БИОХИМИЯ, 2021, том 86, вып. 6, с. 771–786
УДК 543.51
Белок DJ-1 и его роль в развитии болезни Паркинсона: исследования на экспериментальных моделях
Обзор
НИИ биомедицинской химии имени В.Н. Ореховича, 119121 Москва, Россия
Поступила в редакцию 25.12.2020
После доработки 25.02.2021
Принята к публикации 12.03.2021
DOI: 10.31857/S0320972521060026
КЛЮЧЕВЫЕ СЛОВА: белок DJ-1, структура и функции, каталитическая активность, патогенные мутации, болезнь Паркинсона, экспериментальные модели, лиганды DJ-1.
Аннотация
DJ-1, известный также как белок 7 болезни Паркинсона (БП) (Parkinson disease protein 7), – многофункциональный белок, который экспрессируется практически во всех клетках и тканях. Взаимодействуя с белками различных внутриклеточных компартментов, DJ-1 играет важную роль в поддержании ряда клеточных функций. У мутантных форм DJ-1, содержащих аминокислотные замены (особенно L166P, характерные для БП), нарушены способность этого белка к димеризации, стабильность и фолдинг. DJ-1 проявляет несколько видов каталитической активности, однако в классификации ферментов он фигурирует как протеиндегликаза (КФ 3.5.1.124). По-видимому, в разных компартментах клетки DJ-1-белку свойственны каталитические и некаталитические функции, соотношение которых пока неизвестно. Оксидативный стресс способствует диссоциации цитоплазматических димеров DJ-1 и увеличенному поступлению образовавшихся мономеров в ядро, где этот белок действует как коактиватор различных сигнальных путей, предотвращая гибель клеток. В митохондриях DJ-1 обнаружен в составе синтасом, где он взаимодействует с β-субъединицей АТР-синтазы. При моделировании экспериментального паркинсонизма подавление экспрессии гена DJ-1 повышает чувствительность клеток к нейротоксинам, а введение рекомбинантного белка DJ-1 ослабляет проявление этой патологии. Тринадцатичленный фрагмент аминокислотной последовательности DJ-1, присоединённый к проникающему в клетки гептапептиду ТАТ-белка, проявлял нейропротекторные свойства в различных вариантах моделирования паркинсонизма как на культурах клеток, так и при введении животным. Низкомолекулярные лиганды DJ-1 также обладают терапевтическим потенциалом, оказывая нейропротекторный эффект как при инкубации с клетками, так и при введении животным.
Текст статьи
Сноски
* Адресат для корреспонденции.
Финансирование
Работа выполнена в рамках Программы фундаментальных научных исследований в Российской Федерации на долгосрочный период (2021–2030 годы).
Конфликт интересов
Авторы заявляют об отсутствии конфликта интересов.
Соблюдение этических норм
Данная работа не предполагала использования людей и животных в качестве объектов исследования. Обобщённые в обзоре результаты исследований авторов оригинальных работ были выполнены с одобрения соответствующих комитетов по этике, указанные в каждой процитированной статье.
Список литературы
1. Obeso, J. A., Stamelou, M., Goetz, C. G., Poewe, W., Lang, A. E., et al. (2017) Past, present, and future of Parkinson’s disease: a special essay on the 200th anniversary of the shaking palsy, Mov. Disord., 32, 1264-1310, doi: 10.1002/mds.27115.
2. Klein, C., and Westenberger, A. (2012) Genetics of Parkinson’s disease, Cold Spring Harb. Perspect. Med., 2, a008888, doi: 10.1101/cshperspect.a008888.
3. Buneeva, O. A., and Medvedev, A. E. (2006) Ubiquitin-protein ligase parkin and its role in the developmentof Parkinson’s disease, Biochemistry (Moscow), 71, 851-860.
4. Nagakubo, D., Taira, T., Kitaura, H., Ikeda, M., Tamai, K., et al. (1997) DJ-1, a novel oncogene which transforms mouse NIH3T3 cells in cooperation with ras, Biochem. Biophys. Res. Commun., 231, 509-513, doi: 10.1006/bbrc.1997.6132.
5. Bonifati, V., Rizzu, P., van Baren, M. J., Schaap, O., Breedveld, G. J., et al. (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism, Science, 299, 256-259.
6. Djarmati, A., Hedrich, K., Svetel, M., Schäfer, N., Juric, V., et al. (2004) Detection of Parkin (PARK2) and DJ1 (PARK7) mutations in early-onset Parkinson’s disease: Parkin mutation frequency depends on ethnic origin of patients, Hum. Mutat., 23, 525, doi: 10.1002/humu.9240.
7. Kumaran, R., Vandrovcova, J., Luk, C., Sharma, S., Renton, A., et al. (2009) Differential DJ-1 gene expression in Parkinson’s disease, Neurobiol. Disease, 36, 393-400, doi: 10.1016/j.nbd.2009.08.011.
8. Cookson, M. R. (2010) DJ-1, PINK1 and their effects on mitochondrial pathways, Mov. Disord., 25 (Suppl. 1), S44-S48, doi: 10.1002/mds.22713.
9. Lee, S. J., Kim, S. J., Kim, I. K., Ko, J., Jeong, C. S., et al. (2003) Crystal structures of human DJ-1 and Escherichia coli Hsp31, which share an evolutionarily conserved domain, J. Biol. Chem., 278, 44552-44559, doi: 10.1074/jbc.M304517200.
10. Ramsey, C. P., and Giasson, B. I. (2010) L10p and P158DEL DJ-1 mutations cause protein instability, aggregation, and dimerization impairments, J. Neurosci. Res., 88, 3111-3124, doi: 10.1002/jnr.22477.
11. Moore, D. J., Zhang, L., Dawson, T. M., and Dawson, V. L. (2003) A missense mutation (L166P) in DJ-1, linked to familial Parkinson’s disease, confers reduced protein stability and impairs homo-oligomerization, J. Neurochem., 87, 1558-1567.
12. Lakshminarasimhan, M., Maldonado, M. T., Zhou, W., Fink, A. L., and Wilson, M. A. (2008) Structural impact of three parkinsonism-associated missense mutations on human DJ-1, Biochemistry, 47, 1381-1392.
13. Malgieri, D., and Eliezer, D. (2008) Structural effects of Parkinson’s disease linked DJ-1 mutations, Prot. Sci., 17, 855-868, doi: 10.1110/ps.073411608.
14. Canet-Avilés, R. M., Wilson, M. A., Miller, D. W., Ahmad, R., McLendon, C., et al. (2004) The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization, Proc. Natl. Acad. Sci. USA, 101, 9103-9108, doi: 10.1073/pnas.0402959101.
15. Zhou, W., Zhu, M., Wilson, M. A., Petsko, G. A., and Fink, A. L. (2006) The oxidation state of DJ-1 regulates its chaperone activity toward alpha-synuclein, J. Mol. Biol., 356, 1036-1048, doi: 10.1016/j.jmb.2005.12.030.
16. Mita, Y., Kataoka, Y., Saito, Y., Kashi, T., Hayashi, K., et al. (2018) Distribution of oxidized DJ-1 in Parkinson’s disease-related sites in the brain and in the peripheral tissues: effects of aging and a neurotoxin, Sci. Rep., 8, 12056, doi: 10.1038/s41598-018-30561-z.
17. Shinbo, Y., Niki, T., Taira, T., Ooe, H., Takahashi-Niki, K., et al. (2006) Proper SUMO-1 conjugation is essential to DJ-1 to exert its full activities, Cell Death Differ., 13, 96-108.
18. Ariga, H., Takahashi-Niki, K., Kato, I., Maita, H., Niki, T., and Iguchi-Ariga, S. M. (2013) Neuroprotective function of DJ-1 in Parkinson’s disease, Oxid. Med. Cell. Longev., 2013, 683920, doi: 10.1155/2013/683920.
19. Xiong, H., Wang, D., Chen, L., Choo, Y. S., Ma, H., Tang, C., et al. (2009) Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation, J. Clin. Invest., 119, 650-660, doi: 10.1172/JCI37617.
20. Parsanejad, M., Zhang, Y., Qu, D., Irrcher, I., Rousseaux, M. W. C., et al. (2014) Regulation of the VHL/HIF-1 Pathway by DJ-1, J. Neurosci., 34, 8043-8050.
21. Zucchelli, S., Codrich, M., Marcuzzi, F., Pinto, M., Vilotti, S., et al. (2010) TRAF6 promotes atypical ubiquitination of mutant DJ-1 and alpha-synuclein and is localized to Lewy bodies in sporadic Parkinson’s disease brains, Hum. Mol. Genet., 19, 3759-3770, doi: 10.1093/hmg/ddq290.
22. Vilotti, S., Codrich, M., Dal Ferro, M., Pinto, M., Ferrer, I., et al. (2012) Parkinson’s disease DJ-1 L166P alters rRNA biogenesis by exclusion of TTRAP from the nucleolus and sequestration into cytoplasmic aggregates via TRAF6, PLoS One, 7, e35051, doi: 10.1371/journal.pone.0035051.
23. Hershko, A., and Ciechanover, A. (1998) The ubiquitin system, Annu. Rev. Biochem., 67, 425-479, doi: 10.1146/annurev.biochem.67.1.425.
24. Chen, Z. J., and Sun, L. J. (2009) Nonproteolytic functions of ubiquitin in cell signaling, Mol. Cell, 33, 275-286.
25. Buneeva, O. A., and Medvedev, A. E. (2017) The role of atypical ubiquitination in cell regulation, Biochemistry (Moscow) Suppl. Ser. B Biomed. Chem., 11, 16-31, doi: 10.1134/S1990750817010024.
26. Van Huizen, M., and Kikkert, M. (2020) The role of atypical ubiquitin chains in the regulation of the antiviral innate immune response, Front. Cell Dev. Biol., 7, 392, doi: 10.3389/fcell.2019.00392.
27. Moscovitz, O., Ben-Nissan, G., Fainer, I., Pollack, D., Mizrachi, L., and Sharon, M. (2015) The Parkinson’s-associated protein DJ-1 regulates the 20S proteasome, Nat. Commun., 6, 6609, doi: 10.1038/ncomms7609.
28. Buneeva, O. A., Medvedeva, M. V., Kopylov, A. T., and Medvedev, A. E. (2019) Ubiquitin subproteome of brain mitochondria and its changes induced by experimental parkinsonism and action of neuroprotectors, Biochemistry (Moscow), 84, 1359-1374, doi: 10.1134/S0006297919110117.
29. Xu, X., Martin, F., and Friedman, J. S. (2010) The familial Parkinson’s disease gene DJ-1 (PARK7) is expressed in red cells and plays a role in protection against oxidative damage, Blood Cells Mol. Dis., 45, 227-232, doi: 10.1016/j.bcmd.2010.07.014.
30. Girotto, S., Cendron, L., Bisaglia, M., Tessari, I., Mammi, S., et al. (2014) DJ-1 is a copper chaperone acting on SOD1 activation, J. Biol. Chem., 289, 10887-10899, doi: 10.1074/jbc.M113.535112.
31. Yamashita, S., Mori, A., Kimura, E., Mita, S., Maeda, Y., et al. (2010) DJ-1 forms complexes with mutant SOD1 and ameliorates its toxicity, J. Neurochem., 113, 860-870, doi: 10.1111/j.1471-4159.2010.06658.x.
32. Ko, Y. U., Kim, S. J., Lee, J., Song, M. Y., Park, K. S., et al. (2019) Protein kinase A-induced phosphorylation at the Thr154 affects stability of DJ-1, Parkinsonism Relat. Disord., 66, 143-150, doi: 10.1016/j.parkreldis.2019.07.029.
33. Tang, J., Liu, J., Li, X., Zhong, Y., Zhong, T., et al. (2014) PRAK interacts with DJ-1 and prevents oxidative stress-induced cell death, Oxid. Med. Cell. Longev., 2014, 735618, doi: 10.1155/2014/735618.
34. Scumaci, D., Olivo, E., Fiumara, C. V., La Chimia, M., De Angelis, M. T., et al. (2020) DJ-1 proteoforms in breast cancer cells: the escape of metabolic epigenetic misregulation, Cells, 9, 1968, doi: 10.3390/cells9091968.
35. Richarme, G., Mihoub, M., Dairou, J., Bui, L. C., Leger, T., and Lamouri, A. (2015) Parkinsonism-associated protein DJ-1/Park7 is a major protein deglycase that repairs methylglyoxal- and glyoxal-glycated cysteine, arginine, and lysine residues, J. Biol. Chem., 290, 1885-1897.
36. Sharma, N., Rao, S. P., and Kalivendi, S. V. (2019) The deglycase activity of DJ-1 mitigates α-synuclein glycation and aggregation in dopaminergic cells: Role of oxidative stress mediated downregulation of DJ-1 in Parkinson’s disease, Free Radic. Biol. Med., 135, 28-37, doi: 10.1016/j.freeradbiomed.2019.02.014.
37. Richarme, G., Liu, C., Mihoub, M., Abdallah, J., Leger, T., et al. (2017) Guanine glycation repair by DJ-1/Park7 and its bacterial homologs, Science, 357, 208-211, doi: 10.1126/science.aag1095.
38. Hayashi, T., Ishimori, C., Takahashi-Niki, K., Taira, T., Kim, Y. C., et al. (2009) DJ-1 binds to mitochondrial complex I and maintains its activity, Biochem. Biophys. Res. Commun., 390, 667-672, doi: 10.1016/j.bbrc.2009.10.025.
39. Buneeva, O., Fedchenko, V., Kopylov, A., and Medvedev, A. (2020) Mitochondrial dysfunction in Parkinson’s disease: focus on mitochondrial DNA, Biomedicines, 8, E591, doi: 10.3390/biomedicines8120591.
40. Hauser, D. N., Primiani, C. T., Langston, R. G., Kumaran, R., and Cookson, M. R. (2015) The Polg mutator phenotype does not cause dopaminergic neurodegeneration in DJ-1-deficient mice, eNeuro, 2, doi: 10.1523/ENEURO.0075-14.2015.
41. Chen, R., Park, H. A., Mnatsakanyan, N., Niu, Y., Licznerski, P., et al. (2019) Parkinson’s disease protein DJ-1 regulates ATP synthase protein components to increase neuronal process outgrowth, Cell Death Dis., 10, 469, doi: 10.1038/s41419-019-1679-x.
42. Hao, L. Y., Giasson, B. I., and Bonini, N. M. (2010) DJ-1 is critical for mitochondrial function and rescues PINK1 loss of function, Proc. Natl. Acad. Sci. USA, 107, 9747-9752.
43. Wang, X., Petrie, T. G., Liu, Y., Liu, J., Fujioka, H., and Zhu, X. (2012) Parkinson’s disease-associated DJ-1 mutations impair mitochondrial dynamics and cause mitochondrial dysfunction, J. Neurochem., 121, 830-839, doi: 10.1111/j.1471-4159.2012.07734.x.
44. Björkblom, B., Maple-Grødem, J., Puno, M. R., Odell, M., Larsen, J. P., and Møller, S. G. (2014) Reactive oxygen species-mediated DJ-1 monomerization modulates intracellular trafficking involving karyopherin β2, Mol. Cell. Biol., 34, 3024-3040, doi: 10.1128/MCB.00286-14.
45. Lee, B. J., Cansizoglu, A. E., Suel, K. E., Louis, T. H., Zhang, Z., and Chook, Y. M. (2006) Rules for nuclear localization sequence recognition by karyopherin beta 2, Cell, 126, 543-558, doi: 10.1016/j.cell.2006.05.049.
46. Junn, E., Taniguchi, H., Jeong, B. S., Zhao, X., Ichijo, H., and Mouradian, M. M. (2005) Interaction of DJ-1 with Daxx inhibits apoptosis signal-regulating kinase 1 activity and cell death, Proc. Natl. Acad. Sci. USA, 102, 9691-9696, doi: 10.1073/pnas.0409635102.
47. Takahashi, K., Taira, T., Niki, T., Seino, C., Iguchi-Ariga, S. M., and Ariga, H. (2001) DJ-1 positively regulates the androgen receptor by impairing the binding of PIASx alpha to the receptor, J. Biol. Chem., 276, 37556-37563, doi: 10.1074/jbc.M101730200.
48. Niki, T., Takahashi-Niki, K., Taira, T., Iguchi-Ariga, S. M., and Ariga, H. (2003) DJBP: a novel DJ-1-binding protein, negatively regulates the androgen receptor by recruiting histone deacetylase complex, and DJ-1 antagonizes this inhibition by abrogation of this complex, Mol. Cancer Res., 1, 247-261.
49. Clements, C. M., McNally, R. S., Conti, B. J., Mak, T. W., and Ting, J. P. (2006) DJ-1, a cancer- and Parkinson’s disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2, Proc. Natl. Acad. Sci. USA, 103, 15091-15096, doi: 10.1073/pnas.0607260103.
50. Shinbo, Y., Taira, T., Niki, T., Iguchi-Ariga, S. M., and Ariga, H. (2005) DJ-1 restores p53 transcription activity inhibited by Topors/p53BP3, Int. J. Oncol., 26, 641-648, doi: 10.3892/ijo.26.3.641.
51. Kato, I., Maita, H., Takahashi-Niki, K., Saito, Y., Noguchi, N., et al. (2013) Oxidized DJ-1 inhibits p53 by sequestering p53 from promoters in a DNA-binding affinity-dependent manner, Mol. Cell. Biol., 33, 340-359, doi: 10.1128/MCB.01350-12.
52. Zhong, N., Kim, C. Y., Rizzu, P., Geula, C., Porter, D. R., et al. (2006) DJ-1 transcriptionally up-regulates the human tyrosine hydroxylase by inhibiting the sumoylation of pyrimidine tractbinding protein-associated splicing factor, J. Biol. Chem., 281, 20940-20948, doi: 10.1074/jbc.M601935200.
53. Ishikawa, S., Taira, T., Takahashi-Niki, K., Niki, T., Ariga, H., and Iguchi-Ariga, S. M. (2010) Human DJ-1-specific transcriptional activation of tyrosine hydroxylase gene, J. Biol. Chem., 285, 39718-39731, doi: 10.1074/jbc.M110.137034.
54. Zondler, L., Miller-Fleming, L., Repici, M., Goncalves, S., Tenreiro, S., et al. (2014) DJ-1 interactions with alphasynuclein attenuate aggregation and cellular toxicity in models of Parkinson’s disease, Cell Death Dis., 5, e1350, doi: 10.1038/cddis.2014.307.
55. Xu, C. Y., Kang, W. Y., Chen, Y. M., Jiang, T. F., Zhang, J., et al. (2017) DJ-1 Inhibits alpha-synuclein aggregation by regulating chaperone-mediated autophagy, Front. Aging Neurosci., 9, 308, doi: 10.3389/fnagi.2017.00308.
56. Wang, X., Williams, D., Müller, I., Lemieux, M., Dukart, R., et al. (2019) Tau interactome analyses in CRISPR-Cas9 engineered neuronal cells reveal ATPase-dependent binding of wild-type but not P301L Tau to non-muscle myosins, Sci. Rep., 9, 16238.
57. Tang, B., Xiong, H., Sun, P., Zhang, Y., Wang, D., et al. (2006) Association of PINK1 and DJ-1 confers digenic inheritance of early-onset Parkinson’s disease, Hum. Mol. Genet., 15, 1816-1825.
58. Vasseur, S., Afzal, S., Tardivel-Lacombe, J., Park, D. S., Iovanna, J. L., and Mak, T. W. (2009) DJ-1/PARK7 is an important mediator of hypoxia-induced cellular responses, Proc. Natl. Acad. Sci. USA, 106, 1111-1116.
59. Im, J. Y., Lee, K. W., Junn, E., and Mouradian, M. M. (2010) DJ-1 protects against oxidative damage by regulating the thioredoxin/ASK1 complex, Neurosci. Res., 67, 203-208, doi: 10.1016/j.neures.2010.04.002.
60. Im, J. Y., Lee, K. W., Woo, J. M., Junn, E., and Mouradian, M. M. (2012) DJ-1 induces thioredoxin 1 expression through the Nrf2 pathway, Hum. Mol. Genet., 21, 3013-3024, doi: 10.1093/hmg/dds131.
61. Wang, Z., Liu, J., Chen, S., Wang, Y., Cao, L., et al. (2011) DJ-1 modulates the expression of Cu/Zn-superoxide dismutase-1 through the Erk1/2-Elk1 pathway in neuroprotection, Ann. Neurol., 70, 591-599, doi: 10.1002/ana.22514.
62. Waak, J., Weber, S. S., Görner, K., Schall, C., Ichijo, H., et al. (2009) Oxidizable residues mediating protein stability and cytoprotective interaction of DJ-1 with apoptosis signal-regulating kinase 1, J. Biol. Chem., 284, 14245-14257, doi: 10.1074/jbc.M806902200.
63. Mo, J.-S., Jung, J., Yoon, J.-H., Hong, J.-A., Kim, M.-Y., et al. (2010) DJ-1 modulates the p38 mitogen-activated protein kinase pathway through physical interaction with apoptosis signal-regulating kinase 1, J. Cell. Biochem., 110, 229-237, doi: 10.1002/jcb.22530.
64. Cao, J., Ying, M., Xie, N., Lin, G., Dong, R., et al. (2014) The oxidation states of DJ-1 dictate the cell fate in response to oxidative stress triggered by 4-HPR: autophagy or apoptosis? Antioxid. Redox Signal., 21, 1443-1459, doi: 10.1089/ars.2013.5446.
65. Kim, Y. C., Kitaura, H., Taira, T., Iguchi-Ariga, S. M., and Ariga, H. (2009) Oxidation of DJ-1-dependent cell transformation through direct binding of DJ-1 to PTEN, Int. J. Oncol., 35, 1331-1341.
66. Choi, M. S., Nakamura, T., Cho, S.-J., Han, X., Holland, E. A., et al. (2014) Transnitrosylation from DJ-1 to PTEN attenuates neuronal cell death in parkinson’s disease models, J. Neurosci., 34, 15123-15131, doi: 10.1523/JNEUROSCI.4751-13.
67. Zucchelli, S., Vilotti, S., Calligaris, R., Lavina, Z. S., Biagioli, M., et al. (2009) Aggresome-forming TTRAP mediates pro-apoptotic properties of Parkinson’s disease-associated DJ-1 missense mutations, Cell Death Differ., 16, 428-438, doi: 10.1038/cdd.2008.169.
68. McNally, R. S., Davis, B. K., Clements, C. M., Accavitti-Loper, M. A., Mak, T. W., and Ting, J. P. (2011) DJ-1 enhances cell survival through the binding of Cezanne, a negative regulator of NF-kappaB, J. Biol. Chem., 286, 4098-4106.
69. Zhang, S., Mukherjee, S., Fan, X., Salameh, A., Mujoo, K., et al. (2016) Novel association of DJ-1 with HER3 potentiates HER3 activation and signaling in cancer, Oncotarget, 7, 65758-65769, doi: 10.18632/oncotarget.11613.
70. Cookson, M. R. (2005) The biochemistry of Parkinson’s disease, Annu. Rev. Biochem., 74, 9-52.
71. Mingazov, E. R., Khakimova, G. R., Kozina, E. A., Medvedev, A. E., Buneeva, O. A., et al. (2018) MPTP mouse model of preclinical and clinical Parkinson’s disease as an instrument for translational medicine, Mol. Neurobiol., 55, 2991-3006, doi: 10.1007/s12035-017-0559-6.
72. Zhou, Y., Zhao, Z. Q., and Xie, J. X. (2001) Effect of isatin on rotational behavior and DA levels in caudate putamen in Parkinsonian rats, Brain Res., 917, 127-132.
73. Hamaue, N., Minami, M., Terado, M., Hirafuji, M., Endo, T., et al. (2004) Comparative study of the effects of isatin, an endogenous MAO-inhibitor, and selegiline on bradykinesia and dopamine levels in a rat model of Parkinson’s disease induced by the Japanese Encephalitis virus, Neurotoxicology, 25, 205-213.
74. Medvedev, A. E., Buneeva, O. A., Kopylov, A. T., Tikhonova, O. V., Medvedeva, M. V., et al. (2017) The brain mitochondrial subproteome of RPN10-binding proteins and its changes induced by the neurotoxin MPTP and the neuroprotector isatin, Biochemistry (Moscow), 82, 330-339.
75. Sun, Y., Wang, Y., Zhao, X., and Pu, X. (2018) Nuclear translocation of DJ-1 protects adult neuronal stem cells in an MPTP mouse model of Parkinson’s disease, NeuroReport, 29, 301-307.
76. Paterna, J. C., Leng, A., Weber, E., Feldon, J., and Büeler, H. (2007) DJ-1 and Parkin modulate dopamine-dependent behavior and inhibit MPTP-induced nigral dopamine neuron loss in mice, Mol. Ther., 15, 698-704, doi: 10.1038/sj.mt.6300067.
77. Kim, R. H., Smith, P. D., Aleyasin, H., Hayley, S., Mount, M. P., et al. (2005) Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress, Proc. Natl. Acad. Sci. USA, 102, 5215-5220.
78. Goldberg, M. S., Pisani, A., Haburcak, M., Vortherms, T. A., Kitada, T., et al. (2005) Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial parkinsonism-linked gene DJ-1, Neuron, 45, 489-496, doi: 10.1016/j.neuron.2005.01.041.
79. Zhang, Y., Li, Y., Han, X., Dong, X., Yan, X., and Xing, Q. (2018) Elevated expression of DJ-1 (encoded by the human PARK7 gene) protects neuronal cells from sevoflurane-induced neurotoxicity, Cell Stress Chaperones, 23, 967-974.
80. Cannon, J. R., Tapias, V., Na, H. M., Honick, A. S., Drolet, R. E., and Greenamyre, J. T. (2009) A highly reproducible rotenone model of Parkinson’s disease, Neurobiol. Dis., 34, 279-290.
81. Sanders, L. H., McCoy, J., Hu, X., Mastroberardino, P. G., Dickinson, B. C., et al. (2014) Mitochondrial DNA damage: Molecular marker of vulnerable nigral neurons in Parkinson’s disease, Neurobiol. Dis., 70, 214-223.
82. Heinz, S., Freyberger, A., Lawrenz, B., Schladt, L., Schmuck, G., and Ellinger-Ziegelbauer, H. (2017) Mechanistic investigations of the mitochondrial complex I inhibitor rotenone in the context of pharmacological and safety evaluation, Sci. Rep., 7, 45465.
83. Michel, H. E., Tadros, M. G., Esmat, A., Khalifa, A. E., and Abdel-Tawab, A. M. (2017) Tetramethylpyrazine ameliorates rotenone-induced Parkinson’s disease in rats: involvement of its anti-inflammatory and anti-apoptotic actions, Mol. Neurobiol., 54, 4866-4878.
84. De Miranda, B. R., Rocha, E. M., Bai, Q., El Ayadi, A., Hinkle, D., et al. (2018) Astrocyte-specific DJ-1 overexpression protects against rotenone-induced neurotoxicity in a rat model of Parkinson’s disease, Neurobiol. Disease, 115, 101-114.
85. Liu, F., Nguyen, J. L., Hulleman, J. D., Li, L., and Rochet, J. C. (2008) Mechanisms of DJ-1 neuroprotection in a cellular model of Parkinson’s disease, J. Neurochem., 105, 2435-2453, doi: 10.1111/j.1471-4159.2008.05333.x.
86. Simola, N., Morelli, M., and Carta, A. R. (2007) The 6-hydroxydopamine model of Parkinson’s disease, Neurotoxicity Res., 11, 151-167.
87. Lev, N., Barhum, Y., Ben-Zur, T., Melamed, E., Steiner, I., and Offen, D. (2013) Knocking out DJ-1 attenuates astrocytes neuroprotection against 6-hydroxydopamine toxicity, J. Mol. Neurosci., 50, 542-550.
88. Miyama, A., Saito, Y., Yamanaka, K., Hayashi, K., Hamakubo, T., and Noguchi, N. (2011) Oxidation of DJ-1 induced by 6-hydroxydopamine decreasing intracellular glutathione, PLoS One, 6, e27883, doi: 10.1371/journal.pone.0027883.
89. Yanagida, T., Takata, K., Inden, M., Kitamura, Y., Taniguchi, T., et al. (2006) Distribution of DJ-1, Parkinson’s disease-related protein PARK7, and its alteration in 6-hydroxydopamine-treated hemiparkinsonian rat brain, J. Pharmacol. Sci., 102, 243-247, doi: 10.1254/jphs.sc0060098.
90. Kim, S. J., Park, Y. J., and Oh, Y. J. (2012) Proteomic analysis reveals a protective role for DJ-1 during 6-hydroxydopamine-induced cell death, Biochem. Biophys. Res. Commun., 422, 8-14, doi: 10.1016/j.bbrc.2012.04.063.
91. Batelli, S., Invernizzi, R. W., Negro, A., Calcagno, E., Rodilossi, S., et al. (2015) The Parkinson’s disease-related protein DJ-1 protects dopaminergic neurons in vivo and cultured cells from alpha-synuclein and 6-hydroxydopamine toxicity, Neurodegener. Dis., 15, 13-23.
92. Lev, N., Barhum, Y., Ben-Zur, T., Aharony, I., Trifonov, L., et al. (2015) A DJ-1 based peptide attenuates dopaminergic degeneration in mice models of Parkinson’s disease via enhancing Nrf2, PLoS One, 10, e0127549, doi: 10.1371/journal.pone.0127549.
93. Miyazaki, S., Yanagida, T., Nunome, K., Ishikawa, S., Inden, M., et al. (2008) DJ-1-binding compounds prevent oxidative stress-induced cell death and movement defect in Parkinson’s disease model rats, J. Neurochem., 105, 2418-2434.
94. Yanagisawa, D., Kitamura, Y., Inden, M., Takata, K., Taniguchi, T., et al. (2008) DJ-1 protects against neurodegeneration caused by focal cerebral ischemia and reperfusion in rats, J. Cereb. Blood Flow Metab., 28, 563-578.
95. Yamane, K., Kitamura, Y., Yanagida, T., Takata, K., Yanagisawa, D., et al. (2009) Oxidative neurodegeneration is prevented by UCP0045037, an allosteric modulator for the reduced form of DJ-1, a wild-type of familial Parkinson’s disease-linked PARK7, Int. J. Mol. Sci., 10, 4789-4804, doi: 10.3390/ijms10114789.
96. Takahashi-Niki, K., Inafune, A., Michitani, N., Hatakeyama, Y., Suzuki, K., et al. (2015) DJ-1-dependent protective activity of DJ-1-binding compound no. 23 against neuronal cell death in MPTP-treated mouse model of Parkinson’s disease, J. Pharmacol. Sci., 127, 305-310, doi: 10.1016/j.jphs.2015.01.010.
97. Tashiro, S., Caaveiro, J., Nakakido, M., Tanabe, A., Nagatoishi, S., et al. (2018) Discovery and optimization of inhibitors of the Parkinson’s disease associated protein DJ-1, ACS Chem. Biol., 13, 2783-2793, doi: 10.1021/acschembio.8b00701.
98. Medvedev, A., Buneeva, O., Gnedenko, O., Ershov, P., and Ivanov, A. (2018) Isatin, an endogenous nonpeptide biofactor: a review of its molecular targets, mechanisms of actions, and their biomedical implications, Biofactors, 44, 95-108, doi: 10.1002/biof.1408.
99. Medvedev, A., Kopylov, A., Buneeva, O., Kurbatov, L., Tikhonova, O., et al. (2020) A neuroprotective dose of isatin causes multilevel changes involving the brain proteome: prospects for further research, Int. J. Mol. Sci., 21, 4187, doi: 10.3390/ijms21114187.
100. Medvedev, A., Buneeva, O., Gnedenko, O., Fedchenko, V., Medvedeva, M., et al. (2006) Isatin interaction with glyceraldehyde-3-phosphate dehydrogenase, a putative target of neuroprotective drugs: partial agonism with deprenyl, J. Neural Transm. Suppl., 71, 195-203.
101. Buneeva, O. A., Kapitsa, I. G., Ivanova, E. A., Kopylov, A. T., Zgoda, V. G., and Medvedev, A. E. (2020) The effect of a neuroprotective dose of isatin or deprenyl to mice on the profile of brain isatin-binding proteins, Biochemistry (Moscow), Suppl. Ser. B Biomed. Chem., 14, 116-126.
102. Drechsel, J., Mandl, F. A., and Sieber, S. A. (2018) Chemical probe to monitor the parkinsonism-associated protein DJ-1 in live cells, ACS Chem. Biol., 13, 2016-2019.