БИОХИМИЯ, 2021, том 86, вып. 7, с. 947–963

УДК 577.25

Неканоническая активность эндоканнабиноидов и их рецепторов в центральных и периферических синапсах

Обзор

© 2021 О.П. Балезина, Е.О. Тарасова, А.Е. Гайдуков *gaydukov@gmail.com

Московский государственный университет имени М.В. Ломоносова, биологический факультет, 119234 Москва, Россия

Поступила в редакцию 16.03.2021
После доработки 29.04.2021
Принята к публикации 29.04.2021

DOI: 10.31857/S0320972521070010

КЛЮЧЕВЫЕ СЛОВА: эндоканнабиноиды, рецепторы СВ1 и СВ2, β-аррестины, тонус эндоканнабиноидов, потенциация синаптической передачи.

Аннотация

В обзоре рассмотрены новые аспекты активности и механизмов действия эндоканнабиноидов в центральных и периферических синапсах, отличные от их общеизвестной роли, как сигнальных молекул для ретроградного торможения секреции медиаторов с участием специфических пресинаптических рецепторов СВ1- и СB2-типа. Описана способность эндогенных и синтетических каннабиноидов к смещённому агонизму, сопряжению СВ1 и СВ2 не только с каноническими G-белками Gi-типа, но и Gs-, Gq– и другими типами, а также с β-аррестинами, как триггерами дополнительных сигнальных каскадов в синапсах. Обсуждаются примеры неканонической тонической активности эндоканнабиноидов и их рецепторов   их роль в синапсах. Приводятся сведения об участии эндоканнабиноидов в процессах кратковременной и долговременной потенциации синаптической передачи в ЦНС, а также обнаруженные недавно облегчающие эффекты эндоканнабиноидов в периферических моторных синапсах млекопитающих в виде увеличения размера квантов ацетилхолина в нервных терминалях и других параметров передачи. Делается вывод, что эндоканнабиноидная сигнальная система имеет более широкий, чем представлялось ранее, диапазон модулирующих, причём разнонаправленных (тормозных и облегчающих), влияний на секрецию медиаторов. Переосмысление её потенциальных функциональных возможностей и механизмов действия с учётом неканонических свойств позволит более глубоко и разносторонне оценить и использовать эту систему как в норме, так и при патологиях нервной и других систем организма.

Сноски

* Адресат для корреспонденции.

Финансирование

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 19-04-00616а).

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических норм

Настоящая статья не содержит описания каких-либо исследований с участием людей или животных в качестве объектов.

Список литературы

1. Morales, P., and Reggio, P. H. (2017) An update on Non-CB1, Non-CB2 cannabinoid related G-protein-coupled receptors, Cannabis Cannabinoid Res., 2, 265-273, doi: 10.1089/can.2017.0036.

2. Zou, S., and Kumar, U. (2018) Cannabinoid receptors and the endocannabinoid system: signaling and function in the central nervous system, Int. J. Mol. Sci., 19, 833, doi: 10.3390/ijms19030833.

3. Haspula, D., and Clark, M. A. (2020) Cannabinoid receptors: an update on cell signaling, pathophysiological roles and therapeutic opportunities in neurological, cardiovascular, and inflammatory diseases, Int. J. Mol. Sci., 21, 7693, doi: 10.3390/ijms21207693.

4. Muller, C., Morales, P., and Reggio, P. H. (2019) Cannabinoid ligands targeting TRP channels, Front. Mol. Neurosci., 11, 487, doi: 10.3389/fnmol.2018.00487.

5. Lago-Fernandez, A., Zarzo-Arias, S., Jagerovic, N., and Morales, P. (2021) Relevance of peroxisome proliferator activated receptors in multitarget paradigm associated with the endocannabinoid system, Int. J. Mol. Sci., 22, 1001, doi: 10.3390/ijms22031001.

6. Kano, M., Ohno-Shosaku, T., Hashimotodani, Y., Uchigashima, M., and Watanabe, M. (2009) Endocannabinoid-mediated control of synaptic transmission, Physiol. Rev., 89, 309-380, doi: 10.1152/physrev.00019.2008.

7. Castillo, P. E., Younts, T. J., Chávez, A. E., and Hashimotodani, Y. (2012) Endocannabinoid signaling and synaptic function, Neuron, 76, 70-81, doi: 10.1016/j.neuron.2012.09.020.

8. Rozov, A. V., Valiullina, F. F., and Bolshakov, A. P. (2017) Mechanisms of long-term plasticity of hippocampal GABAergic synapses, Biochemistry (Moscow), 82, 257-263, doi: 10.1134/S0006297917030038.

9. Turu, G., and Hunyady, L. (2010) Signal transduction of the CB1 cannabinoid receptor, J. Mol. Endocrinol., 44, 75-85, doi: 10.1677/JME-08-0190.

10. Dalton, G. D., and Howlett, A. C. (2012) Cannabinoid CB1 receptors transactivate multiple receptor tyrosine kinases and regulate serine/threonine kinases to activate ERK in neuronal cells, Br. J. Pharmacol., 165, 2497-2511, doi: 10.1111/j.1476-5381.2011.01455.x.

11. Kreitzer, A. C., and Regehr, W. G. (2001) Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells, Neuron, 29, 717-727, doi: 10.1016/S0896-6273(01)00246-X.

12. Fletcher-Jones, A., Hildick, K. L., Evans, A. J., Nakamura, Y., Henley, J. M., and Wilkinson, K. A. (2020) Protein interactors and trafficking pathways that regulate the cannabinoid type1 receptor (CB1R), Front. Mol. Neurosci., 13, 108, doi: 10.3389/fnmol.2020.00108.

13. Augustin, S. M., and Lovinger, D. M. (2018) Functional relevance of endocannabinoid-dependent synaptic plasticity in the central nervous system, ACS Chem. Neurosci., 9, 2146-2161, doi: 10.1021/acschemneuro.7b00508.

14. Huang, G. Z., and Woolley, C. S. (2012) Estradiol acutely suppresses inhibition in the hippocampus through a sex-specific endocannabinoid and mGluR-dependent mechanism, Neuron, 74, 801-808, doi: 10.1016/j.neuron.2012.03.035.

15. Tabatadze, N., Huang, G., May, R. M., Jain, A., and Woolley, C. S. (2015) Sex differences in molecular signaling at inhibitory synapses in the hippocampus, J. Neurosci., 35, 11252-11265, doi: 10.1523/JNEUROSCI.1067-15.2015.

16. Maejima, T., Hashimoto, K., Yoshida, T., Aiba, A., and Kano, M. (2001) Presynaptic inhibition caused by retrograde signal from metabotropic glutamate to cannabinoid receptors, Neuron, 31, 463-475, doi: 10.1016/S0896-6273(01)00375-0.

17. Kim, J., Isokawa, M., Ledent, C., and Alger, B. E. (2002) Activation of muscarinic acetylcholine receptors enhances the release of endogenous cannabinoids in the hippocampus, J. Neurosci., 22, 10182-10191, doi: 10.1523/jneurosci.22-23-10182.2002.

18. Straiker, A., and Mackie, K. (2007) Metabotropic suppression of excitation in murine autaptic hippocampal neurons, J. Physiol., 578, 773-785, doi: 10.1113/jphysiol.2006.117499.

19. Ohno-Shosaku, T., and Kano, M. (2014) Endocannabinoid-mediated retrograde modulation of synaptic transmission, Curr. Opin. Neurobiol., 29, 1-8, doi: 10.1016/j.conb.2014.03.017.

20. Varma, N., Carlson, G. C., Ledent, C., and Alger, B. E. (2001) Metabotropic glutamate receptors drive the endocannabinoid system in hippocampus, J. Neurosci., 21, RC188, doi: 10.1523/jneurosci.21-24-j0003.2001.

21. Ohno-Shosaku, T., Matsui, M., Fukudome, Y., Shosaku, J., Tsubokawa, H., Taketo, M. M., et al. (2003) Postsynaptic M1 and M3 receptors are responsible for the muscarinic enhancement of retrograde endocannabinoid signalling in the hippocampus, Eur. J. Neurosci., 18, 109-116, doi: 10.1046/j.1460-9568.2003.02732.x.

22. Hashimotodani, Y., Ohno-Shosaku, T., Watanabe, M., and Kano, M. (2007) Roles of phospholipase Cβ and NMDA receptor in activity-dependent endocannabinoid release, J. Physiol., 584, 373-380, doi: 10.1113/jphysiol.2007.137497.

23. Ramikie, T. S., Nyilas, R., Bluett, R. J., Gamble-George, J. C., Hartley, N. D., et al. (2014) Multiple mechanistically distinct modes of endocannabinoid mobilization at central amygdala glutamatergic synapses, Neuron, 81, 1111-1125, doi: 10.1016/j.neuron.2014.01.012.

24. Colmers, P. L. W., and Bains, J. S. (2018) Presynaptic mGluRs control the duration of endocannabinoid-mediated DSI, J. Neurosci., 38, 10444-10453, doi: 10.1523/JNEUROSCI.1097-18.2018.

25. Ohno-Shosaku, T., Tanimura, A., Hashimotodani, Y., and Kano, M. (2012) Endocannabinoids and retrograde modulation of synaptic transmission, Neuroscientist, 18, 119-132, doi: 10.1177/1073858410397377.

26. Chevaleyre, V., Takahashi, K. A., and Castillo, P. E. (2006) Endocannabinoid-mediated synaptic plasticity in the CNS, Annu. Rev. Neurosci., 29, 37-76, doi: 10.1146/annurev.neuro.29.051605.112834.

27. Lutz, B. (2020) Neurobiology of cannabinoid receptor signaling, Dialogues Clin. Neurosci., 22, 207-222, doi: 10.31887/DCNS.2020.22.3/blutz.

28. Katona, I., and Freund, T. F. (2008) Endocannabinoid signaling as a synaptic circuit breaker in neurological disease, Nat. Med., 14, 923-930, doi: 10.1038/nm.f.1869.

29. Cristino, L., Bisogno, T., and Di Marzo, V. (2020) Cannabinoids and the expanded endocannabinoid system in neurological disorders, Nat. Rev. Neurol., 16, 9-29, doi: 10.1038/s41582-019-0284-z.

30. Piomelli, D. (2003) The molecular logic of endocannabinoid signalling, Nat. Rev. Neurosci., 4, 873-884, doi: 10.1038/nrn1247.

31. Hashimotodani, Y., Ohno-Shosaku, T., Tanimura, A., Kita, Y., Sano, Y., Shimizu, T., et al. (2013) Acute inhibition of diacylglycerol lipase blocks endocannabinoid-mediated retrograde signalling: evidence for on-demand biosynthesis of 2-arachidonoylglycerol, J. Physiol., 591, 4765-4776, doi: 10.1113/jphysiol.2013.254474.

32. Richardson, J. D. (2000) Cannabinoids modulate pain by multiple mechanisms of action, J. Pain, 1, 2-14, doi: 10.1016/S1526-5900(00)90082-8.

33. Howlett, A. C., Reggio, P. H., Childers, S. R., Hampson, R. E., Ulloa, N. M., and Deutsch, D. G. (2011) Endocannabinoid tone versus constitutive activity of cannabinoid receptors, Br. J. Pharmacol., 163, 1329-1343, doi: 10.1111/j.1476-5381.2011.01364.x.

34. Lee, S. H., Ledri, M., Tóth, B., Marchionni, I., Henstridge, C. M., Dudok, B., et al. (2015) Multiple forms of endocannabinoid and endovanilloid signaling regulate the tonic control of GABA release, J. Neurosci., 35, 10039-10057, doi: 10.1523/JNEUROSCI.4112-14.2015.

35. Kenakin, T. P. (2004) Allosteric modulators: the new generation of receptor antagonist, Mol. Interv., 4, 222-229, doi: 10.1124/mi.4.4.6.

36. Szabó, G. G., Lenkey, N., Holderith, N., Andrási, T., Nusser, Z., and Hájos, N. (2014) Presynaptic calcium channel inhibition underlies CB1 cannabinoid receptor-mediated suppression of GABA release, J. Neurosci., 34, 7958-7963, doi: 10.1523/JNEUROSCI.0247-14.2014.

37. Pertwee, R. G. (2005) Inverse agonism and neutral antagonism at cannabinoid CB1 receptors, Life Sci., 76, 1307-1324, doi: 10.1016/j.lfs.2004.10.025.

38. Kim, J., and Alger, B. E. (2010) Reduction in endocannabinoid tone is a homeostatic mechanism for specific inhibitory synapses, Nat. Neurosci., 13, 592-600, doi: 10.1038/nn.2517.

39. Thibault, K., Carrel, D., Bonnard, D., Gallatz, K., Simon, A., Biard, M., et al. (2013) Activation-dependent subcellular distribution patterns of CB1 cannabinoid receptors in the rat forebrain, Cereb. Cortex, 23, 2581-2591, doi: 10.1093/cercor/bhs240.

40. Manza, P., Yuan, K., Shokri-Kojori, E., Tomasi, D., and Volkow, N. D. (2020) Brain structural changes in cannabis dependence: association with MAGL, Mol. Psychiatry, 25, 3256-3266, doi: 10.1038/s41380-019-0577-z.

41. Tanimura, A., Yamazaki, M., Hashimotodani, Y., Uchigashima, M., Kawata, S., Abe, M., et al. (2010) The endocannabinoid 2-arachidonoylglycerol produced by diacylglycerol lipase α mediates retrograde suppression of synaptic transmission, Neuron, 65, 320-327, doi: 10.1016/j.neuron.2010.01.021.

42. Ruiu, S., Pinna, G. A., Marchese, G., Mussinu, J. M., Saba, P., Tambaro, S., et al. (2003) Synthesis and characterization of NESS 0327: a novel putative antagonist of the CB1 cannabinoid receptor, J. Pharmacol. Exp. Ther., 306, 363-370, doi: 10.1124/jpet.103.049924.

43. Canals, M., and Milligan, G. (2008) Constitutive activity of the cannabinoid CB1 receptor regulates the function of co-expressed μ-opioid receptors, J. Biol. Chem., 283, 11424-11434, doi: 10.1074/jbc.M710300200.

44. Hillard, C. J. (2018) Circulating endocannabinoids: from whence do they come and where are they going? Neuropsychopharmacology, 43, 155-172, doi: 10.1038/npp.2017.130.

45. Chen, K., Ratzliff, A., Hilgenberg, L., Gulyás, A., Freund, T. F., et al. (2003) Long-term plasticity of endocannabinoid signaling induced by developmental febrile seizures, Neuron, 39, 599-611, doi: 10.1016/S0896-6273(03)00499-9.

46. Dvorzhak, A., Semtner, M., Faber, D. S., and Grantyn, R. (2013) Tonic mGluR5/CB1-dependent suppression of inhibition as a pathophysiological hallmark in the striatum of mice carrying a mutant form of huntingtin, J. Physiol., 591, 1145-1166, doi: 10.1113/jphysiol.2012.241018.

47. Földy, C., Malenka, R. C., and Südhof, T. C. (2013) Autism-associated neuroligin-3 mutations commonly disrupt tonic endocannabinoid signaling, Neuron, 78, 498-509, doi: 10.1016/j.neuron.2013.02.036.

48. Alger, B. E., and Kim, J. (2011) Supply and demand for endocannabinoids, Trends Neurosci., 34, 304-315, doi: 10.1016/j.tins.2011.03.003.

49. Speed, H. E., Masiulis, I., Gibson, J. R., and Powell, C. M. (2015) Increased cortical inhibition in autism-linked neuroligin-3R451C mice is due in part to loss of endocannabinoid signaling, PLoS One, 10, e0140638, doi: 10.1371/journal.pone.0140638.

50. Martella, G., Meringolo, M., Trobiani, L., De Jaco, A., Pisani, A., and Bonsi, P. (2018) The neurobiological bases of autism spectrum disorders: the R451C-neuroligin3 mutation hampers the expression of long-term synaptic depression in the dorsal striatum, Eur. J. Neurosci., 47, 701-708, doi: 10.1111/ejn.13705.

51. Anderson, G. R., Aoto, J., Tabuchi, K., Földy, C., Covy, J., et al. (2015) β-Neurexins control neural circuits by regulating synaptic endocannabinoid signaling, Cell, 162, 593-606, doi: 10.1016/j.cell.2015.06.056.

52. Glass, M., and Felder, C. C. (1997) Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors augments cAMP accumulation in striatal neurons: evidence for a G(s) linkage to the CB1 receptor, J. Neurosci., 17, 5327-5333, doi: 10.1523/jneurosci.17-14-05327.1997.

53. Abadji, V., Lucas-Lenard, J. M., Chin, C. N., and Kendall, D. A. (1999) Involvement of the carboxyl terminus of the third intracellular loop of the cannabinoid CB1 receptor in constitutive activation of G(s), J. Neurochem., 72, 2032-2038, doi: 10.1046/j.1471-4159.1999.0722032.x.

54. Calandra, B., Portier, M., Kernéis, A., Delpech, M., Carillon, C., et al. (1999) Dual intracellular signaling pathways mediated by the human cannabinoid CB1 receptor, Eur. J. Pharmacol., 374, 445-455, doi: 10.1016/S0014-2999(99)00349-0.

55. Kearn, C. S., Blake-Palmer, K., Daniel, E., Mackie, K., and Glass, M. (2005) Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors enhances heterodimer formation: a mechanism for receptor cross-talk? Mol. Pharmacol., 67, 1697-1704, doi: 10.1124/mol.104.006882.

56. Glass, M., and Northup, J. K. (1999) Agonist selective regulation of Gproteins by cannabinoid CB1 and CB2 receptors, Mol. Pharmacol., 56, 1362-1369, doi: 10.1124/mol.56.6.1362.

57. Wootten, D., Christopoulos, A., Marti-Solano, M., Babu, M. M., and Sexton, P. M. (2018) Mechanisms of signalling and biased agonism in Gprotein-coupled receptors, Nat. Rev. Mol. Cell Biol., 19, 638-653, doi: 10.1038/s41580-018-0049-3.

58. Varga, E., Georgieva, T., Tumati, S., Alves, I., Salamon, Z., et al. (2010) Functional selectivity in cannabinoid signaling, Curr. Mol. Pharmacol., 1, 273-284, doi: 10.2174/1874467210801030273.

59. Diez-Alarcia, R., Ibarra-Lecue, I., Lopez-Cardona, Á. P., Meana, J., Gutierrez-Adán, A., et al. (2016) Biased agonism of three different cannabinoid receptor agonists in mouse brain cortex, Front. Pharmacol., 7, 415, doi: 10.3389/fphar.2016.00415.

60. Gaydukov, A. E., Dzhalagoniya, I. Z., Tarasova, E. O., and Balezina, O. P. (2020) The participation of endocannabinoid receptors in the regulation of spontaneous synaptic activity at neuromuscular junctions of mice, Biochemistry (Moscow) Suppl. Ser. A Membr. Cell Biol., 14, 7-16, doi: 10.1134/S1990747819060059.

61. Laprairie, R. B., Bagher, A. M., Kelly, M. E. M., Dupré, D. J., and Denovan-Wright, E. M. (2014) Type1 cannabinoid receptor ligands display functional selectivity in a cell culture model of striatal medium spiny projection neurons, J. Biol. Chem., 289, 24845-24862, doi: 10.1074/jbc.M114.557025.

62. Kenakin, T., and Christopoulos, A. (2013) Signalling bias in new drug discovery: detection, quantification and therapeutic impact, Nat. Rev. Drug Discov., 12, 205-216, doi: 10.1038/nrd3954.

63. Finlay, D. B., Cawston, E. E., Grimsey, N. L., Hunter, M. R., Korde, A., et al. (2017) Gas signalling of the CB1 receptor and the influence of receptor number, Br. J. Pharmacol., 174, 2545-2562, doi: 10.1111/bph.13866.

64. Di Marzo, V. (2018) New approaches and challenges to targeting the endocannabinoid system, Nat. Rev. Drug Discov., 17, 623-639, doi: 10.1038/nrd.2018.115.

65. Song, C., Anderson, G. R., Sutton, L. P., Dao, M., and Martemyanov, K. A. (2018) Selective role of RGS9-2 in regulating retrograde synaptic signaling of indirect pathway medium spiny neurons in dorsal striatum, J. Neurosci., 38, 7120-7131, doi: 10.1523/JNEUROSCI.0493-18.2018.

66. O’Brien, J. B., Wilkinson, J. C., and Roman, D. L. (2019) Regulator of G-protein signaling (RGS) proteins as drug targets: progress and future potentials, J. Biol. Chem., 294, 18571-18585, doi: 10.1074/jbc.REV119.007060.

67. Ibsen, M. S., Connor, M., and Glass, M. (2017) Cannabinoid CB1 and CB2 receptor signaling and bias, Cannabis Cannabinoid Res., 2, 48-60, doi: 10.1089/can.2016.0037.

68. Morales, P., Goya, P., and Jagerovic, N. (2018) Emerging strategies targeting CB2 cannabinoid receptor: biased agonism and allosterism, Biochem. Pharmacol., 157, 8-17, doi: 10.1016/j.bcp.2018.07.031.

69. Wouters, E., Walraed, J., Banister, S. D., and Stove, C. P. (2019) Insights into biased signaling at cannabinoid receptors: synthetic cannabinoid receptor agonists, Biochem. Pharmacol., 169, 113623, doi: 10.1016/j.bcp.2019.08.025.

70. Al-Zoubi, R., Morales, P., and Reggio, P. H. (2019) Structural insights into CB1 receptor biased signaling, Int. J. Mol. Sci., 20, 1837, doi: 10.3390/ijms20081837.

71. Sachdev, S., Banister, S. D., Santiago, M., Bladen, C., Kassiou, M., and Connor, M. (2020) Differential activation of Gprotein-mediated signaling by synthetic cannabinoid receptor agonists, Pharmacol. Res. Perspect., 8, e00566, doi: 10.1002/prp2.566.

72. Patel, M., Finlay, D. B., and Glass, M. (2021) Biased agonism at the cannabinoid receptors – evidence from synthetic cannabinoid receptor agonists, Cell. Signal., 78, 109865, doi: 10.1016/j.cellsig.2020.109865.

73. Ibsen, M. S., Finlay, D. B., Patel, M., Javitch, J. A., Glass, M., and Grimsey, N. L. (2019) Cannabinoid CB1 and CB2 receptor-mediated arrestin translocation: species, subtype, and agonist-dependence, Front. Pharmacol., 10, 350, doi: 10.3389/fphar.2019.00350.

74. DeWire, S. M., Ahn, S., Lefkowitz, R. J., and Shenoy, S. K. (2007) β-Arrestins and cell signaling, Annu. Rev. Physiol., 69, 483-510, doi: 10.1146/annurev.physiol.69.022405.154749.

75. Nobles, K. N., Xiao, K., Ahn, S., Shukla, A. K., Lam, C. M., et al. (2011) Distinct phosphorylation sites on the β2-adrenergic receptor establish a barcode that encodes differential functions of β-arrestin, Sci. Signal., 4, ra51, doi: 10.1126/scisignal.2001707.

76. Delgado-Peraza, F., Ahn, K. H., Nogueras-Ortiz, C., Mungrue, I. N., Mackie, K., et al. (2016) Mechanisms of biased β-arrestin-mediated signaling downstream from the cannabinoid 1 receptor, Mol. Pharmacol., 89, 618-629, doi: 10.1124/mol.115.103176.

77. Morales, P., Bruix, M., and Jiménez, M. A. (2020) Structural insights into β-arrestin/CB1 receptor interaction: Nmr and cd studies on model peptides, Int. J. Mol. Sci., 21, 8111, doi: 10.3390/ijms21218111.

78. Rios, C., Gomes, I., and Devi, L. A. (2006) μ opioid and CB1 cannabinoid receptor interactions: reciprocal inhibition of receptor signaling and neuritogenesis, Br. J. Pharmacol., 148, 387-395, doi: 10.1038/sj.bjp.0706757.

79. Cinar, R., Freund, T. F., Katona, I., Mackie, K., and Szucs, M. (2008) Reciprocal inhibition of G-protein signaling is induced by CB1 cannabinoid and GABAB receptor interactions in rat hippocampal membranes, Neurochem. Int., 52, 1402-1409, doi: 10.1016/j.neuint.2008.02.005.

80. Turu, G., Várnal, P., Gyombolai, P., Szidonya, L., Offertaler, L., et al. (2009) Paracrine transactivation of the CB1 cannabinoid receptor by AT1 angiotensin and other Gq/11 protein-coupled receptors, J. Biol. Chem., 284, 16914-16921, doi: 10.1074/jbc.M109.003681.

81. Wu, Y., Liu, Q., Guo, B., Ye, F., Ge, J., and Xue, L. (2020) BDNF activates postsynaptic TrkB receptors to induce endocannabinoid release and inhibit presynaptic calcium influx at a calyx-type synapse, J. Neurosci., 40, 8070-8087, doi: 10.1523/JNEUROSCI.2838-19.2020.

82. Callén, L., Moreno, E., Barroso-Chinea, P., Moreno-Delgado, D., Cortés, A., et al. (2012) Cannabinoid receptors CB 1 and CB 2 form functional heteromers in brain, J. Biol. Chem., 287, 20851-20865, doi: 10.1074/jbc.M111.335273.

83. Navarro, G., Varani, K., Reyes-Resina, I., de Medina, V. S., Rivas-Santisteban, R., et al. (2018) Cannabigerol action at cannabinoid CB1 and CB2 receptors and at CB1-CB2 heteroreceptor complexes, Front. Pharmacol., 9, 632, doi: 10.3389/fphar.2018.00632.

84. Bénard, G., Massa, F., Puente, N., Lourenço, J., Bellocchio, L., et al. (2012) Mitochondrial CB1 receptors regulate neuronal energy metabolism, Nat. Neurosci., 15, 558-564, doi: 10.1038/nn.3053.

85. Hebert-Chatelain, E., Reguero, L., Puente, N., Lutz, B., Chaouloff, F., et al. (2014) Cannabinoid control of brain bioenergetics: exploring the subcellular localization of the CB1 receptor, Mol. Metab., 3, 495-504, doi: 10.1016/j.molmet.2014.03.007.

86. Koch, M., Varela, L., Kim, J. G., Kim, J. D., Hernández-Nuño, F., et al. (2015) Hypothalamic POMC neurons promote cannabinoid-induced feeding, Nature, 519, 45-50, doi: 10.1038/nature14260.

87. Rozenfeld, R., and Devi, L. A. (2008) Regulation of CB1 cannabinoid receptor trafficking by the adaptor protein AP-3, FASEB J., 22, 2311-2322, doi: 10.1096/fj.07-102731.

88. Hebert-Chatelain, E., Desprez, T., Serrat, R., Bellocchio, L., Soria-Gomez, E., et al. (2016) A cannabinoid link between mitochondria and memory, Nature, 539, 555-559, doi: 10.1038/nature20127.

89. Djeungoue-Petga, M. A., and Hebert-Chatelain, E. (2017) Linking mitochondria and synaptic transmission: the CB1 receptor, BioEssays, 39, 1700126, doi: 10.1002/bies.201700126.

90. Den Boon, F. S., Chameau, P., Schaafsma-Zhao, Q., Van Aken, W., Bari, M., et al. (2012) Excitability of prefrontal cortical pyramidal neurons is modulated by activation of intracellular type-2 cannabinoid receptors, Proc. Natl. Acad. Sci. USA, 109, 3534-3539, doi: 10.1073/pnas.1118167109.

91. Brailoiu, G. C., Deliu, E., Marcu, J., Hoffman, N. E., Console-Bram, L., et al. (2014) Differential activation of intracellular versus plasmalemmal CB2 Cannabinoid receptors, Biochemistry, 53, 4990-4999, doi: 10.1021/bi500632a.

92. Jong, Y. J. I., Harmon, S. K., and O’Malley, K. L. (2018) Intracellular GPCRs play key roles in synaptic plasticity, ACS Chem. Neurosci., 9, 2162-2172, doi: 10.1021/acschemneuro.7b00516.

93. Navarrete, M., and Araque, A. (2008) Endocannabinoids mediate neuron-astrocyte communication, Neuron, 57, 883-893, doi: 10.1016/j.neuron.2008.01.029.

94. Metna-Laurent, M., and Marsicano, G. (2015) Rising stars: modulation of brain functions by astroglial type-1 cannabinoid receptors, Glia, 63, 353-364, doi: 10.1002/glia.22773.

95. Stella, N. (2010) Cannabinoid and cannabinoid-like receptors in microglia, astrocytes, and astrocytomas, Glia, 58, 1017-1030, doi: 10.1002/glia.20983.

96. Gutiérrez-Rodríguez, A., Bonilla-Del Río, I., Puente, N., Gómez-Urquijo, S. M., Fontaine, C. J., et al. (2018) Localization of the cannabinoid type-1 receptor in subcellular astrocyte compartments of mutant mouse hippocampus, Glia, 66, 1417-1431, doi: 10.1002/glia.23314.

97. Jimenez-Blasco, D., Busquets-Garcia, A., Hebert-Chatelain, E., Serrat, R., Vicente-Gutierrez, C., et al. (2020) Glucose metabolism links astroglial mitochondria to cannabinoid effects, Nature, 583, 603-608, doi: 10.1038/s41586-020-2470-y.

98. Hegyi, Z., Oláh, T., Koszeghy, Á., Pisticelli, F., Holló, K., et al. (2018) CB1 receptor activation induces intracellular Ca2+ mobilization and 2-arachidonoylglycerol release in rodent spinal cord astrocytes, Sci. Rep., 8, 10562, doi: 10.1038/s41598-018-28763-6.

99. Smith, N. A., Bekar, L. K., and Nedergaard, M. (2020) Astrocytic endocannabinoids mediate hippocampal transient heterosynaptic depression, Neurochem. Res., 45, 100-108, doi: 10.1007/s11064-019-02834-0.

100. Covelo, A., and Araque, A. (2016) Lateral regulation of synaptic transmission by astrocytes, Neuroscience, 323, 62-66, doi: 10.1016/j.neuroscience.2015.02.036.

101. Navarrete, M., and Araque, A. (2010) Endocannabinoids potentiate synaptic transmission through stimulation of astrocytes, Neuron, 68, 113-126, doi: 10.1016/j.neuron.2010.08.043.

102. Robin, L. M., Oliveira da Cruz, J. F., Langlais, V. C., Martin-Fernandez, M., Metna-Laurent, M., et al. (2018) Astroglial CB1 receptors determine synaptic D-serine availability to enable recognition memory, Neuron, 98, 935-944.e5, doi: 10.1016/j.neuron.2018.04.034.

103. Carlsen, E. M. M., Falk, S., Skupio, U., Robin, L., Zottola, A. C. P., et al. (2021) Spinal astroglial cannabinoid receptors control pathological tremor, Nat. Neurosci., 24, 658-666, doi: 10.1038/s41593-021-00818-4.

104. Busquets-Garcia, A., Bains, J., and Marsicano, G. (2018) CB1 Receptor signaling in the brain: extracting specificity from ubiquity, Neuropsychopharmacology, 43, 4-20, doi: 10.1038/npp.2017.206.

105. Eldeeb, K., Leone-Kabler, S., and Howlett, A. C. (2016) CB1 cannabinoid receptor-mediated increases in cyclic AMP accumulation are correlated with reduced Gi/o function, J. Basic Clin. Physiol. Pharmacol., 27, 311-322, doi: 10.1515/jbcpp-2015-0096.

106. Bagher, A. M., Laprairie, R. B., Toguri, J. T., Kelly, M. E. M., and Denovan-Wright, E. M. (2017) Bidirectional allosteric interactions between cannabinoid receptor1 (CB1) and dopamine receptor2 long (D2L) heterotetramers, Eur. J. Pharmacol., 813, 66-83, doi: 10.1016/j.ejphar.2017.07.034.

107. Piette, C., Cui, Y., Gervasi, N., and Venance, L. (2020) Lights on endocannabinoid-mediated synaptic potentiation, Front. Mol. Neurosci., 13, 132, doi: 10.3389/fnmol.2020.00132.

108. Cui, Y., Prokin, I., Xu, H., Delord, B., Genet, S., et al. (2016) Endocannabinoid dynamics gate spike- timing dependent depression and potentiation, ELife, 5, e13185, doi: 10.7554/eLife.13185.

109. Shonesy, B. C., Wang, X., Rose, K. L., Ramikie, T. S., Cavener, V. S., et al. (2013) CaMKII regulates diacylglycerol lipase-α and striatal endocannabinoid signaling, Nat. Neurosci., 16, 456-463, doi: 10.1038/nn.3353.

110. Xu, J. Y., Zhang, J., and Chen, C. (2012) Long-lasting potentiation of hippocampal synaptic transmission by direct cortical input is mediated via endocannabinoids, J. Physiol., 590, 2305-2315, doi: 10.1113/jphysiol.2011.223511.

111. Silva-Cruz, A., Carlström, M., Ribeiro, J. A., and Sebastião, A. M. (2017) Dual influence of endocannabinoids on long-term potentiation of synaptic transmission, Front. Pharmacol., 8, 921, doi: 10.3389/fphar.2017.00921.

112. Cavuoto, P., McAinch, A. J., Hatzinikolas, G., Janovská, A., Game, P., and Wittert, G. A. (2007) The expression of receptors for endocannabinoids in human and rodent skeletal muscle, Biochem. Biophys. Res. Commun., 364, 105-110, doi: 10.1016/j.bbrc.2007.09.099.

113. Crespillo, A., Suárez, J., Bermúdez-Silva, F. J., Rivera, P., Vida, M., et al. (2011) Expression of the cannabinoid system in muscle: effects of a high-fat diet and CB1 receptor blockade, Biochem. J., 433, 175-185, doi: 10.1042/BJ20100751.

114. Hutchins-Wiese, H. L., Li, Y., Hannon, K., and Watkins, B. A. (2012) Hind limb suspension and long-chain omega-3 PUFA increase mRNA endocannabinoid system levels in skeletal muscle, J. Nutr. Biochem., 23, 986-993, doi: 10.1016/j.jnutbio.2011.05.005.

115. Maccarrone, M., Bab, I., Bíró, T., Cabral, G. A., Dey, S. K., et al. (2015) Endocannabinoid signaling at the periphery: 50 years after THC, Trends Pharmacol. Sci., 36, 277-296, doi: 10.1016/j.tips.2015.02.008.

116. Oláh, T., Bodnár, D., Tóth, A., Vincze, J., Fodor, J., et al. (2016) Cannabinoid signalling inhibits sarcoplasmic Ca2+ release and regulates excitation-contraction coupling in mammalian skeletal muscle, J. Physiol., 594, 7381-7398, doi: 10.1113/JP272449.

117. Heinitz, S., Basolo, A., Piomelli, D., Krakoff, J., and Piaggi, P. (2018) Endocannabinoid anandamide mediates the effect of skeletal muscle sphingomyelins on human energy expenditure, J. Clin. Endocrinol. Metab., 103, 3757-3766, doi: 10.1210/jc.2018-00780.

118. Morsch, M., Protti, D. A., Cheng, D., Braet, F., Chung, R. S., et al. (2018) Cannabinoid-induced increase of quantal size and enhanced neuromuscular transmission, Sci. Rep., 8, 4685, doi: 10.1038/s41598-018-22888-4.

119. Ge, D., Odierna, G. L., and Phillips, W. D. (2020) Influence of cannabinoids upon nerve-evoked skeletal muscle contraction, Neurosci. Lett., 725, 134900, doi: 10.1016/j.neulet.2020.134900.

120. Hoekman, T. B., Dettbarn, W. D., and Klausner, H. A. (1976) Actions of δ9-tetrahydrocannabinol on neuromuscular transmission in the rat diaphragm, Neuropharmacology, 15, 315-319, doi: 10.1016/0028-3908(76)90135-0.

121. Kumbaraci, N. M., and Nastuk, W. L. (1980) Effects of Δ9-tetrahydrocannabinol on excitable membranes and neuromuscular transmission, Mol. Pharmacol., 17, 344-349.

122. Turkanis, S. A., and Karler, R. (1986) Effects of delta-9-tetrahydrocannabinol, 11-hydroxy-delta-9-tetrahydrocannabinol and cannabidiol on neuromuscular transmission in the frog, Neuropharmacology, 25, 1273-1278, doi: 10.1016/0028-3908(86)90147-4.

123. Newman, Z., Malik, P., Wu, T. Y., Ochoa, C., Watsa, N., and Lindgren, C. (2007) Endocannabinoids mediate muscarine-induced synaptic depression at the vertebrate neuromuscular junction, Eur. J. Neurosci., 25, 1619-1630, doi: 10.1111/j.1460-9568.2007.05422.x.

124. Silveira, P. E., Silveira, N. A., de Cássia Morini, V., Kushmerick, C., and Naves, L. A. (2010) Opposing effects of cannabinoids and vanilloids on evoked quantal release at the frog neuromuscular junction, Neurosci. Lett., 473, 97-101, doi: 10.1016/j.neulet.2010.02.026.

125. Melis, M., Pistis, M., Perra, S., Muntoni, A. L., Pillolla, G., and Gessa, G. L. (2004) Endocannabinoids mediate presynaptic inhibition of glutamatergic transmission in rat ventral tegmental area dopamine neurons through activation of CB1 receptors, J. Neurosci., 24, 53-62, doi: 10.1523/JNEUROSCI.4503-03.2004.

126. Zhu, P. J., and Lovinger, D. M. (2005) Retrograde endocannabinoid signaling in a postsynaptic neuron/synaptic bouton preparation from basolateral amygdala, J. Neurosci., 25, 6199-6207, doi: 10.1523/JNEUROSCI.1148-05.2005.

127. Тарасова Е. О., Хоткина Н. А., Гайдуков А. Е., Балезина О. П. (2021) Потенциация спонтанной секреции ацетилхолина в моторных синапсах мыши под действием 2-арахидоноилглицерина и анандамида, Вестник Московского Университета. Серия 16. Биология, 76, 3-9.

128. Edwards, R. H. (2007) The neurotransmitter cycle and quantal size, Neuron, 55, 835-858, doi: 10.1016/j.neuron.2007.09.001.

129. Балезина О. П., Гайдуков А. Е. (2018) Пресинаптическая регуляция размера квантов медиатора, Успехи физиологических наук, 49, 20-44, doi: 10.7868/s0301179818020029.