БИОХИМИЯ, 2021, том 86, вып. 7, с. 1066–1077
УДК 543.94
Неспецифический синтез нуклеиновых кислот в реакциях изотермической амплификации
Обзор
1 Институт белка РАН, 142290 Пущино, Московская обл., Россия
2 Институт теоретической и экспериментальной биофизики РАН, 142290 Пущино, Московская обл., Россия
Поступила в редакцию 10.02.2021
После доработки 16.04.2021
Принята к публикации 16.04.2021
DOI: 10.31857/S0320972521070101
КЛЮЧЕВЫЕ СЛОВА: изотермическая амплификация, фоновый синтез, ДНК-полимеразы, LAMP, SDA, EXPAR.
Аннотация
В обзоре рассматривается проблема образования неспецифических продуктов при использовании различных методов изотермической амплификации как результат действия целого ряда факторов: неспецифических взаимодействий праймеров, синтеза ДНК ab initio и проявления дополнительных активностей ДНК-полимераз. Обсуждаются разрабатываемые подходы для устранения неспецифического синтеза в методах LAMP, RPA, NASBA, RCA, SDA, LSDA, NDA и EXPAR.
Текст статьи
Сноски
* Адресат для корреспонденции.
Финансирование
Работа выполнена в рамках государственного задания № 075-00845-20-01.
Конфликт интересов
Авторы заявляют об отсутствии конфликта интересов.
Соблюдение этических норм
Настоящая статья не содержит описания каких-либо исследований с участием людей или животных в качестве объектов.
Список литературы
1. Craw, P., and Balachandran, W. (2012) Isothermal nucleic acid amplification technologies for point-of-care diagnostics: a critical review, Lab Chip, 12, 2469-2486, doi: 10.1039/c2lc40100b.
2. Gill, P., and Ghaemi, A. (2008) Nucleic acid isothermal amplification technologies: a review, Nucleosides Nucleotides Nucleic Acids, 27, 224-243, doi: 10.1080/15257770701845204.
3. Niemz, A., Ferguson, T. M., and Boyle, D. S. (2011) Point-of-care nucleic acid testing for infectious diseases, Trends Biotechnol., 29, 240-250, doi: 10.1016/j.tibtech.2011.01.007.
4. Obande, G. A., and Banga Singh, K. K. (2020) Current and future perspectives on isothermal nucleic acid amplification technologies for diagnosing infections, Infect. Drug Resist., 13, 455-483, doi: 10.2147/IDR.S217571.
5. Zhao, Y., Chen, F., Li, Q., Wang, L., and Fan, C. (2015) Isothermal amplification of nucleic acids, Chem. Rev., 115, 12491-12545, doi: 10.1021/acs.chemrev.5b00428.
6. Bodulev, O. L., and Sakharov, I. Y. (2020) Isothermal nucleic acid amplification techniques and their use in bioanalysis, Biochemistry (Moscow), 85, 147-166, doi: 10.1134/S0006297920020030.
7. Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., et al. (2000) Loop-mediated isothermal amplification of DNA, Nucleic Acids Res., 28, E63, doi: 10.1093/nar/28.12.e63.
8. Rolando, J. C., Jue, E., Barlow, J. T., and Ismagilov, R. F. (2020) Real-time kinetics and high-resolution melt curves in single-molecule digital LAMP to differentiate and study specific and non-specific amplification, Nucleic Acids Res., 48, e42-e42, doi: 10.1093/nar/gkaa099.
9. Schneider, L., Blakely, H., and Tripathi, A. (2019) Mathematical model to reduce loop mediated isothermal amplification (LAMP) false-positive diagnosis, Electrophoresis, 40, 2706-2717, doi: 10.1002/elps.201900167.
10. Gao, X., Sun, B., and Guan, Y. (2019) Pullulan reduces the non-specific amplification of loop-mediated isothermal amplification (LAMP), Anal. Bioanal. Chem., 411, 1211-1218, doi: 10.1007/s00216-018-1552-2.
11. Piepenburg, O., Williams, C. H., Stemple, D. L., and Armes, N. A. (2006) DNA detection using recombination proteins, PLoS Biol., 4, e204, doi: 10.1371/journal.pbio.0040204.
12. Sharma, N., Hoshika, S., Hutter, D., Bradley, K. M., and Benner, S. A. (2014) Recombinase-based isothermal amplification of nucleic acids with self-avoiding molecular recognition systems (SAMRS), ChemBioChem, 15, 2268-2274, doi: 10.1002/cbic.201402250.
13. Lobato, I. M., and O′Sullivan, C. K. (2018) Recombinase polymerase amplification: basics, applications and recent advances, Trends Anal. Chem., 98, 19-35, doi: 10.1016/j.trac.2017.10.015.
14. Li, J., Macdonald, J., and von Stetten, F. (2019) Review: a comprehensive summary of a decade development of the recombinase polymerase amplification, Analyst, 144, 31-67, doi: 10.1039/c8an01621f.
15. James, A., and Macdonald, J. (2015) Recombinase polymerase amplification: Emergence as a critical molecular technology for rapid, low-resource diagnostics, Expert Rev. Mol. Diagn., 15, 1475-1489, doi: 10.1586/14737159.2015.1090877.
16. Higgins, M., Ravenhall, M., Ward, D., Phelan, J., Ibrahim, A., et al. (2018) PrimedRPA: primer design for recombinase polymerase amplification assays, Bioinformatics, 35, 682-684, doi: 10.1093/bioinformatics/bty701.
17. Rohrman, B., and Richards-Kortum, R. (2015) Inhibition of recombinase polymerase amplification by background DNA: a lateral flow-based method for enriching target DNA, Anal. Chem., 87, 1963-1967, doi: 10.1021/ac504365v.
18. Compton, J. (1991) Nucleic acid sequence-based amplification, Nature, 350, 91-92, doi: 10.1038/350091a0.
19. Kievits, T., van Gemen, B., van Strijp, D., Schukkink, R., Dircks, M., et al. (1991) NASBA™ isothermal enzymatic in vitro nucleic acid amplification optimized for the diagnosis of HIV-1 infection, J. Virol. Methods, 35, 273-286, doi: 10.1016/0166-0934(91)90069-C.
20. Morabito, K., Wiske, C., and Tripathi, C. W. A. (2013) Engineering insights for multiplexed real-time nucleic acid sequence-based amplification (NASBA): implications for design of point-of-care diagnostics, Mol. Diagn. Ther., 17, 185-192, doi: 10.1007/s40291-013-0029-4.
21. Markham, N. R., and Zuker, M. (2005) DINAMelt web server for nucleic acid melting prediction, Nucleic Acids Res., 33, W577-W581, doi: 10.1093/nar/gki591.
22. Heim, A., Grumbach, I. M., Zeuke, S., and Top, B. (1998) Highly sensitive detection of gene expression of an intronless gene: amplification of mRNA, but not genomic DNA by nucleic acid sequence based amplification (NASBA), Nucleic Acids Res., 26, 2250-2251, doi: 10.1093/nar/26.9.2250.
23. Polstra, A. M., Goudsmit, J., and Cornelissen, M. (2002) Development of real-time NASBA assays with molecular beacon detection to quantify mRNA coding for HHV-8 lytic and latent genes, BMC Infect. Dis., 2, 18, doi: 10.1186/1471-2334-2-18.
24. Honsvall, B. K., and Robertson, L. J. (2017) From research lab to standard environmental analysis tool: will NASBA make the leap? Water Res., 109, 389-397, doi: 10.1016/j.watres.2016.11.052.
25. Lizardi, P. M., Huang, X., Zhu, Z., Bray-Ward, P., Thomas, D. C., and Ward, D. C. (1998) Mutation detection and single-molecule counting using isothermal rolling-circle amplification, Nat. Genet., 19, 225-232, doi: 10.1038/898.
26. Dean, F. B., Nelson, J. R., Giesler, T. L., and Lasken, R. S. (2001) Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification, Genome Res., 11, 1095-1099, doi: 10.1101/gr.180501.
27. Dean, F. B., Hosono, S., Fang, L., Wu, X., Faruqi, A. F., et al. (2002) Comprehensive human genome amplification using multiple displacement amplification, Proc. Natl. Acad. Sci. USA, 99, 5261, doi: 10.1073/pnas.082089499.
28. Brukner, I., Paquin, B., Belouchi, M., Labuda, D., and Krajinovic, M. (2005) Self-priming arrest by modified random oligonucleotides facilitates the quality control of whole genome amplification, Anal. Biochem., 339, 345-347, doi: 10.1016/j.ab.2005.01.005.
29. Murakami, T., Sumaoka, J., and Komiyama, M. (2008) Sensitive isothermal detection of nucleic-acid sequence by primer generation – rolling circle amplification, Nucleic Acids Res., 37, e19-e19, doi: 10.1093/nar/gkn1014.
30. Garafutdinov, R. R., Gilvanov, A. R., and Sakhabutdinova, A. R. (2020) The influence of reaction conditions on DNA multimerization during isothermal amplification with Bst exo− DNA polymerase, Appl. Biochem. Biotechnol., 190, 758-771, doi: 10.1007/s12010-019-03127-6.
31. Wang, G., Ding, X., Hu, J., Wu, W., Sun, J., and Mu, Y. (2017) Unusual isothermal multimerization and amplification by the strand-displacing DNA polymerases with reverse transcription activities, Sci. Rep., 7, 017-13324, doi: 10.1038/s41598-017-13324-0.
32. Garafutdinov, R. R., Sakhabutdinova, A. R., Kupryushkin, M. S., and Pyshnyi, D. V. (2020) Prevention of DNA multimerization using phosphoryl guanidine primers during isothermal amplification with Bst exo-DNA polymerase, Biochimie, 168, 259-267, doi: 10.1016/j.biochi.2019.11.013.
33. Inoue, J., Shigemori, Y., and Mikawa, T. (2006) Improvements of rolling circle amplification (RCA) efficiency and accuracy using Thermus thermophilus SSB mutant protein, Nucleic Acids Res., 34, e69-e69, doi: 10.1093/nar/gkl350.
34. Mikawa, T., Inoue, J., and Shigemori, Y. (2009) Single-stranded DNA binding protein facilitates specific enrichment of circular DNA molecules using rolling circle amplification, Anal. Biochem., 391, 81-84, doi: 10.1016/j.ab.2009.05.013.
35. Walker, G. T., Little, M. C., Nadeau, J. G., and Shank, D. D. (1992) Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system, Proc. Natl. Acad. Sci. USA, 89, 392-396, doi: 10.1073/pnas.89.1.392.
36. Chan, S.-H., Zhu, Z., Van Etten, J. L., and Xu, S.-Y. (2004) Cloning of CviPII nicking and modification system from chlorella virus NYs-1 and application of Nt. CviPII in random DNA amplification, Nucleic Acids Res., 32, 6187-6199, doi: 10.1093/nar/gkh958.
37. Van Ness, J., Van Ness, L. K., and Galas, D. J. (2003) Isothermal reactions for the amplification of oligonucleotides, Proc. Natl. Acad. Sci. USA, 100, 4504, doi: 10.1073/pnas.0730811100.
38. Joneja, A., and Huang, X. (2011) Linear nicking endonuclease-mediated strand-displacement DNA amplification, Anal. Biochem., 414, 58-69, doi: 10.1016/j.ab.2011.02.025.
39. Zhou, H., Xie, S.-J., Zhang, S.-B., Shen, G.-L., Yu, R.-Q., and Wu, Z.-S. (2013) Isothermal amplification system based on template-dependent extension, Chem. Commun., 49, 2448-2450, doi: 10.1039/c3cc38358j.
40. Shi, C., Liu, Q., Zhou, M., Zhao, H., Yang, T., and Ma, C. (2016) Nicking endonuclease-mediated isothermal exponential amplification for double-stranded DNA detection, Sens. Actuat. B. Chem., 222, 221-225, doi: 10.1016/j.snb.2015.08.060.
41. Абросимова Л. А., Кисиль О. В., Романова Е. А., Орецкая Т. С., Кубарева Е. А. (2019) Никующие эндонуклеазы как уникальные инструменты в биотехнологии и генетической инженерии, Биоорганическая химия, 445, 451-471, doi: 10.1134/S0132342319050014.
42. Walker, G. T., Fraiser, M. S., Schram, J. L., Little, M. C., Nadeau, J. G., and Malinowski, D. P. (1992) Strand displacement amplification – an isothermal, in vitro DNA amplification technique, Nucleic Acids Res., 20, 1691-1696, doi: 10.1093/nar/20.7.1691.
43. Spargo, C. A., Fraiser, M. S., Van Cleve, M., Wright, D. J., Nycz, C. M., et al. (1996) Detection of M. tuberculosis DNA using thermophilic strand displacement amplification, Mol. Cell. Probes, 10, 247-256, doi: 10.1006/mcpr.1996.0034.
44. Nadeau, J. G., Pitner, J. B., Linn, C. P., Schram, J. L., Dean, C. H., and Nycz, C. M. (1999) Real-time, sequence-specific detection of nucleic acids during strand displacement amplification, Anal. Biochem., 276, 177-187, doi: 10.1006/abio.1999.4350.
45. Ehses, S., Ackermann, J., and McCaskill, J. S. (2005) Optimization and design of oligonucleotide setup for strand displacement amplification, J. Biochem. Biophys. Methods, 63, 170-186, doi: 10.1016/j.jbbm.2005.04.005.
46. Tan, E., Erwin, B., Dames, S., Ferguson, T., Buechel, M., et al. (2008) Specific versus nonspecific isothermal DNA amplification through thermophilic polymerase and nicking enzyme activities, Biochemistry, 47, 9987-9999, doi: 10.1021/bi800746p.
47. Reid, M. S., Paliwoda, R. E., Zhang, H., and Le, X. C. (2018) Reduction of background generated from template-template hybridizations in the exponential amplification reaction, Anal. Chem., 90, 11033-11039, doi: 10.1021/acs.analchem.8b02788.
48. Little, M. C., Andrews, J., Moore, R., Bustos, S., Jones, L., et al. (1999) Strand displacement amplification and homogeneous real-time detection incorporated in a second-generation DNA probe system, BDProbeTecET, Clin. Chem., 45, 777-784, doi: 10.1093/clinchem/45.6.777.
49. Зырина Н. В., Артюх Р. И., Свадьбина И. В., Железная Л. А., Матвиенко Н. И. (2012) Влияние белков, связывающихся с одноцепочечной ДНК, на безматричный/беспраймерный синтез ДНК в присутствии никующей эндонуклеазы Nt.BspD6I, Биоограническая химия, 38, 199-205, doi: 10.1134/S1068162012020161.
50. He, Y., and Jiang, T. (2013) Nickase-dependent isothermal DNA amplification, Adv. Biosci. Biotechnol., 4, 539-542, doi: 10.4236/abb.2013.44070.
51. Menova, P., Raindlova, V., and Hocek, M. (2013) Scope and limitations of the nicking enzyme amplification reaction for the synthesis of base-modified oligonucleotides and primers for PCR, Bioconj. Chem., 24, 1081-1093, doi: 10.1021/bc400149q.
52. Urtel, G., Van Der Hofstadt, M., Galas, J.-C., and Estevez-Torres, A. (2019) rEXPAR: an isothermal amplification scheme that is robust to autocatalytic parasites, Biochemistry, 58, 2675-2681, doi: 10.1021/acs.biochem.9b00063.
53. Zyrina, N. V., Antipova, V. N., and Zheleznaya, L. A. (2014) Ab initio synthesis by DNA polymerases, FEMS Microbiol. Lett., 351, 1-6, doi: 10.1111/1574-6968.12326.
54. Liang, X., Jensen, K., and Frank-Kamenetskii, M. D. (2004) Very efficient template/primer-independent DNA synthesis by thermophilic DNA polymerase in the presence of a thermophilic restriction endonuclease, Biochemistry, 43, 13459-13466, doi: 10.1021/bi0489614.
55. Zyrina, N. V., Zheleznaya, L. A., Dvoretsky, E. V., Vasiliev, V. D., Chernov, A., and Matvienko, N. I. (2007) N.BspD6I DNA nickase strongly stimulates template-independent synthesis of non-palindromic repetitive DNA by Bst DNA polymerase, Biol. Chem., 388, 367-372, doi: 10.1515/BC.2007.043.
56. Antipova, V. N., Zheleznaya, L. A., and Zyrina, N. V. (2014) Ab initio DNA synthesis by Bst polymerase in the presence of nicking endonucleases Nt.AlwI, Nb.BbvCI, and Nb.BsmI, FEMS Microbiol. Lett., 357, 144-150, doi: 10.1111/1574-6968.12511.
57. Kaboev, O. K., and Luchkina, L. A. (2004) Template-free primer-independent DNA synthesis by bacterial DNA polymerases I using the DnaB protein from Escherichia coli, Dokl. Biochem. Biophys., 398, 265-267, doi: 10.1023/b:dobi.0000046633.66624.58.
58. Beguin, P., Gill, S., Charpin, N., and Forterre, P. (2015) Synergistic template-free synthesis of dsDNA by Thermococcus nautili primase PolpTN2, DNA polymerase PolB, and pTN2 helicase, Extremophiles, 19, 69-76, doi: 10.1007/s00792-014-0706-1.
59. Schachman, H. K., Adler, J., Radding, C. M., Lehman, I. R., and Kornberg, A. (1960) Enzymatic synthesis of deoxyribonucleic acid. VII. Synthesis of a polymer of deoxyadenylate and deoxythymidylate, J. Biol. Chem., 235, 3242-3249.
60. Ogata, N., and Miura, T. (1997) Genetic information “created” by archaebacterial DNA polymerase, Biochem. J., 324 (Pt 2), 667-671, doi: 10.1042/bj3240667.
61. Ogata, N., and Miura, T. (1998) Creation of genetic information by DNA polymerase of the thermophilic bacterium Thermus thermophilus, Nucleic Acids Res., 26, 4657-4661, doi: 10.1093/nar/26.20.4657.
62. Pavlov, A. R., Pavlova, N. V., Kozyavkin, S. A., and Slesarev, A. I. (2004) Recent developments in the optimization of thermostable DNA polymerases for efficient applications, Trends Biotechnol., 22, 253-260, doi: 10.1016/j.tibtech.2004.02.011.
63. Shi, C., Shen, X., Niu, S., and Ma, C. (2015) Innate reverse transcriptase activity of DNA polymerase for isothermal RNA direct detection, J. Am. Chem. Soc., 137, 13804-13806, doi: 10.1021/jacs.5b08144.
64. Krzywkowski, T., Kühnemund, M., Wu, D., and Nilsson, M. (2018) Limited reverse transcriptase activity of phi29 DNA polymerase, Nucleic Acids Res., 46, 3625-3632, doi: 10.1093/nar/gky190.
65. Garcia, P. B., Robledo, N. L., and Islas, A. L. (2004) Analysis of non-template-directed nucleotide addition and template switching by DNA polymerase, Biochemistry, 43, 16515-16524, doi: 10.1021/bi0491853.
66. Que, H., Yan, X., Guo, B., Ma, H., Wang, T., et al. (2019) Terminal deoxynucleotidyl transferase and rolling circle amplification induced G-triplex formation: a label-free fluorescent strategy for DNA methyltransferase activity assay, Sens. Actuat. B Chem., 291, 394-400, doi: 10.1016/j.snb.2019.04.091.
67. Sinden, R. R., Potaman, V. N., Oussatcheva, E. A., Pearson, C. E., Lyubchenko, Y. L., and Shlyakhtenko, L. S. (2002) Triplet repeat DNA structures and human genetic disease: dynamic mutations from dynamic DNA, J. Biosci., 27, 53-65, doi: 10.1007/BF02703683.
68. Canceill, D., Viguera, E., and Ehrlich, S. D. (1999) Replication slippage of different DNA polymerases is inversely related to their strand displacement efficiency, J. Biol. Chem., 274, 27481-27490, doi: 10.1074/jbc.274.39.27481.
69. Viguera, E., Canceill, D., and Ehrlich, S. D. (2001) Replication slippage involves DNA polymerase pausing and dissociation, EMBO J., 20, 2587-2595, doi: 10.1093/emboj/20.10.2587.
70. Akabayov, B., Akabayov, S. R., Lee, S. J., Wagner, G., and Richardson, C. C. (2013) Impact of macromolecular crowding on DNA replication, Nat. Commun., 4, 1615, doi: 10.1038/ncomms2620.
71. Tong, Y., Lemieux, B., and Kong, H. (2011) Multiple strategies to improve sensitivity, speed and robustness of isothermal nucleic acid amplification for rapid pathogen detection, BMC Biotechnol., 11, 1472-6750, doi: 10.1186/1472-6750-11-50.
72. Garafutdinov, R. R., Gilvanov, A. R., Kupova, O. Y., and Sakhabutdinova, A. R. (2020) Effect of metal ions on isothermal amplification with Bst exo-DNA polymerase, Int. J. Biol. Macromol., 161, 1447-1455, doi: 10.1016/j.ijbiomac.2020.08.028.
73. Piotrowski, Y., Gurung, M. K., and Larsen, A. N. (2019) Characterization and engineering of a DNA polymerase reveals a single amino-acid substitution in the fingers subdomain to increase strand-displacement activity of A-family prokaryotic DNA polymerases, BMC Mol. Cell. Biol., 20, 31, doi: 10.1186/s12860-019-0216-1.
74. Milligan, J. N., Shroff, R., Garry, D. J., and Ellington, A. D. (2018) Evolution of a thermophilic strand-displacing polymerase using high-temperature isothermal compartmentalized self-replication, Biochemistry, 57, 4607-4619, doi: 10.1021/acs.biochem.8b00200.
75. Oscorbin, I. P., Belousova, E. A., Boyarskikh, U. A., Zakabunin, A. I., Khrapov, E. A., and Filipenko, M. L. (2017) Derivatives of Bst-like Gss-polymerase with improved processivity and inhibitor tolerance, Nucleic Acids Res., 45, 9595-9610, doi: 10.1093/nar/gkx645.