohort of elderly subjects, Mech. Ageing Dev., 130, 234-239, doi: 10.1016/j.mad.2008.12.003.

35. Bell, J. T., Tsai, P. C., Yang, T. P., Pidsley, R., Nisbet, J., et al. (2012) Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population, PLoS Genet., 8, e1002629, doi: 10.1371/journal.pgen.1002629.

36. Horvath, S., Zhang, Y., Langfelder, P., Kahn, R., Boks, M., et al. (2012) Aging effects on DNA methylation modules in human brain and blood tissue, Genome Biol., 13, R97, doi: 10.1186/gb-2012-13-10-r97.

37. Rakyan, V. K., Down, T. A., Maslau, S., Andrew, T., Yang, T. P., et al. (2010) Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains, Genome Res., 20, 434-439, doi: 10.1101/gr.103101.109.

38. Teschendorff, A. E., Menon, U., Gentry-Maharaj, A., Ramus, S. J., Weisenberger, D. J., et al. (2010) Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer, Genome Res., 20, 440-446, doi: 10.1101/gr.103606.109.

39. Hernandez, D. G., Nalls, M. A., Gibbs, J. R., Arepalli, S., van der Brug, M., et al. (2011) Distinct DNA methylation changes highly correlated with chronological age in the human brain, Hum. Mol. Genet., 20, 1164-1172, doi: 10.1093/hmg/ddq561.

40. Koch, C. M., and Wagner, W. (2011) Epigenetic-aging-signature to determine age in different tissues, Aging (Albany NY), 10, 1018-1027, doi: 10.18632/aging.100395.

41. Bocklandt, S., Lin, W., Sehl, M. E., Sánchez, F. J., Sinsheimer, J. S., et al. (2011) Epigenetic predictor of age, PLoS One, 6, e14821, doi: 10.1371/journal.pone.0014821.

42. Booth, L. N., and Brunet, A. (2016) The aging epigenome, Mol. Cell, 62, 728-744, doi: 10.1016/j.molcel.2016.05.013.

43. Kane, A. E., and Sinclair, D. A. (2019) Epigenetic changes during aging and their reprogramming potential, Crit. Rev. Biochem. Mol. Biol., 54, 61-83, doi: 10.1080/10409238.2019.1570075.

44. Greer, E. L., and Shi, Y. (2012) Histone methylation: a dynamic mark in health, disease and inheritance, Nat. Rev. Genet., 13, 343-357, doi: 10.1038/nrg3173.

45. McCauley, B. S., and Dang, W. (2014) Histone methylation and aging: lessons learned from model systems, Biochim. Biophys. Acta, 1839, 1454-1462, doi: 10.1016/j.bbagrm.2014.05.008.

46. Pal, S., and Tyler, J. K. (2016) Epigenetics and aging, Sci. Adv., 2, e1600584, doi: 10.1126/sciadv.1600584.

47. Ashapkin, V. V., Kutueva, L. I., and Vanyushin, B. F. (2017) Aging as an epigenetic phenomenon, Curr. Genomics, 18, 385-407, doi: 10.2174/1389202918666170412112130.

48. Bird, A. (2002) DNA methylation patterns and epigenetic memory, Genes Dev., 16, 6-21, doi: 10.1101/gad.947102.

49. Stein, R., Razin, A., and Cedar, H. (1982) In vitro methylation of the hamster adenine phosphoribosyltransferase gene inhibits its expression in mouse L cells, Proc. Natl. Acad. Sci. USA, 79, 3418-3422, doi: 10.1073/pnas.79.11.3418.

50. Hansen, R. S., and Gartler, S. M. (1990) 5-Azacytidine-induced reactivation of the human X chromosome-linked PGK1 gene is associated with a large region of cytosine demethylation in the 5′ CpG island, Proc. Natl. Acad. Sci. USA, 87, 4174-4178, doi: 10.1073/pnas.87.11.4174.

51. Benetti, R., Garcнa-Cao, M., and Blasco, M. A. (2007) Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres, Nat. Genet., 39, 243-250, doi: 10.1038/ng1952.

52. Maeda, T., Guan, J. Z., Higuchi, Y., Oyama, J., and Makino, N. (2009) Aging-related alterations of subtelomeric methylation in sarcoidosis patients, J. Gerontol. A Biol. Sci. Med. Sci., 64, 752-760, doi: 10.1093/gerona/glp049.

53. Blasco, M. A. (2007) The epigenetic regulation of mammalian telomeres, Nat. Rev. Genet., 8, 299-309, doi: 10.1038/nrg2047.

54. Buxton, J. L., Suderman, M., Pappas, J. J., Borghol, N., McArdle, W., et al. (2014) Human leukocyte telomere length is associated with DNA methylation levels in multiple subtelomeric and imprinted loci, Sci. Rep., 4, 4954, doi: 10.1038/srep04954.

55. Schellenberg, A., Lin, Q., Schüler, H., Koch, C. M., Joussen, S., et al. (2011) Replicative senescence of mesenchymal stem cells causes DNA-methylation changes which correlate with repressive histone marks, Aging (Albany NY), 3, 873-888, doi: 10.18632/aging.100391.

56. Zhou, X., Hong, Y., Zhang, H., and Li, X. (2020) Mesenchymal stem cell senescence and rejuvenation: current status and challenges, Front. Cell. Dev. Biol., 8, 364, doi: 10.3389/fcell.2020.00364.

57. Harman, D. (1956) Aging: a theory based on free radical and radiation chemistry, J. Gerontol., 11, 298-300, doi: 10.1093/geronj/11.3.298.

58. Höhn, A., Weber, D., Jung, T., Ott, C., Hugo, M., et al. (2017) Happily (n)ever after: Aging in the context of oxidative stress, proteostasis loss and cellular senescence, Redox Biol., 11, 482-501, doi: 10.1016/j.redox.2016.12.001.

59. Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., et al. (2018) Oxidative stress, aging, and diseases, Clin. Interv. Aging, 13, 757-772, doi: 10.2147/CIA.S158513.

60. Reeg, S., and Grune, T. (2015) Protein oxidation in aging: does it play a role in aging progression? Antioxid. Redox Signal., 23, 239-255, doi: 10.1089/ars.2014.6062.

61. Barnes, R. P., Fouquerel, E., and Opresko, P. L. (2019) The impact of oxidative DNA damage and stress on telomere homeostasis, Mech. Ageing Dev., 177, 37-45, doi: 10.1016/j.mad.2018.03.013.

62. Zuo, L., Prather, E. R., Stetskiv, M., Garrison, D. E., Meade, J. R., et al. (2019) Inflammaging and oxidative stress in human diseases: from molecular mechanisms to novel treatments, Int. J. Mol. Sci., 20, 4472, doi: 10.3390/ijms20184472.

63. Beckman, K. B., and Ames, B. N. (1998) The free radical theory of aging matures, Physiol. Rev., 78, 547-581, doi: 10.1152/physrev.1998.78.2.547.

64. Oliveira, B. F., Nogueira-Machado, J.-A., and Chaves, M. M. (2010) The role of oxidative stress in the aging process, ScientificWorldJournal, 10, 1121-1128, doi: 10.1100/tsw.2010.94.

65. Sanz, A., and Stefanatos, R. K. (2008) The mitochondrial free radical theory of aging: a critical view, Curr. Aging Sci., 1, 10-21, doi: 10.2174/1874609810801010010.

66. Skulachev, V. P. (2009) New data on biochemical mechanism of programmed senescence of organisms and antioxidant defense of mitochondria, Biochemistry (Moscow), 74, 1400-1403, doi: 10.1134/s0006297909120165.

67. Bohr, V. A., and Anson, R. M. (1995) DNA damage, mutation and fine structure DNA repair in aging, Mutat. Res., 338, 25-34, doi: 10.1016/0921-8734(95)00008-t.

68. Weinert, B. T., and Timiras, P. S. (2003) Invited review: theories of aging, J. Appl. Physiol., 95, 1706-1716, doi: 10.1152/japplphysiol.00288.2003.

69. Franceschi, C., Bonafè, M., Valensin, S., Olivieri, F., De Luca, M., et al. (2000) Inflamm-aging. An evolutionary perspective on immunosenescence, Ann. NY Acad. Sci., 908, 244-254, doi: 10.1111/j.1749-6632.2000.tb06651.x.

70. Fülöp, T. (2017) Immunosenescence and inflammaging: an intricate connection, Innov. Aging, 1 (Suppl 1), 961, doi: 10.1093/geroni/igx004.3465.

71. Libertini, G. (2015) Non-programmed versus programmed aging paradigm, Curr. Aging Sci., 8, 56-68, doi: 10.2174/1874609808666150422111623.

72. Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., and Campbell, K. H. (1997) Viable offspring derived from fetal and adult mammalian cells, Nature, 385, 810-813, doi: 10.1038/385810a0.

73. Cowan, C. A., Atienza, J., Melton, D. A., and Eggan, K. (2005) Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells, Science, 309, 1369-1373, doi: 10.1126/science.1116447.

74. Takahashi, K., and Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, 126, 663-676, doi: 10.1016/j.cell.2006.07.024.

75. D’Autrйaux, B., and Toledano, M. B. (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis, Nat. Rev. Mol. Cell Biol., 8, 813-824, doi: 10.1038/nrm2256.

76. Schieber, M., and Chandel, N. S. (2014) ROS function in redox signaling and oxidative stress, Curr. Biol., 24, R453-462, doi: 10.1016/j.cub.2014.03.034.

77. Bettin, N., Oss Pegorar, C., and Cusanelli, E. (2019) The emerging roles of TERRA in telomere maintenance and genome stability, Cells, 8, 246, doi: 10.3390/cells8030246.

78. Montero, J. J., Lopez de Silanes, I., Grana, O., and Blasco, M. A. (2016) Telomeric RNAs are essential to maintain telomeres, Nat. Commun., 7, 12534, doi: 10.1038/ncomms12534.

79. Libertini, G., and Ferrara, N. (2016) Possible interventions to modify aging, Biochemistry (Moscow), 81, 1413-1428, doi: 10.1134/S0006297916120038.

80. Stewart, J. A., Chaiken, M. F., Wang, F., and Price, C. M. (2012) Maintaining the end: roles of telomere proteins in end-protection, telomere replication and length regulation, Mutat. Res., 730, 12-19, doi: 10.1016/j.mrfmmm.2011.08.011.

81. Jones, M., Bisht, K., Savage, S. A., Nandakumar, J., Keegan, C. E., and Maillard, I. (2016) The shelterin complex and hematopoiesis, J. Clin. Invest., 126, 1621-1629, doi: 10.1172/JCI84547.

82. Takai, K. K., Hooper, S., Blackwood, S., Gandhi, R., and de Lange, T. (2010) In vivo stoichiometry of shelterin components, J. Biol. Chem., 285, 1457-1467, doi: 10.1074/jbc.M109.038026.

83. Li, J. S. Z., Fusté, J. M., Simavorian, T., Bartocci, C., Tsai, J., et al. (2017) TZAP: A telomere-associated protein involved in telomere length control, Science, 355, 638-641, doi: 10.1126/science.aah6752.

84. De Lange, T. (2005) Shelterin: the protein complex that shapes and safeguards human telomeres, Genes Dev., 19, 2100-2110, doi: 10.1101/gad.1346005.

85. Aksenova, A. Y., and Mirkin, S. M. (2019) At the beginning of the end and in the middle of the beginning: structure and maintenance of telomeric DNA repeats and interstitial telomeric sequences, Genes, 10, 118, doi: 10.3390/genes10020118.

86. Simonet, T., Zaragosi, L.-E., Philippe, C., Lebrigand, K., Schouteden, C., et al. (2011) The human TTAGGG repeat factors 1 and 2 bind to a subset of interstitial telomeric sequences and satellite repeats, Cell Res., 21, 1028-1038, doi: 10.1038/cr.2011.40.

87. Kwon, S. M., Hong, S. M., Lee, Y. K., Min, S., and Yoon, G. (2019) Metabolic features and regulation in cell senescence, BMB Rep., 52, 5-12, doi: 10.5483/BMBRep.2019.52.1.291.

88. D’Mello, N. P., and Jazwinski, S. M. (1991) Telomere length constancy during aging of Saccharomyces cerevisiae, J. Bacteriol., 173, 6709-6713, doi: 10.1128/jb.173.21.6709-6713.1991.

89. Laun, P., Pichova, A., Madeo, F., Fuchs, J., Ellinger, A., et al. (2001) Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis, Mol. Microbiol., 39, 1166-1173, doi: 10.1111/j.1365-2958.2001.02317.x.

90. Herker, E., Jungwirth, H., Lehmann, K. A., Maldener, C., Fröhlich, K. U., et al. (2004) Chronological aging leads to apoptosis in yeast, J. Cell Biol., 164, 501-507, doi: 10.1083/jcb.200310014.

91. Lesur, I., and Campbell, J. L. (2004) The transcriptome of prematurely aging yeast cells is similar to that of telomerase-deficient cells, MBC Online, 15, 1297-1312, doi: 10.1091/mbc.e03-10-0742.

92. Libertini, G. (2009) The role of telomere-telomerase system in age-related fitness decline, a tameable process, in Telomeres: Function, Shortening and Lengthening (Mancini, L., ed.) Nova Science Publ., New York, pp. 77-132.

93. Koch, C. M. (2012) Monitoring of cellular senescence by DNA-methylation at specific CpG sites, Aging Cell, 11, 366-369, doi: 10.1111/j.1474-9726.2011.00784.x.

94. Schellenberg, A. (2014) Proof of principle: quality control of therapeutic cell preparations using senescence-associated DNA-methylation changes, BMC Res. Notes, 7, 254, doi: 10.1186/1756-0500-7-254.

95. Fernandez-Rebollo, E. (2020) Senescence-associated metabolomic phenotype in primary and iPSC-derived mesenchymal stromal cells, Stem Cell Rep., 14, 201-209, doi: 10.1016/j.stemcr.2019.12.012.

96. Wagner, W., Horn, P., Castoldi, M., Diehlmann, A., Bork, S., et al. (2008) Replicative senescence of mesenchymal stem cells: a continuous and organized process, PLoS One, 3, e2213, doi: 10.1371/journal.pone.0002213.

97. Spitzhorn, L. S. (2019) Human iPSC-derived MSCs (iMSCs) from aged individuals acquire a rejuvenation signature, Stem Cell Res. Ther., 10, 100, doi: 10.1186/s13287-019-1209-x.

98. Hynes, K. (2013) Mesenchymal stem cells from iPS cells facilitate periodontal regeneration, J. Dent. Res., 92, 833-839, doi: 10.1177/0022034513498258.

99. Robin, J. D., Ludlow, A. T., Batten, K., Magdinier, F., Stadler, G., et al. (2014) Telomere position effect: regulation of gene expression with progressive telomere shortening over long distances, Genes Dev., 28, 2464-2476, doi: 10.1101/gad.251041.114.

100. Takubo, K., Aida, J., Izumiyama-Shimomura, N., Ishikawa, N., Sawabe, M., et al. (2010) Changes of telomere length with aging, Geriatr. Gerontol. Int., 10, S197-S206, doi: 10.1111/j.1447-0594.2010.00605.x.

101. Daniali, L., Benetos, A., Susser, E., Kark, J. D., Labat, C., et al. (2013) Telomeres shorten at equivalent rates in somatic tissues of adults, Nat. Commun., 4, 1597, doi: 10.1038/ncomms2602.

102. Okuda, K., Bardeguez, A., Gardner, J. P., Rodriguez, P., Ganesh, V., et al. (2002) Telomere length in the newborn, Pediatr. Res., 52, 377-381, doi: 10.1203/00006450-200209000-00012.

103. Libertini, G. (2014) Programmed aging paradigm: how we get old, Biochemistry (Moscow), 79, 1004-1016, doi: 10.1134/S0006297914100034.

104. Moraes, F., and Góes, A. (2016) A decade of human genome project conclusion: Scientific diffusion about our genome knowledge, Biochem. Mol. Biol. Educ., 44, 215-223, doi: 10.1002/bmb.20952.