БИОХИМИЯ, 2021, том 86, вып. 8, с. 1195–1206

УДК 577.217.348

Рибосома как транслоказа и хеликаза

Обзор

© 2021 Ч. Баоchen_bao@urmc.rochester.edu, Д.Н. Ермоленко *dmitri_ermolenko@urmc.rochester.edu

Department of Biochemistry & Biophysics, School of Medicine and Dentistry and Center for RNA Biology, University of Rochester, Rochester, NY, USA

Поступила в редакцию 10.05.2021
После доработки 21.05.2021
Принята к публикации 21.05.2021

DOI: 10.31857/S0320972521080108

КЛЮЧЕВЫЕ СЛОВА: рибосома, транслокация, хеликаза, рабочий ход, броуновский храповик.

Аннотация

В процессе синтеза белка рибосома передвигается вдоль молекулы мРНК, считывая один кодон за другим. Транслокация рибосомы индуцируется консервативным белком, фактором элонгации G (EF‑G) у бактерий и фактором элонгации 2 (EF‑2) у эукариот. Индуцируемая фактором элонгации EF‑G транслокация приводит к раскручиванию внутримолекулярных вторичных структур мРНК на три пары оснований одновременно, что превращает транслирующую рибосому в процессивную хеликазу. Профессор Александр Сергеевич Спирин внёс значительный вклад в понимание молекулярного механизма транслокации. В настоящем обзоре рассмотрены идей Спирина о транслокации рибосом и последние достижения в этой области, которые стали возможны благодаря новаторской работе Спирина. Мы также обсудим нерешённые проблемы, касающиеся транслоказной и хеликазной активности рибосомы.

Текст статьи

Пожалуйста, введите код, чтобы получить PDF файл с полным текстом статьи:

captcha

Сноски

* Адресат для корреспонденции.

Финансирование

Работа лаборатории Ермоленко была поддержана Национальным Институтом Здоровья (гранты №№ R01GM099719 и R01GM132041).

Благодарности

Эта статья посвящена памяти профессора Спирина, который был руководителем дипломной работы одного из авторов статьи (Д.Н. Ермоленко). Д.Н. Ермоленко выражает благодарность Александру Сергеевичу Спирину за его бесценные уроки критического мышления и строгого подхода к проведению научных исследований. Авторы благодарят Грегори Балларда за его комментарии, касающиеся настоящей статьи.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических норм

В статье не содержатся материалы работ, выполненных кем-либо из авторов, с участием людей или животных.

Список литературы

1. Spirin, A. S. (1968) How does the ribosome work? A hypothesis based on the two subunit construction of the ribosome, Curr. Mod. Biol., 2, 115-127, doi: 10.1016/0303-2647(68)90017-8.

2. Spirin, A. S. (1969) A model of the functioning ribosome: locking and unlocking of the ribosome subparticles, Cold Spring Harb. Symp. Quant. Biol., 34, 197-207, doi: 10.1101/sqb.1969.034.01.026.

3. Spirin, A. S. (1985) Ribosomal translocation: facts and models, Prog. Nucleic Acid. Res. Mol. Biol., 32, 75-114, doi: 10.1016/s0079-6603(08)60346-3.

4. Spirin, A. S. (2009) The ribosome as a conveying thermal ratchet machine, J. Biol. Chem., 284, 21103-21119, doi: 10.1074/jbc.X109.001552.

5. Finkelstein, A. V., Razin, S. V., and Spirin, A. S. (2018) Intersubunit mobility of the ribosome, Mol. Biol. (Mosk.), 52, 921-934, doi: 10.1134/S0026898418060083.

6. Spirin, A. S. (1968) On the mechanism of ribosome function. The hypothesis of locking-unlocking of subparticles [in Russsian], Dokl. Akad. Nauk SSSR, 179, 1467-1470.

7. Gavrilova, L. P., and Spirin, A. S. (1971) Stimulation of “non-enzymic” translocation in ribosomes by p-chloromercuribenzoate, FEBS Lett., 17, 324-326, doi: 10.1016/0014-5793(71)80177-1.

8. Gavrilova, L. P., and Spirin, A. S. (1974) “Nonenzymatic” translation, Methods Enzymol., 30, 452-462, doi: 10.1016/0076-6879(74)30045-6.

9. Belitsina, N. V., Glukhova, M. A., and Spirin, A. S. (1975) Translocation in ribosomes by attachment-detachment of elongation factor G without GTP cleavage: evidence from a column-bound ribosome system, FEBS Lett., 54, 35-38, doi: 10.1016/0014-5793(75)81062-3.

10. Belitsina, N. V., Tnalina, G. Z., and Spirin, A. S. (1981) Template-free ribosomal synthesis of polylysine from lysyl-tRNA, FEBS Lett., 131, 289-292, doi: 10.1016/0014-5793(81)80387-0.

11. Belitsina, N. V., Tnalina, G. Z., and Spirin, A. S. (1982) Template-free ribosomal synthesis of polypeptides from aminoacyl-tRNAs, Biosystems, 15, 233-241, doi: 10.1016/0303-2647(82)90008-9.

12. Spirin, A. S. (2002) Ribosome as a molecular machine, FEBS Lett., 514, 2-10, doi: 10.1016/s0014-5793(02)02309-8.

13. Spirin, A. S. (2004) The ribosome as an RNA-based molecular machine, RNA Biol., 1, 3-9, doi: 10.4161/rna.1.1.889.

14. Ling, C., and Ermolenko, D. N. (2016) Structural insights into ribosome translocation, Wiley Interdiscip. Rev. RNA, 7, 620-636, doi: 10.1002/wrna.1354.

15. Noller, H. F., Lancaster, L., Zhou, J., and Mohan, S. (2017) The ribosome moves: RNA mechanics and translocation, Nat. Struct. Mol. Biol., 24, 1021-1027, doi: 10.1038/nsmb.3505.

16. Rodnina, M. V., Peske, F., Peng, B. Z., Belardinelli, R., and Wintermeyer, W. (2019) Converting GTP hydrolysis into motion: versatile translational elongation factor G, Biol. Chem., 401, 131-142, doi: 10.1515/hsz-2019-0313.

17. Mohan, S., Donohue, J. P., and Noller, H. F. (2014) Molecular mechanics of 30S subunit head rotation, Proc. Natl. Acad. Sci. USA, 111, 13325-13330, doi: 10.1073/pnas.1413731111.

18. Gavrilova, L. P., Kostiashkina, O. E., Koteliansky, V. E., Rutkevitch, N. M., and Spirin, A. S. (1976) Factor-free (“non-enzymic”) and factor-dependent systems of translation of polyuridylic acid by Escherichia coli ribosomes, J. Mol. Biol., 101, 537-552, doi: 10.1016/0022-2836(76)90243-6.

19. Rodnina, M. V., Savelsbergh, A., Katunin, V. I., and Wintermeyer, W. (1997) Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome, Nature, 385, 37-41, doi: 10.1038/385037a0.

20. Fredrick, K., and Noller, H. F. (2003) Catalysis of ribosomal translocation by sparsomycin, Science, 300, 1159-1162, doi: 10.1126/science.1084571.

21. Parmeggiani, A., and Sander, G. (1981) Properties and regulation of the GTPase activities of elongation factors Tu and G, and of initiation factor 2, Mol. Cell. Biochem., 35, 129-158, doi: 10.1007/BF02357085.

22. Moazed, D., Robertson, J. M., and Noller, H. F. (1988) Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA, Nature, 334, 362-364, doi: 10.1038/334362a0.

23. Inoue-Yokosawa, N., Ishikawa, C., and Kaziro, Y. (1974) The role of guanosine triphosphate in translocation reaction catalyzed by elongation factor G, J. Biol. Chem., 249, 4321-4323, doi: 10.1016/S0021-9258(19)42519-2.

24. Belitsina, N. V., Glukhova, M. A., and Spirin, A. S. (1976) Stepwise elongation factor G-promoted elongation of polypeptides on the ribosome without GTP cleavage, J. Mol. Biol., 108, 609-613, doi: 10.1016/s0022-2836(76)80140-4.

25. Belitsina, N. V., Glukhova, M. A., and Spirin, A. S. (1979) Elongation factor G-promoted translocation and polypeptide elongation in ribosomes without GTP cleavage: use of columns with matrix-bound polyuridylic acid, Methods Enzymol., 60, 761-779, doi: 10.1016/s0076-6879(79)60070-8.

26. Ermolenko, D. N., and Noller, H. F. (2011) mRNA translocation occurs during the second step of ribosomal intersubunit rotation, Nat. Struct. Mol. Biol., 18, 457-462, doi: 10.1038/nsmb.2011.

27. Flis, J., Holm, M., Rundlet, E. J., Loerke, J., Hilal, T., et al. (2018) tRNA Translocation by the eukaryotic 80S ribosome and the impact of GTP hydrolysis, Cell Rep., 25, 2676-2688.e7, doi: 10.1016/j.celrep.2018.11.040.

28. Pan, D., Kirillov, S. V., and Cooperman, B. S. (2007) Kinetically competent intermediates in the translocation step of protein synthesis, Mol. Cell, 25, 519-529, doi: 10.1016/j.molcel.2007.01.014.

29. Salsi, E., Farah, E., and Ermolenko, D. N. (2016) EF-G activation by phosphate analogs, J. Mol. Biol., 428, 2248-2258, doi: 10.1016/j.jmb.2016.03.032.

30. Joseph, S., and Noller, H. F. (1998) EF-G-catalyzed translocation of anticodon stem-loop analogs of transfer RNA in the ribosome, EMBO J., 17, 3478-3483, doi: 10.1093/emboj/17.12.3478.

31. Desai, V. P., Frank, F., Lee, A., Righini, M., Lancaster, L., et al. (2019) Co-temporal force and fluorescence measurements reveal a ribosomal gear shift mechanism of translation regulation by structured mRNAs, Mol. Cell, 75, 1007-1019.e5, doi: 10.1016/j.molcel.2019.07.024.

32. Bretscher, M. S. (1968) Translocation in protein synthesis: a hybrid structure model, Nature, 218, 675-677, doi: 10.1038/218675a0.

33. Spirin, A. S., Baranov, V. I., Polubesov, G. S., Serdyuk, I. N., and May, R. P. (1987) Translocation makes the ribosome less compact, J. Mol. Biol., 194, 119-126, doi: 10.1016/0022-2836(87)90720-0.

34. Serdyuk, I., Baranov, V., Tsalkova, T., Gulyamova, D., Pavlov, M., et al. (1992) Structural dynamics of translating ribosomes, Biochimie, 74, 299-306, doi: 10.1016/0300-9084(92)90107-p.

35. Frank, J., and Gonzalez, R. L., Jr. (2010) Structure and dynamics of a processive Brownian motor: the translating ribosome, Annu. Rev. Biochem., 79, 381-412, doi: 10.1146/annurev-biochem-060408-173330.

36. Moazed, D., and Noller, H. F. (1989) Intermediate states in the movement of transfer RNA in the ribosome, Nature, 342, 142-148, doi: 10.1038/342142a0.

37. Frank, J., and Agrawal, R. K. (2000) A ratchet-like inter-subunit reorganization of the ribosome during translocation, Nature, 406, 318-322, doi: 10.1038/35018597.

38. Valle, M., Zavialov, A., Sengupta, J., Rawat, U., Ehrenberg, M., and Frank, J. (2003) Locking and unlocking of ribosomal motions, Cell, 114, 123-134, doi: 10.1016/S0092-8674(03)00476-8.

39. Korostelev, A., Ermolenko, D. N., and Noller, H. F. (2008) Structural dynamics of the ribosome, Curr. Opin. Chem. Biol., 12, 674-683, doi: 10.1016/j.cbpa.2008.08.037.

40. Ermolenko, D. N., Majumdar, Z. K., Hickerson, R. P., Spiegel, P. C., Clegg, R. M., and Noller, H. F. (2007) Observation of intersubunit movement of the ribosome in solution using FRET, J. Mol. Biol., 370, 530-540, doi: 10.1016/j.jmb.2007.04.042.

41. Ermolenko, D. N., Spiegel, P. C., Majumdar, Z. K., Hickerson, R. P., Clegg, R. M., and Noller, H. F. (2007) The antibiotic viomycin traps the ribosome in an intermediate state of translocation, Nat. Struct. Mol. Biol., 14, 493-497, doi: 10.1038/nsmb1243.

42. Agirrezabala, X., Lei, J., Brunelle, J. L., Ortiz-Meoz, R. F., Green, R., and Frank, J. (2008) Visualization of the hybrid state of tRNA binding promoted by spontaneous ratcheting of the ribosome, Mol. Cell, 32, 190-197, doi: 10.1016/j.molcel.2008.10.001.

43. Julian, P., Konevega, A. L., Scheres, S. H., Lazaro, M., Gil, D., et al. (2008) Structure of ratcheted ribosomes with tRNAs in hybrid states, Proc. Natl. Acad. Sci. USA, 105, 16924-16927, doi: 10.1073/pnas.0809587105.

44. Blanchard, S. C., Kim, H. D., Gonzalez, R. L., Jr., Puglisi, J. D., and Chu, S. (2004) tRNA dynamics on the ribosome during translation, Proc. Natl. Acad. Sci. USA, 101, 12893-12898, doi: 10.1073/pnas.0403884101.

45. Cornish, P. V., Ermolenko, D. N., Noller, H. F., and Ha, T. (2008) Spontaneous intersubunit rotation in single ribosomes, Mol. Cell, 30, 578-588, doi: 10.1016/j.molcel.2008.05.004.

46. Fei, J., Kosuri, P., MacDougall, D. D., and Gonzalez, R. L., Jr. (2008) Coupling of ribosomal L1 stalk and tRNA dynamics during translation elongation, Mol. Cell, 30, 348-359, doi: 10.1016/j.molcel.2008.03.012.

47. Marshall, R. A., Aitken, C. E., and Puglisi, J. D. (2009) GTP hydrolysis by IF2 guides progression of the ribosome into elongation, Mol. Cell, 35, 37-47, doi: 10.1016/j.molcel.2009.06.008.

48. Spahn, C. M., Gomez-Lorenzo, M. G., Grassucci, R. A., Jorgensen, R., Andersen, G. R., et al. (2004) Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation, EMBO J., 23, 1008-1019, doi: 10.1038/sj.emboj.7600102.

49. Schuwirth, B. S., Borovinskaya, M. A., Hau, C. W., Zhang, W., Vila-Sanjurjo, A., et al. (2005) Structures of the bacterial ribosome at 3.5 Å resolution, Science, 310, 827-834, doi: 10.1126/science.1117230.

50. Ramrath, D. J., Lancaster, L., Sprink, T., Mielke, T., Loerke, J., et al. (2013) Visualization of two transfer RNAs trapped in transit during elongation factor G-mediated translocation, Proc. Natl. Acad. Sci. USA, 110, 20964-20969, doi: 10.1073/pnas.1320387110.

51. Zhou, J., Lancaster, L., Donohue, J. P., and Noller, H. F. (2014) How the ribosome hands the A-site tRNA to the P site during EF-G-catalyzed translocation, Science, 345, 1188-1191, doi: 10.1126/science.1255030.

52. Martemyanov, K. A., and Gudkov, A. T. (1999) Domain IV of elongation factor G from Thermus thermophilus is strictly required for translocation, FEBS Lett., 452, 155-159, doi: 10.1016/S0014-5793(99)00635-3.

53. Niblett, D., Nelson, C., Leung, C. S., Rexroad, G., Cozy, J., et al. (2021) Mutations in domain IV of elongation factor EF-G confer-1 frameshifting, RNA, 27, 40-53, doi: 10.1261/rna.077339.120.

54. Peng, B. Z., Bock, L. V., Belardinelli, R., Peske, F., Grubmuller, H., and Rodnina, M. V. (2019) Active role of elongation factor G in maintaining the mRNA reading frame during translation, Sci. Adv., 5, eaax8030, doi: 10.1126/sciadv.aax8030.

55. Brilot, A. F., Korostelev, A. A., Ermolenko, D. N., and Grigorieff, N. (2013) Structure of the ribosome with elongation factor G trapped in the pretranslocation state, Proc. Natl. Acad. Sci. USA, 110, 20994-20999, doi: 10.1073/pnas.1311423110.

56. Salsi, E., Farah, E., Dann, J., and Ermolenko, D. N. (2014) Following movement of domain IV of elongation factor G during ribosomal translocation, Proc. Natl. Acad. Sci. USA, 111, 15060-15065, doi: 10.1073/pnas.1410873111.

57. Gao, Y. G., Selmer, M., Dunham, C. M., Weixlbaumer, A., Kelley, A. C., and Ramakrishnan, V. (2009) The structure of the ribosome with elongation factor G trapped in the posttranslocational state, Science, 326, 694-699, doi: 10.1126/science.1179709.

58. Khade, P. K., and Joseph, S. (2011) Messenger RNA interactions in the decoding center control the rate of translocation, Nat. Struct. Mol. Biol., 18, 1300-1302, doi: 10.1038/nsmb.2140.

59. Liu, G., Song, G., Zhang, D., Zhang, D., Li, Z., et al. (2014) EF-G catalyzes tRNA translocation by disrupting interactions between decoding center and codon-anticodon duplex, Nat. Struct. Mol. Biol., 21, 817-824, doi: 10.1038/nsmb.2869.

60. Abeyrathne, P. D., Koh, C. S., Grant, T., Grigorieff, N., and Korostelev, A. A. (2016) Ensemble cryo-EM uncovers inchworm-like translocation of a viral IRES through the ribosome, Elife, 5, e14874, doi: 10.7554/eLife.14874.

61. Taylor, D. J., Nilsson, J., Merrill, A. R., Andersen, G. R., Nissen, P., and Frank, J. (2007) Structures of modified eEF2 80S ribosome complexes reveal the role of GTP hydrolysis in translocation, EMBO J., 26, 2421-2431, doi: 10.1038/sj.emboj.7601677.

62. Pestka, S. (1968) Studies on the formation of transfer ribonucleic acid-ribosome complexes. 3. The formation of peptide bonds by ribosomes in the absence of supernatant enzymes, J. Biol. Chem., 243, 2810-2820, doi: 10.1016/S0021-9258(18)93445-9.

63. Gavrilova, L. P., Koteliansky, V. E., and Spirin, A. S. (1974) Ribosomal protein S12 and ‘non-enzymatic’ translocation, FEBS Lett., 45, 324-328, doi: 10.1016/0014-5793(74)80872-0.

64. Gavrilova, L. P., and Spirin, A. S. (1974) Interaction of SH-reagents with the ribosomal 30 S subparticle and ‘non-enzymatic’ translocation, FEBS Lett., 39, 13-16, doi: 10.1016/0014-5793(74)80005-0.

65. Cukras, A. R., Southworth, D. R., Brunelle, J. L., Culver, G. M., and Green, R. (2003) Ribosomal proteins S12 and S13 function as control elements for translocation of the mRNA:tRNA complex, Mol. Cell, 12, 321-328, doi: 10.1016/s1097-2765(03)00275-2.

66. Ermolenko, D. N., Cornish, P. V., Ha, T., and Noller, H. F. (2013) Antibiotics that bind to the A site of the large ribosomal subunit can induce mRNA translocation, RNA, 19, 158-166, doi: 10.1261/rna.035964.112.

67. Liu, T., Kaplan, A., Alexander, L., Yan, S., Wen, J. D., et al. (2014) Direct measurement of the mechanical work during translocation by the ribosome, Elife, 3, e03406, doi: 10.7554/eLife.03406.

68. Howard, J. (2006) Protein power strokes, Curr. Biol., 16, R517-519, doi: 10.1016/j.cub.2006.06.045.

69. Hwang, W., and Karplus, M. (2019) Structural basis for power stroke vs. Brownian ratchet mechanisms of motor proteins, Proc. Natl. Acad. Sci. USA, 116, 19777-19785, doi: 10.1073/pnas.1818589116.

70. Peske, F., Matassova, N. B., Savelsbergh, A., Rodnina, M. V., and Wintermeyer, W. (2000) Conformationally restricted elongation factor G retains GTPase activity but is inactive in translocation on the ribosome, Mol. Cell, 6, 501-505, doi: 10.1016/S1097-2765(00)00049-6.

71. Chen, C., Cui, X., Beausang, J. F., Zhang, H., Farrell, I., et al. (2016) Elongation factor G initiates translocation through a power stroke, Proc. Natl. Acad. Sci. USA, 113, 7515-7520, doi: 10.1073/pnas.1602668113.

72. Ratje, A. H., Loerke, J., Mikolajka, A., Brunner, M., Hildebrand, P. W., et al. (2010) Head swivel on the ribosome facilitates translocation by means of intra-subunit tRNA hybrid sites, Nature, 468, 713-716, doi: 10.1038/nature09547.

73. Ryazanov, A. G., Natapov, P. G., Shestakova, E. A., Severin, F. F., and Spirin, A. S. (1988) Phosphorylation of the elongation factor 2: the fifth Ca2+/calmodulin-dependent system of protein phosphorylation, Biochimie, 70, 619-626, doi: 10.1016/0300-9084(88)90245-3.

74. Ryazanov, A. G., Shestakova, E. A., and Natapov, P. G. (1988) Phosphorylation of elongation factor 2 by EF-2 kinase affects rate of translation, Nature, 334, 170-173, doi: 10.1038/334170a0.

75. Ryazanov, A. G., Rudkin, B. B., and Spirin, A. S. (1991) Regulation of protein synthesis at the elongation stage. New insights into the control of gene expression in eukaryotes, FEBS Lett., 285, 170-175, doi: 10.1016/0014-5793(91)80798-8.

76. Davydova, E. K., and Ovchinnikov, L. P. (1990) ADP-ribosylated elongation factor 2 (ADP-ribosyl-EF-2) is unable to promote translocation within the ribosome, FEBS Lett., 261, 350-352, doi: 10.1016/0014-5793(90)80589-B.

77. Ermolenko, D. N., and Mathews, D. H. (2021) Making ends meet: new functions of mRNA secondary structure, Wiley Interdiscip. Rev. RNA, 12, e1611, doi: 10.1002/wrna.1611.

78. Lai, W. C., Kayedkhordeh, M., Cornell, E. V., Farah, E., Bellaousov, S., et al. (2018) mRNAs and lncRNAs intrinsically form secondary structures with short end-to-end distances, Nat. Commun., 9, 4328, doi: 10.1038/s41467-018-06792-z.

79. Ding, Y., Tang, Y., Kwok, C. K., Zhang, Y., Bevilacqua, P. C., and Assmann, S. M. (2014) In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features, Nature, 505, 696-700, doi: 10.1038/nature12756.

80. Rouskin, S., Zubradt, M., Washietl, S., Kellis, M., and Weissman, J. S. (2014) Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo, Nature, 505, 701-705, doi: 10.1038/nature12894.

81. Aw, J. G., Shen, Y., Wilm, A., Sun, M., Lim, X. N., et al. (2016) In vivo mapping of eukaryotic RNA interactomes reveals principles of higher-order organization and regulation, Mol. Cell, 62, 603-617, doi: 10.1016/j.molcel.2016.04.028.

82. Lu, Z., Zhang, Q. C., Lee, B., Flynn, R. A., Smith, M. A., et al. (2016) RNA Duplex map in living cells reveals higher-order transcriptome structure, Cell, 165, 1267-1279, doi: 10.1016/j.cell.2016.04.028.

83. Sharma, E., Sterne-Weiler, T., O’Hanlon, D., and Blencowe, B. J. (2016) Global mapping of human RNA–RNA interactions, Mol. Cell, 62, 618-626, doi: 10.1016/j.molcel.2016.04.030.

84. Ziv, O., Gabryelska, M. M., Lun, A. T. L., Gebert, L. F. R., Sheu-Gruttadauria, J., et al. (2018) COMRADES determines in vivo RNA structures and interactions, Nat. Methods, 15, 785-788, doi: 10.1038/s41592-018-0121-0.

85. Roth, A., and Breaker, R. R. (2009) The structural and functional diversity of metabolite-binding riboswitches, Annu. Rev. Biochem., 78, 305-334, doi: 10.1146/annurev.biochem.78.070507.135656.

86. Giedroc, D. P., and Cornish, P. V. (2009) Frameshifting RNA pseudoknots: structure and mechanism, Virus Res., 139, 193-208, doi: 10.1016/j.virusres.2008.06.008.

87. Mauger, D. M., Siegfried, N. A., and Weeks, K. M. (2013) The genetic code as expressed through relationships between mRNA structure and protein function, FEBS Lett., 587, 1180-1188, doi: 10.1016/j.febslet.2013.03.002.

88. Leipuviene, R., and Theil, E. C. (2007) The family of iron responsive RNA structures regulated by changes in cellular iron and oxygen, Cell. Mol. Life Sci., 64, 2945-2955, doi: 10.1007/s00018-007-7198-4.

89. Simon, A. E., and Miller, W. A. (2013) 3′ cap-independent translation enhancers of plant viruses, Annu. Rev. Microbiol., 67, 21-42, doi: 10.1146/annurev-micro-092412-155609.

90. Shao, Y., Chan, C. Y., Maliyekkel, A., Lawrence, C. E., Roninson, I. B., and Ding, Y. (2007) Effect of target secondary structure on RNAi efficiency, RNA, 13, 1631-1640, doi: 10.1261/rna.546207.

91. Lu, Z. J., and Mathews, D. H. (2008) Efficient siRNA selection using hybridization thermodynamics, Nucleic Acids Res., 36, 640-647, doi: 10.1093/nar/gkm920.

92. Lu, Z. J., and Mathews, D. H. (2008) Fundamental differences in the equilibrium considerations for siRNA and antisense oligodeoxynucleotide design, Nucleic Acids Res., 36, 3738-3745, doi: 10.1093/nar/gkn266.

93. Tafer, H., Ameres, S. L., Obernosterer, G., Gebeshuber, C. A., Schroeder, R., et al. (2008) The impact of target site accessibility on the design of effective siRNAs, Nat. Biotechnol., 26, 578-583, doi: 10.1038/nbt1404.

94. Li, X., Quon, G., Lipshitz, H. D., and Morris, Q. (2010) Predicting in vivo binding sites of RNA-binding proteins using mRNA secondary structure, RNA, 16, 1096-1107, doi: 10.1261/rna.2017210.

95. Li, X., Kazan, H., Lipshitz, H. D., and Morris, Q. D. (2014) Finding the target sites of RNA-binding proteins, Wiley Interdiscip. Rev. RNA, 5, 111-130, doi: 10.1002/wrna.1201.

96. Takyar, S., Hickerson, R. P., and Noller, H. F. (2005) mRNA helicase activity of the ribosome, Cell, 120, 49-58, doi: 10.1016/j.cell.2004.11.042.

97. Wen, J. D., Lancaster, L., Hodges, C., Zeri, A. C., Yoshimura, S. H., et al. (2008) Following translation by single ribosomes one codon at a time, Nature, 452, 598-603, doi: 10.1038/nature06716.

98. Yusupova, G. Z., Yusupov, M. M., Cate, J. H., and Noller, H. F. (2001) The path of messenger RNA through the ribosome, Cell, 106, 233-241, doi: 10.1016/s0092-8674(01)00435-4.

99. Balakin, A., Skripkin, E., Shatsky, I., and Bogdanov, A. (1990) Transition of the mRNA sequence downstream from the initiation codon into a single-stranded conformation is strongly promoted by binding of the initiator tRNA, Biochim. Biophys. Acta, 1050, 119-123, doi: 10.1016/0167-4781(90)90151-q.

100. De Smit, M. H., and van Duin, J. (1990) Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis, Proc. Natl. Acad. Sci. USA, 87, 7668-7672, doi: 10.1073/pnas.87.19.7668.

101. Poot, R. A., Tsareva, N. V., Boni, I. V., and van Duin, J. (1997) RNA folding kinetics regulates translation of phage MS2 maturation gene, Proc. Natl. Acad. Sci. USA, 94, 10110-10115, doi: 10.1073/pnas.94.19.10110.

102. Del Campo, C., Bartholomaus, A., Fedyunin, I., and Ignatova, Z. (2015) Secondary Structure across the bacterial transcriptome reveals versatile roles in mRNA regulation and function, PLoS Genet., 11, e1005613, doi: 10.1371/journal.pgen.1005613.

103. Khong, A., and Parker, R. (2020) The landscape of eukaryotic mRNPs, RNA, 26, 229-239, doi: 10.1261/rna.073601.119.

104. Adivarahan, S., Livingston, N., Nicholson, B., Rahman, S., Wu, B., Rissland, O. S., and Zenklusen, D. (2018) Spatial organization of single mRNPs at different stages of the gene expression pathway, Mol. Cell, 72, 727-738.e5, doi: 10.1016/j.molcel.2018.10.010.

105. Khong, A., and Parker, R. (2018) mRNP architecture in translating and stress conditions reveals an ordered pathway of mRNP compaction, J. Cell Biol., 217, 4124-4140, doi: 10.1083/jcb.201806183.

106. Maquat, L. E., Tarn, W. Y., and Isken, O. (2010) The pioneer round of translation: features and functions, Cell, 142, 368-374, doi: 10.1016/j.cell.2010.07.022.

107. Metkar, M., Ozadam, H., Lajoie, B. R., Imakaev, M., Mirny, L. A., et al. (2018) Higher-order organization principles of pre-translational mRNPs, Mol. Cell, 72, 715-726.3, doi: 10.1016/j.molcel.2018.09.012.

108. Cetin, B., Song, G. J., and O’Leary, S. E. (2020) Hetero-geneous dynamics of protein–RNA interactions across transcriptome-derived messenger RNA populations, J. Am. Chem. Soc., 142, 21249-21253, doi: 10.1021/jacs.0c09841.

109. Yan, S., Wen, J. D., Bustamante, C., and Tinoco, I., Jr. (2015) Ribosome excursions during mRNA translocation mediate broad branching of frameshift pathways, Cell, 160, 870-881, doi: 10.1016/j.cell.2015.02.003.

110. Doma, M. K., and Parker, R. (2006) Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation, Nature, 440, 561-564, doi: 10.1038/nature04530.

111. Young, J. C., and Andrews, D. W. (1996) The signal recognition particle receptor alpha subunit assembles co-translationally on the endoplasmic reticulum membrane during an mRNA-encoded translation pause in vitro, EMBO J., 15, 172-181.

112. Caliskan, N., Peske, F., and Rodnina, M. V. (2015) Changed in translation: mRNA recoding by -1 programmed ribosomal frameshifting, Trends Biochem. Sci., 40, 265-274, doi: 10.1016/j.tibs.2015.03.006.

113. Tsuchihashi, Z., and Kornberg, A. (1990) Translational frameshifting generates the gamma subunit of DNA polymerase III holoenzyme, Proc. Natl. Acad. Sci. USA, 87, 2516-2520, doi: 10.1073/pnas.87.7.2516.

114. Belew, A. T., Meskauskas, A., Musalgaonkar, S., Advani, V. M., Sulima, S. O., et al. (2014) Ribosomal frameshifting in the CCR5 mRNA is regulated by miRNAs and the NMD pathway, Nature, 512, 265-269, doi: 10.1038/nature13429.

115. Jacks, T., Power, M. D., Masiarz, F. R., Luciw, P. A., Barr, P. J., and Varmus, H. E. (1988) Characterization of ribosomal frameshifting in HIV-1 gag-pol expression, Nature, 331, 280-283, doi: 10.1038/331280a0.

116. Kelly, J. A., Olson, A. N., Neupane, K., Munshi, S., San Emeterio, J., et al. (2020) Structural and functional conservation of the programmed -1 ribosomal frameshift signal of SARS coronavirus 2 (SARS-CoV-2), J. Biol. Chem., 295, 10741-10748, doi: 10.1074/jbc.AC120.013449.

117. Kelly, J. A., Woodside, M. T., and Dinman, J. D. (2021) Programmed -1 ribosomal frameshifting in coronaviruses: a therapeutic target, Virology, 554, 75-82, doi: 10.1016/j.virol.2020.12.010.

118. Qu, X., Wen, J. D., Lancaster, L., Noller, H. F., Bustamante, C., and Tinoco, I., Jr. (2011) The ribosome uses two active mechanisms to unwind messenger RNA during translation, Nature, 475, 118-121, doi: 10.1038/nature10126.

119. Chen, C., Zhang, H., Broitman, S. L., Reiche, M., Farrell, I., et al. (2013) Dynamics of translation by single ribosomes through mRNA secondary structures, Nat. Struct. Mol. Biol., 20, 582-588, doi: 10.1038/nsmb.2544.

120. Chen, J., Petrov, A., Johansson, M., Tsai, A., O’Leary, S. E., and Puglisi, J. D. (2014) Dynamic pathways of -1 translational frameshifting, Nature, 512, 328-332, doi: 10.1038/nature13428.

121. Kim, H. K., Liu, F., Fei, J., Bustamante, C., Gonzalez, R. L., Jr., and Tinoco, I., Jr. (2014) A frameshifting stimulatory stem loop destabilizes the hybrid state and impedes ribosomal translocation, Proc. Natl. Acad. Sci. USA, 111, 5538-5543, doi: 10.1073/pnas.1403457111.

122. Tu, C., Tzeng, T. H., and Bruenn, J. A. (1992) Ribosomal movement impeded at a pseudoknot required for frameshifting, Proc. Natl. Acad. Sci. USA, 89, 8636-8640, doi: 10.1073/pnas.89.18.8636.

123. Somogyi, P., Jenner, A. J., Brierley, I., and Inglis, S. C. (1993) Ribosomal pausing during translation of an RNA pseudoknot, Mol. Cell. Biol., 13, 6931-6940, doi: 10.1128/mcb.13.11.6931-6940.1993.

124. Lopinski, J. D., Dinman, J. D., and Bruenn, J. A. (2000) Kinetics of ribosomal pausing during programmed -1 translational frameshifting, Mol. Cell. Biol., 20, 1095-1103, doi: 10.1128/mcb.20.4.1095-1103.2000.

125. Kontos, H., Napthine, S., and Brierley, I. (2001) Ribosomal pausing at a frameshifter RNA pseudoknot is sensitive to reading phase but shows little correlation with frameshift efficiency, Mol. Cell. Biol., 21, 8657-8670, doi: 10.1128/MCB.21.24.8657-8670.2001.

126. Caliskan, N., Katunin, V. I., Belardinelli, R., Peske, F., and Rodnina, M. V. (2014) Programmed -1 frameshifting by kinetic partitioning during impeded translocation, Cell, 157, 1619-1631, doi: 10.1016/j.cell.2014.04.041.

127. Caliskan, N., Wohlgemuth, I., Korniy, N., Pearson, M., Peske, F., and Rodnina, M. V. (2017) Conditional switch between frameshifting regimes upon translation of dnaX mRNA, Mol. Cell, 66, 558-567.e554, doi: 10.1016/j.molcel.2017.04.023.

128. Bao, C., Loerch, S., Ling, C., Korostelev, A. A., Grigorieff, N., and Ermolenko, D. N. (2020) mRNA stem-loops can pause the ribosome by hindering A-site tRNA binding, Elife, 9, e55799, doi: 10.7554/eLife.55799.

129. Choi, J., O’Loughlin, S., Atkins, J. F., and Puglisi, J. D. (2020) The energy landscape of -1 ribosomal frameshifting, Sci. Adv., 6, eaax6969, doi: 10.1126/sciadv.aax6969.