БИОХИМИЯ, 2021, том 86, вып. 7, с. 964–984

УДК 578.834;578.832

COVID-19: мифы и реальность

Обзор

© 2021 Л.В. Кордюкова 1*kord@belozersky.msu.ru, А.В. Шанько 2,3

НИИ физико-химической биологии имени А.Н. Белозерского, Московский государственный университет имени М.В. Ломоносова, 119991 Москва, Россия

ООО ФОРТ, Департамент науки, 119435 Москва, Россия

НИИ вирусологии имени Д.И. Ивановского, «НИЦЭМ им. Н. Ф. Гамалеи» Минздрава России, 123098 Москва, Россия

Поступила в редакцию 07.04.2021
После доработки 28.04.2021
Принята к публикации 28.04.2021

DOI: 10.31857/S0320972521070022

КЛЮЧЕВЫЕ СЛОВА: COVID‑19, SARS‑CoV‑2, S‑белок, структура, вирус гриппа, гемагглютинин, вакцины.

Статья на английском языке опубликована в режиме Open Access (открытого доступа) на сайте издательства Springer. DOI: 10.1134/S0006297921070026.

Аннотация

COVID‑19, новое респираторное заболевание человека, жертвами которого за год пандемии стали около 3 млн человек, является глобальным вызовом здравоохранению во всем мире. Вызвавший его инфекционный агент – новый коронавирус SARS‑CoV‑2 – имеет ряд существенных структурных отличий от других коронавирусов, что делает его более патогенным и способным быстро распространяться. В настоящем обзоре мы рассмотрим важные характеристики основного поверхностного антигена SARS‑CoV‑2 (шиповидного S-белка), такие как: (1) способность рецептор-связывающего домена (RBD) переходить из положения «стоя» («открытая» префузионная конформация) в положение «лежа» («закрытая» префузионная конформация) для ускользания от нейтрализующих антител; (2) использование преимуществ высокого сродства связывания RBD в открытой конформации с рецептором – ангиотензинпревращающим ферментом 2 человека для эффективного входа в клетку; (3) предактивация S-белка внутриклеточными фуриноподобными протеазами для распространения вируса по разным типам клеток. Мы рассмотрим взаимодействие S-белка с клеточными рецепторами, корецепторами и антагонистами и опишем гипотетический механизм дестабилизации гомотримерной структуры «шипа», запускающий слияние оболочки вириона с мембраной клетки при физиологическом значении рН и опосредующий вход вирусного нуклеокапсида в цитоплазму. Крайне важным с практической точки зрения, особенно при производстве вакцин, является обнаруженное свойство перехода префузионной конформации S‑белка в постфузионную на поверхности вирионов в случае инактивации их такими реагентами, как β‑пропиолактон. Мы также сравним несколько особенностей COVID‑19 и S‑белка вируса SARS‑CoV‑2 со вспышками тяжелого гриппа, вызванными высокопатогенными штаммами вируса гриппа А подтипов H5 и H7, и структурными характеристиками молекул гемагглютинина этих штаммов. В конце обзора коротко перечислены перспективные и внедренные в практику антивирусные и патогенетические средства терапии COVID‑19; рассмотрены традиционные и инновационные вакцины, недавно одобренные для профилактики заболевания, и их молекулярно-иммунологические особенности.

Сноски

* Адресат для корреспонденции.

Финансирование

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 20-14-50441).

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических норм

Настоящая статья не содержит описания каких-либо исследований с участием людей или животных в качестве объектов.

Список литературы

1. Perico, L., Benigni, A., Casiraghi, F., Ng, L. F. P., Renia, L., and Remuzzi, G. (2021) Immunity, endothelial injury and complement-induced coagulopathy in COVID-19, Nat. Rev. Nephrol., 17, 46-64, doi: 10.1038/s41581-020-00357-4.

2. Asselah, T., Durantel, D., Pasmant, E., Lau, G., and Schinazi, R. F. (2021) COVID-19: discovery, diagnostics and drug development, J. Hepatol., 74, 168-184, doi: 10.1016/j.jhep.2020.09.031.

3. Paget, J., Spreeuwenberg, P., Charu, V., Taylor, R. J., Iuliano, A. D., et al. (2019) Global mortality associated with seasonal influenza epidemics: new burden estimates and predictors from the GLaMOR Project, J. Glob. Health, 9, 020421, doi: 10.7189/jogh.09.020421.

4. Dawood, F. S., Iuliano, A. D., Reed, C., Meltzer, M. I., Shay, D. K., et al. (2012) Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation: a modelling study, Lancet Infect. Dis., 12, 687-695, doi: 10.1016/S1473-3099(12)70121-4.

5. Cui, J., Li, F., and Shi, Z.-L. (2019) Origin and evolution of pathogenic coronaviruses, Nat. Rev. Microbiol., 17, 181-192, doi: 10.1038/s41579-018-0118-9.

6. Petrosillo, N., Viceconte, G., Ergonul, O., Ippolito, G., and Petersen, E. (2020) COVID-19, SARS and MERS: are they closely related? Clin. Microbiol. Infect., 26, 729-734, doi: 10.1016/j.cmi.2020.03.026.

7. Henderson, R., Edwards, R. J., Mansouri, K., Janowska, K., Stalls, V., et al. (2020) Controlling the SARS-CoV-2 spike glycoprotein conformation, Nat. Struct. Mol. Biol., 27, 925-933, doi: 10.1038/s41594-020-0479-4.

8. Khan, M., Adil, S. F., Alkhathlan, H. Z., Tahir, M. N., Saif, S., et al. (2020) COVID-19: a global challenge with old history, epidemiology and progress so far, Molecules, 26, 39, doi: 10.3390/molecules26010039.

9. Yao, H., Song, Y., Chen, Y., Wu, N., Xu, J., et al. (2020) Molecular architecture of the SARS-CoV-2 virus, Cell, 183, 730-738.e13, doi: 10.1016/j.cell.2020.09.018.

10. Ke, Z., Oton, J., Qu, K., Cortese, M., Zila, V., et al. (2020) Structures and distributions of SARS-CoV-2 spike proteins on intact virions, Nature, 588, 498-502, doi: 10.1038/s41586-020-2665-2.

11. Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C.-L., et al. (2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation, Science, 367, 1260-1263, doi: 10.1126/science.abb2507.

12. Walls, A. C., Park, Y.-J., Tortorici, M. A., Wall, A., McGuire, A. T., and Veesler, D. (2020) Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein, Cell, 181, 281-292.e6, doi: 10.1016/j.cell.2020.02.058.

13. Harris, A., Cardone, G., Winkler, D. C., Heymann, J. B., Brecher, M., et al. (2006) Influenza virus pleiomorphy characterized by cryoelectron tomography, Proc. Natl. Acad. Sci. USA, 103, 19123-19127, doi: 10.1073/pnas.0607614103.

14. Jiang, C., Yao, X., Zhao, Y., Wu, J., Huang, P., et al. (2020) Comparative review of respiratory diseases caused by coronaviruses and influenza A viruses during epidemic season, Microbes Infect., 22, 236-244, doi: 10.1016/j.micinf.2020.05.005.

15. Zeng, R., Ruan, H. Q., Jiang, X. S., Zhou, H., Shi, L., et al. (2004) Proteomic analysis of SARS associated coronavirus using two-dimensional liquid chromatography mass spectrometry and one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by mass spectroemtric analysis, J. Proteome Res., 3, 549-555, doi: 10.1021/pr034111j.

16. Malik, Y. A. (2020) Properties of coronavirus and SARS-CoV-2, Malays. J. Pathol., 42, 3-11.

17. Mahtarin, R., Islam, S., Islam, Md. J., Ullah, M. O., Ali, M. A., and Halim, M. A. (2020) Structure and dynamics of membrane protein in SARS-CoV-2, J. Biomol. Struct. Dyn., 1-14, doi: 10.1080/07391102.2020.1861983.

18. Nal, B., Chan, C., Kien, F., Siu, L., Tse, J., et al. (2005) Differential maturation and subcellular localization of severe acute respiratory syndrome coronavirus surface proteins S, M and E, J. Gen. Virol., 86, 1423-1434, doi: 10.1099/vir.0.80671-0.

19. Neuman, B. W., Kiss, G., Kunding, A. H., Bhella, D., Baksh, M. F., et al. (2011) A structural analysis of M protein in coronavirus assembly and morphology, J. Struct. Biol., 174, 11-22, doi: 10.1016/j.jsb.2010.11.021.

20. Wang, J., Ji, J., Ye, J., Zhao, X., Wen, J., et al. (2003) The structure analysis and antigenicity study of the N protein of SARS-CoV, Genomics Proteomics Bioinformatics, 1, 145-154, doi: 10.1016/s1672-0229(03)01018-0.

21. Mesquita, F. S., Abrami, L., Sergeeva, O., Turelli, P., Kunz, B., et al. (2021) S-acylation controls SARS-Cov-2 membrane lipid organization and enhances infectivity, BioRxiv, doi: 10.1101/2021.03.14.435299.

22. Lopez, L. A., Riffle, A. J., Pike, S. L., Gardner, D., and Hogue, B. G. (2008) Importance of conserved cysteine residues in the coronavirus envelope protein, J. Virol., 82, 3000-3010, doi: 10.1128/JVI.01914-07.

23. Boscarino, J. A., Logan, H. L., Lacny, J. J., and Gallagher, T. M. (2008) Envelope protein palmitoylations are crucial for murine coronavirus assembly, J. Virol., 82, 2989-2999, doi: 10.1128/JVI.01906-07.

24. Boson, B., Legros, V., Zhou, B., Siret, E., Mathieu, C., et al. (2021) The SARS-CoV-2 envelope and membrane proteins modulate maturation and retention of the spike protein, allowing assembly of virus-like particles, J. Biol. Chem., 296, 100111, doi: 10.1074/jbc.RA120.016175.

25. V’kovski, P., Kratzel, A., Steiner, S., Stalder, H., and Thiel, V. (2021) Coronavirus biology and replication: implications for SARS-CoV-2, Nat. Rev. Microbiol., 19, 155-170, doi: 10.1038/s41579-020-00468-6.

26. Wrobel, A. G., Benton, D. J., Xu, P., Roustan, C., Martin, S. R., et al. (2020) SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects, Nat. Struct. Mol. Biol., 27, 763-767, doi: 10.1038/s41594-020-0468-7.

27. Luan, J., Lu, Y., Jin, X., and Zhang, L. (2020) Spike protein recognition of mammalian ACE2 predicts the host range and an optimized ACE2 for SARS-CoV-2 infection, Biochem. Biophys. Res. Commun., 526, 165-169, doi: 10.1016/j.bbrc.2020.03.047.

28. Li, X., Giorgi, E. E., Marichannegowda, M. H., Foley, B., et al. (2020) Emergence of SARS-CoV-2 through recombination and strong purifying selection, Sci. Adv., 6, eabb9153, doi: 10.1126/sciadv.abb9153.

29. Sun, J., He, W. T., Wang, L., Lai, A., Ji, X., et al. (2020) COVID-19: epidemiology, evolution, and cross-disciplinary perspectives, Trends Mol. Med., 26, 483-495, doi: 10.1016/j.molmed.2020.02.008.

30. Rochman, N. D., Wolf, Y. I., Faure, G., Mutz, P., Zhang, F., and Koonin, E. (2020) Ongoing global and regional adaptive evolution of SARS-CoV-2, BioRxiv, doi: 10.1101/2020.10.12.336644.

31. Goh, G. K. -M., Dunker, A. K., Foster, J. A., and Uversky, V. N. (2020) Shell disorder analysis predicts greater resilience of the SARS-CoV-2 (COVID-19) outside the body and in body fluids, Microb. Pathog., 144, 104177, doi: 10.1016/j.micpath.2020.104177.

32. Klein, S., Cortese, M., Winter, S. L., Wachsmuth-Melm, M., Neufeldt, C. J., et al. (2020) SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography, Nat. Commun., 11, 5885, doi: 10.1038/s41467-020-19619-7.

33. Pillay, T. S. (2020) Gene of the month: the 2019-nCoV/SARS-CoV-2 novel coronavirus spike protein, J. Clin. Pathol., 73, 366-369, doi: 10.1136/jclinpath-2020-206658.

34. Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., et al. (2020) Structural and functional basis of SARS-CoV-2 entry by using human ACE2, Cell, 181, 894-904. e9, doi: 10.1016/j.cell.2020.03.045.

35. Hussain, M., Jabeen, N., Raza, F., Shabbir, S., Baig, A. A., Amanullah, A., and Aziz, B. (2020) Structural variations in human ACE2 may influence its binding with SARS‐CoV‐2 spike protein, J. Med. Virol., 92, 1580-1586, doi: 10.1002/jmv.25832.

36. Coutard, B., Valle, C., de Lamballerie, X., Canard, B., Seidah, N. G., and Decroly, E. (2020) The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade, Antiviral Res., 176, 104742, doi: 10.1016/j.antiviral.2020.104742.

37. Shang, J., Ye, G., Shi, K., Wan, Y., Luo, C., et al. (2020) Structural basis of receptor recognition by SARS-CoV-2, Nature, 581, 221-224, doi: 10.1038/s41586-020-2179-y.

38. Steinhauer, D. A. (1999) Role of hemagglutinin cleavage for the pathogenicity of influenza virus, Virology, 258, 1-20, doi: 10.1006/viro.1999.9716.

39. Klenk, H.-D., and Garten, W. (1994) Host cell proteases controlling virus pathogenicity, Trends Microbiol., 2, 39-43, doi: 10.1016/0966-842x(94)90123-6.

40. Bertram, S., Glowacka, I., Steffen, I., Kühl, A., and Pöhlmann, S. (2010) Novel insights into proteolytic cleavage of influenza virus hemagglutinin: proteolytic activation of influenza virus, Rev. Med. Virol., 20, 298-310, doi: 10.1002/rmv.657.

41. Turoňová, B., Sikora, M., Schürmann, C., Hagen, W. J. H., Welsch, S., et al. (2020) In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges, Science, 370, 203-208, doi: 10.1126/science.abd5223.

42. Watanabe, Y., Allen, J. D., Wrapp, D., McLellan, J. S., and Crispin, M. (2020) Site-specific glycan analysis of the SARS-CoV-2 spike, Science, 369, 330-333, doi: 10.1126/science.abb9983.

43. Shajahan, A., Supekar, N. T., Gleinich, A. S., and Azadi, P. (2020) Deducing the N- and O-glycosylation profile of the spike protein of novel coronavirus SARS-CoV-2, Glycobiology, 30, 981-988, doi: 10.1093/glycob/cwaa042.

44. Cai, Y., Zhang, J., Xiao, T., Peng, H., Sterling, S. M., et al. (2020) Distinct conformational states of SARS-CoV-2 spike protein, Science, 369, 1586-1592, doi: 10.1126/science.abd4251.

45. Petit, C. M., Chouljenko, V. N., Iyer, A., Colgrove, R., Farzan, M., et al. (2007) Palmitoylation of the cysteine-rich endodomain of the SARS-coronavirus spike glycoprotein is important for spike-mediated cell fusion, Virology, 360, 264-274, doi: 10.1016/j.virol.2006.10.034.

46. Veit, M. (2012) Palmitoylation of virus proteins, Biol. Cell, 104, 493-515, doi: 10.1111/boc.201200006.

47. Serebryakova, M. V., Kordyukova, L. V., Semashko, T. A., Ksenofontov, A. L., Rudneva, I. A., et al. (2011) Influenza virus hemagglutinin spike neck architectures and interaction with model enzymes evaluated by MALDI-TOF mass spectrometry and bioinformatics tools, Virus Res., 160, 294-304, doi: 10.1016/j.virusres.2011.07.002.

48. Veit, M., Serebryakova, M. V., and Kordyukova, L. V. (2013) Palmitoylation of influenza virus proteins, Biochem. Soc. Trans., 41, 50-55, doi: 10.1042/BST20120210.

49. Kordyukova, L. V., Serebryakova, M. V., Polyansky, A. A., Kropotkina, E. A., Alexeevski, A. V., et al. (2011) Linker and/or transmembrane regions of influenza A/group-1, A/group-2, and type B virus hemagglutinins are packed differently within trimers, Biochim. Biophys. Acta, 1808, 1843-1854, doi: 10.1016/j.bbamem.2011.03.005.

50. Kordyukova, L. V., Serebryakova, M. V., Baratova, L. A., and Veit, M. (2010) Site-specific attachment of palmitate or stearate to cytoplasmic versus transmembrane cysteines is a common feature of viral spike proteins, Virology, 398, 49-56, doi: 10.1016/j.virol.2009.11.039.

51. Kordyukova, L. V., Serebryakova, M. V., Baratova, L. A., and Veit, M. (2008) S acylation of the hemagglutinin of influenza viruses: mass spectrometry reveals site-specific attachment of stearic acid to a transmembrane cysteine, J. Virol., 82, 9288-9292, doi: 10.1128/JVI.00704-08.

52. Serebryakova, M. V., Kordyukova, L. V., Baratova, L. A., and Markushin, S. G. (2006) Mass spectrometric sequencing and acylation character analysis of C-terminal anchoring segment from influenza A hemagglutinin, Eur. J. Mass Spectrom. (Chichester), 12, 51-62, doi: 10.1255/ejms.792.

53. Chakraborty, S., Mallajosyula, V., Tato, C. M., Tan, G. S., and Wang, T. T. (2021) SARS-CoV-2 vaccines in advanced clinical trials: where do we stand? Adv. Drug Deliv. Rev., 172, 314-338, doi: 10.1016/j.addr.2021.01.014.

54. Shang, J., Wan, Y., Luo, C., Ye, G., Geng, Q., et al. (2020) Cell entry mechanisms of SARS-CoV-2, Proc. Natl. Acad. Sci. USA, 117, 11727-11734, doi: 10.1073/pnas.2003138117.

55. Benton, D. J., Wrobel, A. G., Xu, P., Roustan, C., Martin, S. R., et al. (2020) Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion, Nature, 588, 327-330, doi: 10.1038/s41586-020-2772-0.

56. Chernomordik, L. V., and Kozlov, M. M. (2008) Mechanics of membrane fusion, Nat. Struct. Mol. Biol., 15, 675-683, doi: 10.1038/nsmb.1455.

57. Clausen, T. M., Sandoval, D. R., Spliid, C. B., Pihl, J., Perrett, H. R., et al. (2020) SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2, Cell, 183, 1043-1057. e15, doi: 10.1016/j.cell.2020.09.033.

58. Toelzer, C., Gupta, K., Yadav, S. K. N., Borucu, U., Davidson, A. D., et al. (2020) Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein, Science, 370, 725-730, doi: 10.1126/science.abd3255.

59. Liu, C., Mendonça, L., Yang, Y., Gao, Y., Shen, C., et al. (2020) The architecture of inactivated SARS-CoV-2 with postfusion spikes revealed by Cryo-EM and Cryo-ET, Structure, 28, 1218-1224.e4, doi: 10.1016/j.str.2020.10.001.

60. Wan, Y., Shang, J., Sun, S., Tai, W., Chen, J., et al. (2020) Molecular mechanism for antibody-dependent enhancement of coronavirus entry, J. Virol., 94, e02015-19, doi: 10.1128/JVI.02015-19.

61. Isin, B., Doruker, P., and Bahar, I. (2002) Functional motions of influenza virus hemagglutinin: a structure-based analytical approach, Biophys. J., 82, 569-581, doi: 10.1016/S0006-3495(02)75422-2.

62. Benton, D. J., Nans, A., Calder, L. J., Turner, J., Neu, U., et al. (2018) Influenza hemagglutinin membrane anchor, Proc. Natl. Acad. Sci. USA, 115, 10112-10117, doi: 10.1073/pnas.1810927115.

63. Plante, J. A., Liu, Y., Liu, J., Xia, H., Johnson, B. A., et al. (2021) Spike mutation D614G alters SARS-CoV-2 fitness, Nature, 592, 116-121, doi: 10.1038/s41586-020-2895-3.

64. Mishra, S. K., and Tripathi, T. (2020) One year update on the COVID-19 pandemic: where are we now? Acta Trop., 214, 105778, doi: 10.1016/j.actatropica.2020.105778.

65. Korber, B., Fischer, W. M., Gnanakaran, S., Yoon, H., Theiler, J., et al. (2020) Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus, Cell, 182, 812-827.e19, doi: 10.1016/j.cell.2020.06.043.

66. Tegally, H., Wilkinson, E., Giovanetti, M., Iranzadeh, A., Fonseca, V., et al. (2021) Detection of a SARS-CoV-2 variant of concern in South Africa, Nature, 592, 438-443, doi: 10.1038/s41586-021-03402-9.

67. Xie, X., Liu, Y., Liu, J., Zhang, X., Zou, J., Fontes-Garfias, C. R., et al. (2021) Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera, Nat. Med., 27, 620-621, doi: 10.1038/s41591-021-01270-4.

68. Loganathan, S., Kuppusamy, M., Wankhar, W., Gurugubelli, K. R., Mahadevappa, V. H., et al. (2021) Angiotensin-converting enzyme 2 (ACE2): COVID-19 gate way to multiple organ failure syndromes, Respir. Physiol. Neurobiol., 283, 103548, doi: 10.1016/j.resp.2020.103548.

69. Lv, H., Wu, N. C., and Mok, C. K. P. (2020) COVID‐19 vaccines: knowing the unknown, Eur. J. Immunol., 50, 939-943, doi: 10.1002/eji.202048663.

70. La Vignera, S., Cannarella, R., Condorelli, R. A., Torre, F., Aversa, A., and Calogero, A. E. (2020) Sex-specific SARS-CoV-2 mortality: among hormone-modulated ACE2 expression, risk of venous thromboembolism and hypovitaminosis D, Int. J. Mol. Sci., 21, 2948, doi: 10.3390/ijms21082948.

71. McNab, F., Mayer-Barber, K., Sher, A., Wack, A., and O’Garra, A. (2015) Type I interferons in infectious disease, Nat. Rev. Immunol., 15, 87-103, doi: 10.1038/nri3787.

72. Galani, I.-E., Rovina, N., Lampropoulou, V., Triantafyllia, V., Manioudaki, M., et al. (2021) Untuned antiviral immunity in COVID-19 revealed by temporal type I/III interferon patterns and flu comparison, Nat. Immunol., 22, 32-40, doi: 10.1038/s41590-020-00840-x.

73. Nagashima, S., Mendes, M. C., Camargo Martins, A. P., Borges, N. H., Godoy, T. M., et al. (2020) Endothelial dysfunction and thrombosis in patients with COVID-19 – brief report, Arterioscler. Thromb. Vasc. Biol., 40, 2404-2407, doi: 10.1161/ATVBAHA.120.314860.

74. Suzuki, Y. J., Nikolaienko, S. I., Dibrova, V. A., Dibrova, Y. V., Vasylyk, V. M., et al. (2021) SARS-CoV-2 spike protein-mediated cell signaling in lung vascular cells, Vascul. Pharmacol., 137, 106823, doi: 10.1016/j.vph.2020.106823.

75. Suresh, S. J., and Suzuki, Y. J. (2020) SARS-CoV-2 spike protein and lung vascular cells, J. Respir., 1, 40-48, doi: 10.3390/jor1010004.

76. Zhirnov, O. P. (2020) Molecular targets in the chemotherapy of coronavirus infection, Biochemistry (Moscow), 85, 523-530, doi: 10.1134/S0006297920050016.

77. Francés-Monerris, A., Hognon, C., Miclot, T., García-Iriepa, C., Iriepa, I., et al. (2020) Molecular basis of SARS-Cov-2 infection and rational design of potential antiviral agents: modeling and simulation approaches, J. Proteome Res., 19, 4291-4315, doi: 10.1021/acs.jproteome.0c00779.

78. Gordon, C. J., Tchesnokov, E. P., Feng, J. Y., Porter, D. P., and Götte, M. (2020) The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus, J. Biol. Chem., 295, 4773-4779, doi: 10.1021/acs.jproteome.0c00779.

79. Mahase, E. (2020) Covid-19: remdesivir probably reduces recovery time, but evidence is uncertain, panel finds, BMJ, 370, m3049, doi: 10.1136/bmj.m3049.

80. Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., et al. (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell, 181, 271-280.e8, doi: 10.1016/j.cell.2020.02.052.

81. Hoffmann, M., Schroeder, S., Kleine-Weber, H., Müller, M. A., Drosten, C., and Pöhlmann, S. (2020) Nafamostat mesylate blocks activation of SARS-CoV-2: new treatment option for COVID-19, Antimicrob. Agents Chemother., 64, e00754-20, doi: 10.1128/AAC.00754-20.

82. Elmezayen, A. D., Al-Obaidi, A., Şahin, A. T., and Yelekçi, K. (2020) Drug repurposing for coronavirus (COVID-19): in silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes, J. Biomol. Struct. Dyn., 39, 2980-2992, doi: 10.1080/07391102.2020.1758791.

83. Loginova, S. Ya., Borisevich, S. V., Rusinov, V. L., Ulomskii, U. N., Charushin, V. N., and Chupakhin, O. N. (2014) Investigation of Triazaverin antiviral activity against tick-borne encephalitis pathogen in cell culture, Antibiot. Khimioter., 59, 3-5.

84. Shahab, S., and Sheikhi, M. (2020) Triazavirin – potential inhibitor for 2019-nCoV Coronavirus M protease: a DFT study, Curr. Mol. Med., doi: 10.2174/1566524020666200521075848.

85. Wu, X., Yu, K., Wang, Y., Xu, W., Ma, H., et al. (2020) Efficacy and safety of triazavirin therapy for Coronavirus disease 2019: a pilot randomized controlled trial, Engineering (Beijing), 6, 1185-1191, doi: 10.1016/j.eng.2020.08.011.

86. Outlaw, V. K., Bovier, F. T., Mears, M. C., Cajimat, M. N., Zhu, Y., et al. (2020) Inhibition of coronavirus entry in vitro and ex vivo by a lipid-conjugated peptide derived from the SARS-Cov-2 spike glycoprotein hrc domain, mBio, 11, e01935-20, doi: 10.1128/mBio.01935-20.

87. Zang, R., Case, J. B., Yutuc, E., Ma, X., Shen, S., et al. (2020) Cholesterol 25-hydroxylase suppresses SARS-CoV-2 replication by blocking membrane fusion, Proc. Natl. Acad. Sci. USA, 117, 32105-32113, doi: 10.1073/pnas.2012197117.

88. Wu, D., Koganti, R., Lambe, U. P., Yadavalli, T., Nandi, S. S., and Shukla, D. (2020) Vaccines and therapies in development for SARS-CoV-2 infections, J. Clin. Med., 9, 1885, doi: 10.3390/jcm9061885.

89. Hu, Y., Meng, X., Zhang, F., Xiang, Y., and Wang, J. (2021) The in vitro antiviral activity of lactoferrin against common human coronaviruses and SARS-CoV-2 is mediated by targeting the heparan sulfate co-receptor, Emerg. Microbes Infect., 10, 317-330, doi: 10.1080/22221751.2021.1888660.

90. Pinto, D., Park, Y. J., Beltramello, M., Walls, A. C., Tortorici, M. A., et al. (2020) Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody, Nature, 583, 290-295, doi: 10.1038/s41586-020-2349-y.

91. Wu, Y., Wang, F., Shen, C., Peng, W., Li, D., et al. (2020) A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2, Science, 368, 1274-1278, doi: 10.1126/science.abc2241.

92. Widera, M., Wilhelm, A., Hoehl, S., Pallas, C., Kohmer, N., et al. (2021) Bamlanivimab does not neutralize two SARS-CoV-2 variants carrying E484K in vitro, MedRxiv, doi: 10.1101/2021.02.24.21252372.

93. Kretsos, K., Golor, G., Jullion, A., Hickling, M., McCabe, S., et al. (2014) Safety and pharmacokinetics of olokizumab, an anti-IL-6 monoclonal antibody, administered to healthy male volunteers: a randomized phase I study, Clin. Pharmacol. Drug Dev., 3, 388-395, doi: 10.1002/cpdd.121.

94. Mercurio, I., Tragni, V., Busto, F., De Grassi, A., and Pierri, C. L. (2021) Protein structure analysis of the interactions between SARS-CoV-2 spike protein and the human ACE2 receptor: from conformational changes to novel neutralizing antibodies, Cell. Mol. Life Sci., 78, 1501-1522, doi: 10.1007/s00018-020-03580-1.

95. Verbeke, R., Lentacker, I., De Smedt, S. C., and Dewitte, H. (2019) Three decades of messenger RNA vaccine development, Nano Today, 28, 100766, doi: 10.1016/j.nantod.2019.100766.

96. Inoh, Y., Nagai, M., Matsushita, K., Nakanishi, M., and Furuno, T. (2017) Gene transfection efficiency into dendritic cells is influenced by the size of cationic liposomes/DNA complexes, Eur. J. Pharm. Sci., 102, 230-236, doi: 10.1016/j.ejps.2017.03.023.

97. Patel, S., Ashwanikumar, N., Robinson, E., DuRoss, A., Sun, C., et al. (2017) Boosting intracellular delivery of lipid nanoparticle-encapsulated mRNA, Nano Lett., 17, 5711-5718, doi: 10.1021/acs.nanolett.7b02664.

98. Hassett, K. J., Benenato, K. E., Jacquinet, E., Lee, A., Woods, A., et al. (2019) Optimization of lipid nanoparticles for intramuscular administration of mRNA vaccines, Mol. Ther. Nucleic Acids, 15, 1-11, doi: 10.1016/j.omtn.2019.01.013.

99. Koloskova, O. O., Nikonova, A. A., Budanova, U. A., Shilovskiy, I. P., Kofiadi, I. A., et al. (2016) Synthesis and evaluation of novel lipopeptide as a vehicle for efficient gene delivery and gene silencing, Eur. J. Pharm. Biopharm., 102, 159-167, doi: 10.1016/j.ejpb.2016.03.014.

100. Loseva, A. A., Budanova, U. A., and Sobyakin, Yu. L. (2019) Synthesis of new guanidine-containing amphiphiles and their pyrene analogue for liposomal delivery system and visualization in target cells, Russ. J. Org. Chem., 55, 1826-1831, doi: 10.1134/S1070428019120030.

101. Rietwyk, S., and Peer, D. (2017) Next-generation lipids in RNA interference therapeutics, ACS Nano, 11, 7572-7586, doi: 10.1021/acsnano.7b04734.

102. Basha, G., Novobrantseva, T. I., Rosin, N., Tam, Y. Y., Hafez, I. M., et al. (2011) Influence of cationic lipid composition on gene silencing properties of lipid nanoparticle formulations of siRNA in antigen-presenting cells, Mol. Ther., 19, 2186-2200, doi: 10.1038/mt.2011.190.

103. Feldman, R. A., Fuhr, R., Smolenov, I., Ribeiro, A., Panther, L., et al. (2019) mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials, Vaccine, 37, 3326-3334, doi: 10.1016/j.vaccine.2019.04.074.

104. Gan, L.-M., Lagerström-Fermér, M., Carlsson, L. G., Arfvidsson, C., Egnell, A. C., et al. (2019) Intradermal delivery of modified mRNA encoding VEGF-A in patients with type 2 diabetes, Nat. Commun., 10, 871, doi: 10.1038/s41467-019-08852-4.

105. Roth, C., Cantaert, T., Colas, C., Prot, M., Casadémont, I., et al. (2019) A modified mRNA vaccine targeting immunodominant NS epitopes protects against dengue virus infection in HLA class I transgenic mice, Front. Immunol., 10, 1424, doi: 10.3389/fimmu.2019.01424.

106. Jagger, B. W., Dowd, K. A., Chen, R. E., Desai, P., Foreman, B., et al. (2019) Protective efficacy of nucleic acid vaccines against transmission of zika virus during pregnancy in mice, J. Infect. Dis., 220, 1577-1588, doi: 10.1093/infdis/jiz338.

107. Liang, F., Lindgren, G., Lin, A., Thompson, E. A., Ols, S., et al. (2017) Efficient targeting and activation of antigen-presenting cells in vivo after modified mRNA vaccine administration in rhesus macaques, Mol. Ther., 25, 2635-2647, doi: 10.1016/j.ymthe.2017.08.006.

108. Espeseth, A. S., Cejas, P. J., Citron, M. P., Wang, D., DiStefano, D. J., et al. (2020) Modified mRNA/lipid nanoparticle-based vaccines expressing respiratory syncytial virus F protein variants are immunogenic and protective in rodent models of RSV infection, NPJ Vaccines, 5, 16, doi: 10.1038/s41541-020-0163-z.

109. Ewert, K., Ahmad, A., Evans, H. M., and Safinya, C. R. (2005) Cationic lipid-DNA complexes for non-viral gene therapy: relating supramolecular structures to cellular pathways, Expert Opin. Biol. Ther., 5, 33-53, doi: 10.1517/14712598.5.1.33.

110. Hervas-Stubbs, S., Perez-Gracia, J. L., Rouzaut, A., Sanmamed, M. F., Le Bon, A., and Melero, I. (2011) Direct effects of type I interferons on cells of the immune system, Clin. Cancer Res., 17, 2619-2627, doi: 10.1158/1078-0432.CCR-10-1114.

111. Crouse, J., Kalinke, U., and Oxenius, A. (2015) Regulation of antiviral T cell responses by type I interferons, Nat. Rev. Immunol., 15, 231-242, doi: 10.1038/nri3806.

112. Longhi, M. P., Trumpfheller, C., Idoyaga, J., Caskey, M., Matos, I., et al. (2009) Dendritic cells require a systemic type I interferon response to mature and induce CD4+ Th1 immunity with poly IC as adjuvant, J. Exp. Med., 206, 1589-1602, doi: 10.1084/jem.20090247.

113. Domeier, P. P., Chodisetti, S. B., Schell, S. L., Kawasawa, Y. I., Fasnacht, M. J., et al. (2018) B-cell-intrinsic type 1 interferon signaling is crucial for loss of tolerance and the development of autoreactive B cells, Cell Rep., 24, 406-418, doi: 10.1016/j.celrep.2018.06.046.

114. Marro, B. S., Legrain, S., Ware, B. C., and Oldstone, M. B. A. (2019) Macrophage IFN-I signaling promotes autoreactive T cell infiltration into islets in type 1 diabetes model, JCI Insight, 4, e125067, doi: 10.1172/jci.insight.125067.

115. Tatsis, N., and Ertl, H. C. J. (2004) Adenoviruses as vaccine vectors, Mol. Ther., 10, 616-629, doi: 10.1016/j.ymthe.2004.07.013.

116. Bilbao, G., Contreras, J. L., Zhang, H. G., Pike, M. J., Overturf, K., et al. (1999) Adenovirus-mediated gene expression in vivo is enhanced by the antiapoptotic bcl-2 gene, J. Virol., 73, 6992-7000, doi: 10.1128/JVI.73.8.6992-7000.1999.

117. Xiang, Z. Q., Yang, Y., Wilson, J. M., and Ertl, H. C. J. (1996) A replication-defective human adenovirus recombinant serves as a highly efficacious vaccine carrier, Virology, 219, 220-227, doi: 10.1006/viro.1996.0239.

118. Stephen, S. L., Montini, E., Sivanandam, V. G., Al-Dhalimy, M., Kestler, H. A., et al. (2010) Chromosomal integration of adenoviral vector DNA in vivo, J. Virol., 84, 9987-9994, doi: 10.1128/JVI.00751-10.

119. Crystal, R. G. (2014) Adenovirus: the first effective in vivo gene delivery vector, Hum. Gene Ther., 25, 3-11, doi: 10.1089/hum.2013.2527.

120. Logunov, D. Y., Dolzhikova, I. V., Shcheblyakov, D. V., Tukhvatulin, A. I., Zubkova, O. V., et al. (2021) Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia, Lancet, 397, 671-681, doi: 10.1016/S0140-6736(21)00234-8.

121. Ryzhikov, A. B., (2021) A single blind, placebo-controlled randomized study of the safety, reactogenicity and immunogenicity of the “EpiVacCorona” vaccine for the prevention of COVID-19, in volunteers aged 18-60 years (phase I-II), Russ. J. Infect. Immunity, 11, 283-296, doi: 10.15789/2220-7619-ASB-1699.

122. Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C., and Garry, R. F. (2020) The proximal origin of SARS-CoV-2, Nat. Med., 26, 450-452, doi: 10.1038/s41591-020-0820-9.

123. Chen, Z., and John Wherry, E. (2020) T cell responses in patients with COVID-19, Nat. Rev. Immunol., 20, 529-536, doi: 10.1038/s41577-020-0402-6.