БИОХИМИЯ, 2021, том 86, вып. 8, с. 1149–1159

УДК 577.323.55

Свойства и функции мотива А‑минор, наиболее распространенного мотива структуры РНК

Обзор

© 2021 Е.Ф. Баулин 1,2baulin@lpm.org.ru

Институт математических проблем биологии РАН – филиал ИПМ им. М.В. Келдыша РАН, 142290 Пущино, Московская обл., Россия

Московский физико-технический институт (национальный исследовательский университет), 141701 Долгопрудный, Московская обл., Россия

Поступила в редакцию 01.05.2021
После доработки 13.06.2021
Принята к публикации 13.06.2021

DOI: 10.31857/S0320972521080078

КЛЮЧЕВЫЕ СЛОВА: структура РНК, третичный мотив, А-минор взаимодействие, мотив А-минор, А-патч.

Аннотация

Мотивы А-минор – это мотивы третичной структуры РНК, как правило состоящие из канонического спаривания оснований и основания аденина, образующего водородные связи с нуклеотидами спаривания со стороны малой бороздки. Мотивы А-минор являются одним из самых распространенных типов третичных взаимодействий в известных структурах РНК, сравнимым по частоте с неканоническими спариваниями оснований. Они часто обнаруживаются в функционально важных участках молекул некодирующих РНК и в том числе играют одну из центральных ролей в процессе синтеза белка. В данном обзоре рассматриваются локальные особенности геометрии А-миноров, трудности их разметки в известных пространственных структурах РНК, различия их структурного окружения и часто встречающиеся комотивы, а также разнообразные функции, выполняемые А-минорами во множестве внутриклеточных процессов.

Текст статьи

Пожалуйста, введите код, чтобы получить PDF файл с полным текстом статьи:

captcha

Финансирование

Работа не была финансирована какими-либо фондами или проектами.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических норм

Настоящий обзор не содержит описания каких-либо исследований с участием людей или животных в качестве объектов.

Список литературы

1. Lekka, E., and Hall, J. (2018) Noncoding RNAs in disease, FEBS Lett., 592, 2884-2900, doi: 10.1002/1873-3468.13182.

2. Novikova, I. V., Hennelly, S. P., Tung, C. S., and Sanbonmatsu, K. Y. (2013) Rise of the RNA machines: exploring the structure of long non-coding RNAs, J. Mol. Biol., 425, 3731-3746, doi: 10.1016/j.jmb.2013.02.030.

3. Leontis, N. B., Lescoute, A., and Westhof, E. (2006) The building blocks and motifs of RNA architecture, Curr. Opin. Struct. Biol., 16, 279-287, doi: 10.1016/j.sbi.2006.05.009.

4. Nissen, P., Ippolito, J. A., Ban, N., Moore, P. B., and Steitz, T. A. (2001) RNA tertiary interactions in the large ribosomal subunit: the A-minor motif, Proc. Natl. Acad. Sci. USA, 98, 4899-4903, doi: 10.1073/pnas.081082398.

5. Murphy, F. L., and Cech, T. R. (1994) GAAA tetraloop and conserved bulge stabilize tertiary structure of a group I intron domain, J. Mol. Biol., 236, 49-63, doi: 10.1006/jmbi.1994.1117.

6. Cate, J. H., Gooding, A. R., Podell, E., Zhou, K., Golden, B. L., et al. (1996) Crystal structure of a group I ribozyme domain: principles of RNA packing, Science, 273, 1678-1685, doi: 10.1126/science.273.5282.1678.

7. Scott, W. G., Finch, J. T., and Klug, A. (1995) The crystal structure of an all-RNA hammerhead ribozyme: a proposed mechanism for RNA catalytic cleavage, Cell, 81, 991-1002, doi: 10.1016/S0092-8674(05)80004-2.

8. Nissen, P. (2020) The a-minor motif, in Structural Insights into Gene Expression and Protein Synthesis, pp. 461-463, doi: 10.1142/9789811215865_0055.

9. Doherty, E. A., Batey, R. T., Masquida, B., and Doudna, J. A. (2001) A universal mode of helix packing in RNA, Nat. Struct. Biol., 8, 339-343, doi: 10.1038/86221.

10. Strobel, S. A. (2002) Biochemical identification of A-minor motifs within RNA tertiary structure by interference analysis, Biochem. Soc. Transact., 30, 1126-1131, doi: 10.1042/bst0301126.

11. Krasilnikov, A. S., Yang, X., Pan, T., and Mondragón, A. (2003) Crystal structure of the specificity domain of ribonuclease P, Nature, 421, 760-764, doi: 10.1038/nature01386.

12. Krasilnikov, A. S., Xiao, Y., Pan, T., and Mondragón, A. (2004) Basis for structural diversity in homologous RNAs, Science, 306, 104-107, doi: 10.1126/science.1101489.

13. Nagai, K., Oubridge, C., Kuglstatter, A., Menichelli, E., Isel, C., and Jovine, L. (2003) Structure, function and evolution of the signal recognition particle, EMBO J., 22, 3479-3485, doi: 10.1093/emboj/cdg337.

14. Schüler, M., Connell, S. R., Lescoute, A., Giesebrecht, J., Dabrowski, M., et al. (2006) Structure of the ribosome-bound cricket paralysis virus IRES RNA, Nat. Struct. Mol. Biol., 13, 1092-1096, doi: 10.1038/nsmb1177.

15. Mitton-Fry, R. M., DeGregorio, S. J., Wang, J., Steitz, T. A., and Steitz, J. A. (2010) Poly (A) tail recognition by a viral RNA element through assembly of a triple helix, Science, 330, 1244-1247, doi: 10.1126/science.1195858.

16. Nguyen, L. A., Wang, J., and Steitz, T. A. (2017) Crystal structure of Pistol, a class of self-cleaving ribozyme, Proc. Natl. Acad. Sci. USA, 114, 1021-1026, doi: 10.1073/pnas.1611191114.

17. Xue, S., Calvin, K., and Li, H. (2006) RNA recognition and cleavage by a splicing endonuclease, Science, 312, 906-910, doi: 10.1126/science.1126629.

18. Serganov, A., Yuan, Y. R., Pikovskaya, O., Polonskaia, A., Malinina, L., et al. (2004) Structural basis for discriminative regulation of gene expression by adenine-and guanine-sensing mRNAs, Chem. Biol., 11, 1729-1741, doi: 10.1016/j.chembiol.2004.11.018.

19. Dann, C. E. 3rd, Wakeman, C. A., Sieling, C. L., Baker, S. C., Irnov, I., and Winkler, W. C. (2007) Structure and mechanism of a metal-sensing regulatory RNA, Cell, 130, 878-892, doi: 10.1016/j.cell.2007.06.051.

20. Jones, C. P., and Ferré-D’Amaré, A. R. (2015) RNA quaternary structure and global symmetry, Trends Biochem. Sci., 40, 211-220, doi: 10.1016/j.tibs.2015.02.004.

21. Brown, J. A., Bulkley, D., Wang, J., Valenstein, M. L., Yario, T. A., et al. (2014) Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix, Nat. Struct. Mol. Biol., 21, 633, doi: 10.1038/nsmb.2844.

22. Klein, D. J., Schmeing, T. M., Moore, P. B., and Steitz, T. A. (2001) The kink-turn: a new RNA secondary structure motif, EMBO J., 20, 4214-4221, doi: 10.1093/emboj/20.15.4214.

23. Réblová, K., Šponer, J. E., Špačková, N., Beššeová, I., and Šponer, J. (2011) A-minor tertiary interactions in RNA kink-turns. Molecular dynamics and quantum chemical analysis, J. Phys. Chem. B, 115, 13897-13910, doi: 10.1021/jp2065584.

24. Geary, C., Baudrey, S., and Jaeger, L. (2008) Comprehensive features of natural and in vitro selected GNRA tetraloop-binding receptors, Nucleic Acids Res., 36, 1138-1152 10.1093/nar/gkm1048.

25. Wu, L., Chai, D., Fraser, M. E., and Zimmerly, S. (2012) Structural variation and uniformity among tetraloop-receptor interactions and other loop-helix interactions in RNA crystal structures, PLoS One, 7, e49225, doi: 10.1371/journal.pone.0049225.

26. Fiore, J. L., and Nesbitt, D. J. (2013) An RNA folding motif: GNRA tetraloop–receptor interactions, Quart. Rev. Biophys., 46, 223-264, doi: 10.1017/S0033583513000048.

27. Aalberts, D. P., and Hodas, N. O. (2005) Asymmetry in RNA pseudoknots: observation and theory, Nucleic Acids Res., 33, 2210-2214, doi: 10.1093/nar/gki508.

28. Giedroc, D. P., and Cornish, P. V. (2009) Frameshifting RNA pseudoknots: structure and mechanism, Virus Res., 139, 193-208, doi: 10.1016/j.virusres.2008.06.008.

29. Lescoute, A., and Westhof, E. (2006) Topology of three-way junctions in folded RNAs, RNA, 12, 83-93, doi: 10.1261/rna.2208106.

30. Xin, Y., Laing, C., Leontis, N. B., and Schlick, T. (2008) Annotation of tertiary interactions in RNA structures reveals variations and correlations, RNA, 14, 2465-2477, doi: 10.1261/rna.1249208.

31. Laing, C., and Schlick, T. (2009) Analysis of four-way junctions in RNA structures, J. Mol. Biol., 390, 547-559, doi: 10.1016/j.jmb.2009.04.084.

32. Cruz, J. A., and Westhof, E. (2009) The dynamic landscapes of RNA architecture, Cell, 136, 604-609, doi: 10.1016/j.cell.2009.02.003.

33. Geary, C., Chworos, A., and Jaeger, L. (2011) Promoting RNA helical stacking via A-minor junctions, Nucleic Acids Res., 39, 1066-1080, doi: 10.1093/nar/gkq748.

34. Tamura, M., and Holbrook, S. R. (2002) Sequence and structural conservation in RNA ribose zippers, J. Mol. Biol., 320, 455-474, doi: 10.1016/S0022-2836(02)00515-6.

35. Lee, J. C., Cannone, J. J., and Gutell, R. R. (2003) The lonepair triloop: a new motif in RNA structure, J. Mol. Biol., 325, 65-83, doi: 10.1016/S0022-2836(02)01106-3.

36. Gagnon, M. G., and Steinberg, S. V. (2010) The adenosine wedge: A new structural motif in ribosomal RNA, RNA, 16, 375-381, doi: 10.1261/rna.1550310.

37. Leontis, N. B., and Westhof, E. (2001) Geometric nomenclature and classification of RNA base pairs, RNA, 7, 499-512, doi: 10.1017/s1355838201002515.

38. Torabi, S. F., Vaidya, A. T., Tycowski, K. T., DeGregorio, S. J., Wang, J., et al. (2021) RNA stabilization by a poly (A) tail 3′-end binding pocket and other modes of poly (A)-RNA interaction, Science, 371, eabe6523, doi: 10.1126/science.abe6523.

39. Newby, M. I., and Greenbaum, N. L. (2002) Sculpting of the spliceosomal branch site recognition motif by a conserved pseudouridine, Nat. Struct. Biol., 9, 958-965, doi: 10.1038/nsb873.

40. Hamdani, H. Y., and Firdaus-Raih, M. (2019) Identification of structural motifs using networks of hydrogen-bonded base interactions in RNA crystallographic structures, Crystals, 9, 550, doi: 10.3390/cryst9110550.

41. Lescoute, A., and Westhof, E. (2006) The A-minor motifs in the decoding recognition process, Biochimie, 88, 993-999, doi: 10.1016/j.biochi.2006.05.018.

42. Lescoute, A., and Westhof, E. (2006) The interaction networks of structured RNAs, Nucleic Acids Res., 34, 6587-6604, doi: 10.1093/nar/gkl963.

43. Petrov, A. I., Zirbel, C. L., and Leontis, N. B. (2011) WebFR3D – a server for finding, aligning and analyzing recurrent RNA 3D motifs, Nucleic Acids Res., 39, W50-W55, doi: 10.1093/nar/gkr249.

44. Sheth, P., Cervantes-Cervantes, M., Nagula, A., Laing, C., and Wang, J. T. (2013) Novel features for identifying A-minors in three-dimensional RNA molecules, Computat. Biol. Chem., 47, 240-245, doi: 10.1016/j.compbiolchem.2013.10.004.

45. Laing, C., Jung, S., Iqbal, A., and Schlick, T. (2009) Tertiary motifs revealed in analyses of higher-order RNA junctions, J. Mol. Biol., 393, 67-82, doi: 10.1016/j.jmb.2009.07.089.

46. Burley, S. K., Berman, H. M., Kleywegt, G. J., Markley, J. L., Nakamura, H., and Velankar, S. (2017) Protein Data Bank (PDB): the single global macromolecular structure archive, Protein Crystallogr., 1607, 627-641, doi: 10.1007/978-1-4939-7000-1_26.

47. Reinharz, V., Soulé, A., Westhof, E., Waldispühl, J., and Denise, A. (2018) Mining for recurrent long-range interactions in RNA structures reveals embedded hierarchies in network families, Nucleic Acids Res., 46, 3841-3851, doi: 10.1093/nar/gky197.

48. Appasamy, S. D., Hamdani, H. Y., Ramlan, E. I., and Firdaus-Raih, M. (2016) InterRNA: a database of base interactions in RNA structures, Nucleic Acids Res., 44, D266-D271, doi: 10.1093/nar/gkv1186.

49. Hamdani, H. Y., Appasamy, S. D., Willett, P., Artymiuk, P. J., and Firdaus-Raih, M. (2012) NASSAM: a server to search for and annotate tertiary interactions and motifs in three-dimensional structures of complex RNA molecules, Nucleic Acids Res., 40, W35-W41, doi: 10.1093/nar/gks513.

50. Firdaus-Raih, M., Hamdani, H. Y., Nadzirin, N., Ramlan, E. I., Willett, P., and Artymiuk, P. J. (2014) COGNAC: a web server for searching and annotating hydrogen-bonded base interactions in RNA three-dimensional structures, Nucleic Acids Res., 42, W382-W388, doi: 10.1093/nar/gku438.

51. Lu, X. J., Bussemaker, H. J., and Olson, W. K. (2015) DSSR: an integrated software tool for dissecting the spatial structure of RNA, Nucleic Acids Res., 43, e142-e142, doi: 10.1093/nar/gkv716.

52. Yang, H., Jossinet, F., Leontis, N., Chen, L., Westbrook, J., et al. (2003) Tools for the automatic identification and classification of RNA base pairs, Nucleic Acids Res., 31, 3450-3460, doi: 10.1093/nar/gkg529.

53. Gendron, P., Lemieux, S., and Major, F. (2001) Quantitative analysis of nucleic acid three-dimensional structures, J. Mol. Biol., 308, 919-936, doi: 10.1006/jmbi.2001.4626.

54. Lu, X. J., and Olson, W. K. (2008) 3DNA: a versatile, integrated software system for the analysis, rebuilding and visualization of three-dimensional nucleic-acid structures, Nat. Protoc., 3, 1213, doi: 10.1038/nprot.2008.104.

55. Shalybkova, A. A., Mikhailova, D. S., Kulakovskiy, I. V., Fakhranurova, L. I., and Baulin, E. F. (2021) Annotation of the local context of the RNA secondary structure improves the classification and prediction of A-minors, RNA, rna-078535, doi: 10.1261/rna.078535.120.

56. Rázga, F., Koča, J., Šponer, J., and Leontis, N. B. (2005) Hinge-like motions in RNA kink-turns: the role of the second A-minor motif and nominally unpaired bases, Biophys. J., 88, 3466-3485, doi: 10.1529/biophysj.104.054916.

57. Sponer, J., Bussi, G., Krepl, M., Banaš, P., Bottaro, S., et al. (2018) RNA structural dynamics as captured by molecular simulations: a comprehensive overview, Chem. Rev., 118, 4177-4338, doi: 10.1021/acs.chemrev.7b00427.

58. Laing, C., Wen, D., Wang, J. T., and Schlick, T. (2012) Predicting coaxial helical stacking in RNA junctions, Nucleic Acids Res., 40, 487-498, doi: 10.1093/nar/gkr629.

59. Beššeová, I., Reblova, K., Leontis, N. B., and Šponer, J. (2010) Molecular dynamics simulations suggest that RNA three-way junctions can act as flexible RNA structural elements in the ribosome, Nucleic Acids Res., 38, 6247-6264, doi: 10.1093/nar/gkq414.

60. Lescoute, A., and Westhof, E. (2005) Riboswitch structures: purine ligands replace tertiary contacts, Chem. Biol., 12, 10-13, doi: 10.1016/j.chembiol.2005.01.002.

61. Baulin, E., Yacovlev, V., Khachko, D., Spirin, S., and Roytberg, M. (2016) URS DataBase: universe of RNA structures and their motifs, Database, 2016, baw085, doi: 10.1093/database/baw085.

62. Calvin, K., and Li, H. (2008) RNA-splicing endonuclease structure and function, Cell. Mol. Life Sci., 65, 1176-1185, doi: 10.1007/s00018-008-7393-y.

63. Ikawa, Y., Yoshimura, T., Hara, H., Shiraishi, H., and Inoue, T. (2002) Two conserved structural components, A-rich bulge and P4 XJ6/7 base-triples, in activating the group I ribozymes, Genes Cells, 7, 1205-1215, doi: 10.1046/j.1365-2443.2002.00601.x.

64. Battle, D. J., and Doudna, J. A. (2002) Specificity of RNA–RNA helix recognition, Proc. Natl. Acad. Sci. USA, 99, 11676-11681, doi: 10.1073/pnas.182221799.

65. Schwalbe, H., Buck, J., Fürtig, B., Noeske, J., and Wöhnert, J. (2007) Structures of RNA switches: insight into molecular recognition and tertiary structure, Angewandte Chemie Int. Edn., 46, 1212-1219, doi: 10.1002/anie.200604163.

66. Šponer, J. E., Leszczynski, J., Sychrovský, V., and Šponer, J. (2005) Sugar edge/sugar edge base pairs in RNA: stabilities and structures from quantum chemical calculations, J. Phys. Chem. B, 109, 18680-18689, doi: 10.1021/jp053379q.

67. Šponer, J. E., Reblova, K., Mokdad, A., Sychrovský, V., Leszczynski, J., and Šponer, J. (2007) Leading RNA tertiary interactions: structures, energies, and water insertion of A-minor and P-interactions. A quantum chemical view, J. Phys. Chem. B, 111, 9153-9164, doi: 10.1021/jp0704261.

68. Costa, M., and Michel, F. (1995) Frequent use of the same tertiary motif by self-folding RNAs, EMBO J., 14, 1276-1285, doi: 10.1002/j.1460-2075.1995.tb07111.x.

69. Lee, J. C., Gutell, R. R., and Russell, R. (2006) The UAA/GAN internal loop motif: a new RNA structural element that forms a cross-strand AAA stack and long-range tertiary interactions, J. Mol. Biol., 360, 978-988, doi: 10.1016/j.jmb.2006.05.066.

70. Yoshizawa, S., Fourmy, D., and Puglisi, J. D. (1999) Recognition of the codon-anticodon helix by ribosomal RNA, Science, 285, 1722-1725, doi: 10.1126/science.285.5434.1722.

71. Ogle, J. M., Brodersen, D. E., Clemons, W. M., Tarry, M. J., Carter, A. P., and Ramakrishnan, V. (2001) Recognition of cognate transfer RNA by the 30S ribosomal subunit, Science, 292, 897-902, doi: 10.1126/science.1060612.

72. Ogle, J. M., and Ramakrishnan, V. (2005) Structural insights into translational fidelity, Annu. Rev. Biochem., 74, 129-177, doi: 10.1146/annurev.biochem.74.061903.155440.

73. Gromadski, K. B., Daviter, T., and Rodnina, M. V. (2006) A uniform response to mismatches in codon-anticodon complexes ensures ribosomal fidelity, Mol. Cell, 21, 369-377, doi: 10.1016/j.molcel.2005.12.018.

74. Prokhorova, I., Altman, R. B., Djumagulov, M., Shrestha, J. P., Urzhumtsev, A., et al. (2017) Aminoglycoside interactions and impacts on the eukaryotic ribosome, Proc. Natl. Acad. Sci. USA, 114, E10899-E10908, doi: 10.1073/pnas.1715501114.

75. Steitz, T. A., and Moore, P. B. (2003) RNA, the first macromolecular catalyst: the ribosome is a ribozyme, Trends Biochem. Sci., 28, 411-418, doi: 10.1016/S0968-0004(03)00169-5.

76. Noller, H. F. (2012) Evolution of protein synthesis from an RNA world, Cold Spring Harb. Perspect. Biol., 4, a003681, doi: 10.1101/cshperspect.a003681.

77. Lancaster, L., and Noller, H. F. (2005) Involvement of 16S rRNA nucleotides G1338 and A1339 in discrimination of initiator tRNA, Mol. Cell, 20, 623-632, doi: 10.1016/j.molcel.2005.10.006.

78. Steitz, T. A. (2008) A structural understanding of the dynamic ribosome machine, Nat. Rev. Mol. Cell Biol., 9, 242-253, doi: 10.1038/nrm2352.

79. Hansen, J. L., Schmeing, T. M., Moore, P. B., and Steitz, T. A. (2002) Structural insights into peptide bond formation, Proc. Natl. Acad. Sci. USA, 99, 11670-11675, doi: 10.1073/pnas.172404099.

80. Noller, H. F. (2005) RNA structure: reading the ribosome, Science, 309, 1508-1514, doi: 10.1126/science.1111771.

81. Szymański, M., Barciszewska, M. Z., Erdmann, V. A., and Barciszewski, J. (2003) 5S rRNA: structure and interactions, Biochem. J., 371, 641-651, doi: 10.1042/bj20020872.

82. Mohan, S., and Noller, H. F. (2017) Recurring RNA structural motifs underlie the mechanics of L1 stalk movement, Nat. Commun., 8, 1-11, doi: 10.1038/ncomms14285.

83. Bou-Nader, C., and Zhang, J. (2020) Structural insights into RNA dimerization: Motifs, interfaces and functions, Molecules, 25, 2881, doi: 10.3390/molecules25122881.

84. Leontis, N. B., and Westhof, E. (2003) Analysis of RNA motifs, Curr. Opin. Struct. Biol., 13, 300-308, doi: 10.1016/S0959-440X(03)00076-9.

85. Frank, J., Gao, H., Sengupta, J., Gao, N., and Taylor, D. J. (2007) The process of mRNA–tRNA translocation, Proc.Natl. Acad. Sci. USA, 104, 19671-19678, doi: 10.1073/pnas.0708517104.

86. Spirin, A. S. (1968) How does the ribosome work? A hypothesis based on the two subunit construction of the ribosome, Curr. Mod. Biol., 2, 115-127, doi: 10.1016/0303-2647(68)90017-8.