БИОХИМИЯ, 2021, том 86, вып. 5, с. 689–710
УДК 571.27;57.083.3
Анализ репертуаров антигенных специфичностей циркулирующих аутоантител как инструмент поиска опухолеассоциированных антигенов: актуальные проблемы и пути их решения
Обзор
1 Центр высокоточного редактирования и генетических технологий для биомедицины, Институт молекулярной биологии им. В.А. Энгельгардта РАН, 119991 Москва, Россия
2 НЦМУ «Национальный центр персонализированной медицины эндокринных заболеваний», ФГБУ «НМИЦ эндокринологии» Минздрава России, 117036 Москва, Россия
Поступила в редакцию 27.07.2020
После доработки 17.08.2020
Принята к публикации 17.08.2020
DOI: 10.31857/S0320972521050067
КЛЮЧЕВЫЕ СЛОВА: опухолеассоциированные антигены, аутоантитела, биомаркёры рака, иммунопротеомика.
Аннотация
Циркулирующие аутоантитела к опухолеассоциированным аутоантигенам (ОАА) могут служить ценными биомаркёрами для широкого спектра диагностических целей, и современная иммунология располагает большим количеством методов глубокого сравнительного анализа репертуаров антигенных специфичностей циркулирующих антител в норме и патологии. В то же время доля клинически успешных разработок к общему числу опубликованных исследований в данной области крайне мала, а многочисленные данные по репертуарам специфичностей циркулирующих аутоантител у онкологических пациентов крайне слабо интегрированы в современную картину иммунологического и молекулярного «ландшафтов» опухолей человека. Настоящий обзор является попыткой выявления и систематизации основных и в значительной мере универсальных концептуально-методических ограничений в области идентификации мишеней циркулирующих аутоантител при онкологических заболеваниях (экспрессионное смещение, вырожденность репертуаров ОАА, выявление в качестве ОАА мишеней «естественных» IgG, отсутствие патогенетически релевантного контекста в экспериментальных системах, используемых для выявления ОАА), а также обсуждению потенциальных и уже известных методических усовершенствований, способных значительно повысить выявляемость патогенетически и диагностически значимых bona fide ОАА.
Текст статьи
Финансирование
Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований в рамках научного проекта № 19-115-50248.
Благодарности
Автор выражает благодарность А.В. Боголюбовой-Кузнецовой за помощь в оформлении рукописи.
Конфликт интересов
Автор заявляет об отсутствии конфликта интересов.
Соблюдение этических норм
Настоящая статья не содержит описания выполненных автором исследований с участием людей или использованием животных в качестве объектов.
Список литературы
1. Anderson, K. S., and LaBaer, J. (2005) The sentinel within: exploiting the immune system for cancer biomarkers, J. Proteome Res., 4, 1123-1133, doi: 10.1021/pr0500814.
2. Zaenker, P., Gray, E. S., and Ziman, M. R. (2016) Autoantibody production in cancer – the humoral immune response toward autologous antigens in cancer patients, Autoimmun. Rev., 15, 477-483, doi: 10.1016/j.autrev.2016.01.017.
3. Wu, J., Li, X., Song, W., Fang, Y., Yu, L., et al. (2017) The roles and applications of autoantibodies in progression, diagnosis, treatment and prognosis of human malignant tumours, Autoimmun Rev., 16, 1270-1281, doi: 10.1016/j.autrev.2017.10.012.
4. Vedeler, C. A., Antoine, J. C., Giometto, B., Graus, F., Grisold, W., et al. (2006) Management of paraneoplastic neurological syndromes: report of an EFNS task force, Eur. J. Neurol., 13, 682-690, doi: 10.1111/j.1468-1331.2006.01266.x.
5. Zuliani, L., Graus, F., Giometto, B., Bien, C., and Vincent, A. (2012) Central nervous system neuronal surface antibody associated syndromes: review and guidelines for recognition, J. Neurol. Neurosurg. Psychiatry., 83, 638-645, doi: 10.1136/jnnp-2011-301237.
6. Zoccarato, M., Gastaldi, M., Zuliani, L., Biagioli, T., Brogi, M., et al. (2017) Diagnostics of paraneoplastic neurological syndromes, Neurol. Sci., 38, 237-242, doi: 10.1007/s10072-017-3031-5.
7. Lu, X., Peng, Q., and Wang, G. (2019) The role of cancer-associated autoantibodies as biomarkers in paraneoplastic myositis syndrome, Curr. Opin. Rheumatol., 31, 643-649, doi: 10.1097/BOR.0000000000000641.
8. Xu, G. J., Shah, A. A., Li, M. Z., Xu, Q., Rosen, A., et al. (2016) Systematic autoantigen analysis identifies a distinct subtype of scleroderma with coincident cancer, Proc. Natl. Acad. Sci. USA, 113, E7526-E7534, doi: 10.1073/pnas.1615990113.
9. Chu, G. C. W., Lazare, K., and Sullivan, F. (2018) Serum and blood based biomarkers for lung cancer screening: a systematic review, BMC Cancer, 18, 181, doi: 10.1186/s12885-018-4024-3.
10. Macdonald, I. K., Allen, J., Murray, A., Parsy-Kowalska, C. B., Healey, G. F., et al. (2012) Development and validation of a high throughput system for discovery of antigens for autoantibody detection, PLoS One, 7, e40759, doi: 10.1371/journal.pone.0040759.
11. Jett, J. R., Peek, L. J., Fredericks, L., Jewell, W., Pingleton, W. W., and Robertson, J. F. R. (2014) Audit of the autoantibody test, EarlyCDT®-Lung, in 1600 patients: an evaluation of its performance in routine clinical practice, Lung Cancer, 83, 51-55, doi: 10.1016/j.lungcan.2013.10.008.
12. Edelsberg, J., Weycker, D., Atwood, M., Hamilton-Fairley, G., and Jett, J. R. (2018) Cost-effectiveness of an autoantibody test (EarlyCDT-Lung) as an aid to early diagnosis of lung cancer in patients with incidentally detected pulmonary nodules, PLoS One, 13, e0197826, doi: 10.1371/journal.pone.0197826.
13. Sullivan, F. M., Mair, F. S., Anderson, W., Armory, P., Briggs, A., et al. (2020) Earlier diagnosis of lung cancer in a randomised trial of an autoantibody blood test followed by imaging, Eur. Respir. J., 56, 2000670, doi: 10.1183/13993003.00670-2020.
14. Tsou, P., Katayama, H., Ostrin, E. J., and Hanash, S. M. (2016) The emerging role of B cells in tumor immunity, Cancer Res., 76, 5591-5601, doi: 10.1158/0008-5472.CAN-16-0431.
15. Tokunaga, R., Naseem, M., Lo, J. H., Battaglin, F., Soni, S., et al. (2019) B cell and B cell-related pathways for novel cancer treatments, Cancer Treat Rev., 73, 10-19, doi: 10.1016/j.ctrv.2018.12.001.
16. Corsiero, E., Delvecchio, F. R., Bombardieri, M., and Pitzalis, C. (2019) B cells in the formation of tertiary lymphoid organs in autoimmunity, transplantation and tumorigenesis, Curr. Opin. Immunol., 57, 46-52, doi: 10.1016/j.coi.2019.01.004.
17. Largeot, A., Pagano, G., Gonder, S., Moussay, E., and Paggetti, J. (2019) The B-side of cancer immunity: the underrated tune, Cells, 8, 449, doi: 10.3390/cells8050449.
18. Zhao, K.-L., Yang, X.-J., Jin, H.-Z., Zhao, L., Hu, J.-L., and Qin, W.-J. (2019) Double-edge role of B cells in tumor immunity: potential molecular mechanism, Curr. Med. Sci., 39, 685-689, doi: 10.1007/s11596-019-2092-5.
19. Sharonov, G. V., Serebrovskaya, E. O., Yuzhakova, D. V., Britanova, O. V., and Chudakov, D. M. (2020) B cells, plasma cells and antibody repertoires in the tumour microenvironment, Nat. Rev. Immunol., 20, 294-307, doi: 10.1038/s41577-019-0257-x.
20. Sahin, U., Türeci, Ö., Schmitt, H., Cochlovius, B., Johannes, T., et al. (1995) Human neoplasms elicit multiple specific immune responses in the autologous host, Proc. Natl. Acad. Sci. USA, 92, 11810-11813, doi: 10.1073/pnas.92.25.11810.
21. Desmetz, C., Maudelonde, T., Mangé, A., and Solassol, J. (2009) Identifying autoantibody signatures in cancer: a promising challenge, Expert Rev. Proteomics, 6, 377-386, doi: 10.1586/epr.09.56.
22. Sahin, U., and Türeci, Ö. (2013) Antigen identification using SEREX, Methods Mol. Biol., 1061, 59-77, doi: 10.1007/978-1-62703-589-7_3.
23. Kiyamova, R., Kostianets, O., Malyuchik, S., Filonenko, V., Usenko, V., et al. (2010) Identification of tumor-associated antigens from medullary breast carcinoma by a modified SEREX approach, Mol. Biotechnol., 46, 105-112, doi: 10.1007/s12033-010-9285-2.
24. Somers, V. A., Brandwijk, R. J., Joosten, B., Moerkerk, P. T., Arends, J.-W., et al. (2002) A panel of candidate tumor antigens in colorectal cancer revealed by the serological selection of a phage displayed cDNA expression library, J. Immunol., 169, 2772-2780, doi: 10.4049/jimmunol.169.5.2772.
25. Pavoni, E., Vaccaro, P., Pucci, A., Monteriù, G., Beghetto, E., et al. (2004) Identification of a panel of tumor-associated antigens from breast carcinoma cell lines, solid tumors and testis cDNA libraries displayed on lambda phage, BMC Cancer, 4, 78, doi: 10.1186/1471-2407-4-78.
26. Jiang, B., Ren, T., Dong, B., Qu, L., Jin, G., et al. (2010) Peptide mimic isolated by autoantibody reveals human arrest defective 1 overexpression is associated with poor prognosis for colon cancer patients, Am. J. Pathol., 177, 1095-1103, doi: 10.2353/ajpath.2010.091178.
27. Mintz, P. J., Rietz, A. C., Cardó-Vila, M., Ozawa, M. G., Dondossola, E., et al. (2015) Discovery and horizontal follow-up of an autoantibody signature in human prostate cancer, Proc. Natl. Acad. Sci. USA, 112, 2515-2520, doi: 10.1073/pnas.1500097112.
28. Wang, X., Yu, J., Sreekumar, A., Varambally, S., Shen, R., et al. (2005) Autoantibody signatures in prostate cancer, N. Engl. J. Med., 353, 1224-1235, doi: 10.1056/NEJMoa051931.
29. Chen, G., Wang, X., Yu, J., Varambally, S., Yu, J., et al. (2007) Autoantibody profiles reveal ubiquilin 1 as a humoral immune response target in lung adenocarcinoma, Cancer Res., 67, 3461-3467, doi: 10.1158/0008-5472.CAN-06-4475.
30. Larman, H. B., Zhao, Z., Laserson, U., Li, M. Z., Ciccia, A., et al. (2011) Autoantigen discovery with a synthetic human peptidome, Nat. Biotechnol., 29, 535-541, doi: 10.1038/nbt.1856.
31. Mohan, D., Wansley, D. L., Sie, B. M., Noon, M. S., Baer, A. N., et al. (2018) PhIP-Seq characterization of serum antibodies using oligonucleotide-encoded peptidomes, Nat. Protoc., 13, 1958-1978, doi: 10.1038/s41596-018-0025-6.
32. Zhu, J., Larman, H. B., Gao, G., Somwar, R., Zhang, Z., et al. (2013) Protein interaction discovery using parallel analysis of translated ORFs (PLATO), Nat. Biotechnol., 31, 331-334, doi: 10.1038/nbt.2539.
33. Larman, H. B., Liang, A. C., Elledge, S. J., and Zhu, J. (2014) Discovery of protein interactions using parallel analysis of translated ORFs (PLATO), Nat. Protoc., 9, 90-103, doi: 10.1038/nprot.2013.167.
34. Li, R., Kang, G., Hu, M., and Huang, H. (2019) Ribosome display: a potent display technology used for selecting and evolving specific binders with desired properties, Mol. Biotechnol., 61, 60-71, doi: 10.1007/s12033-018-0133-0.
35. Yang, X., Boehm, J. S., Yang, X., Salehi-Ashtiani, K., Hao, T., et al. (2011) A public genome-scale lentiviral expression library of human ORFs, Nat. Methods., 8, 659-661, doi: 10.1038/nmeth.1638.
36. Luck, K., Kim, D.-K., Lambourne, L., Spirohn, K., Begg, B., et al. (2019) A reference map of the human protein interactome, bioRxiv, 12, 605451, doi: 10.1101/605451.
37. Klade, C. S., Voss, T., Krystek, E., Ahorn, H., Zatloukal, K., et al. (2001) Identification of tumor antigens in renal cell carcinoma by serological proteome analysis, Proteomics, 1, 890-898, doi: 10.1002/1615-9861(200107)1:7<890::AID-PROT890>3.0.CO;2-Z.
38. Lichtenfels, R., Kellner, R., Bukur, J., Beck, J., Brenner, W., et al. (2002) Heat shock protein expression and anti-heat shock protein reactivity in renal cell carcinoma, Proteomics, 2, 561-570, doi: 10.1002/1615-9861(200205)2:5<561::AID-PROT561>3.0.CO;2-K.
39. Unwin, R. D., Harnden, P., Pappin, D., Rahman, D., Whelan, P., et al. (2003) Serological and proteomic evaluation of antibody responses in the identification of tumor antigens in renal cell carcinoma, Proteomics, 3, 45-55, doi: 10.1002/pmic.200390008.
40. Legrain, P., Aebersold, R., Archakov, A., Bairoch, A., Bala, K., et al. (2011) The human proteome project: current state and future direction, Mol. Cell. Proteomics, 10, M111.009993, doi: 10.1074/mcp.o111.009993.
41. Gao, H., Zheng, Z., Mao, Y., Wang, W., Qiao, Y., et al. (2014) Identification of tumor antigens that elicit a humoral immune response in the sera of Chinese esophageal squamous cell carcinoma patients by modified serological proteome analysis, Cancer Lett., 344, 54-61, doi: 10.1016/j.canlet.2013.10.007.
42. Dai, L., Qu, Y., Li, J., Wang, X., Wang, K., et al. (2017) Serological proteome analysis approach-based identification of ENO1 as a tumor-associated antigen and its autoantibody could enhance the sensitivity of CEA and CYFRA 21-1 in the detection of non-small cell lung cancer, Oncotarget, 8, 36664-36673, doi: 10.18632/oncotarget.17067.
43. Gao, H., Zheng, M., Sun, S., Wang, H., Yue, Z., et al. (2017) Chaperonin containing TCP1 subunit 5 is a tumor associated antigen of non-small cell lung cancer, Oncotarget, 8, 64170-64179, doi: 10.18632/oncotarget.19369.
44. Rezaei, M., Nikeghbalian, S., Mojtahedi, Z., and Ghaderi, A. (2018) Identification of antibody reactive proteins in pancreatic cancer using 2D immunoblotting and mass spectrometry, Oncol. Rep., 39, 2413-2421, doi: 10.3892/or.2018.6285.
45. Almeras, L., Lefranc, D., Drobecq, H., De Seze, J., Dubucquoi, S., et al. (2004) New antigenic candidates in multiple sclerosis: Identification by serological proteome analysis, Proteomics, 4, 2184-2194, doi: 10.1002/pmic.200300732.
46. Canelle, L., Bousquet, J., Pionneau, C., Deneux, L., Imam-Sghiouar, N., et al. (2005) An efficient proteomics-based approach for the screening of autoantibodies, J. Immunol. Methods, 299, 77-89, doi: 10.1016/j.jim.2005.01.015.
47. Terrier, B., Tamby, M. C., Camoin, L., Guilpain, P., Broussard, C., et al. (2008) Identification of target antigens of antifibroblast antibodies in pulmonary arterial hypertension, Am. J. Respir. Crit. Care Med., 177, 1128-1134, doi: 10.1164/rccm.200707-1015OC.
48. Guilpain, P., Servettaz, A., Tamby, M. C., Chanseaud, Y., Tamas, N., et al. (2007) A combined SDS-PAGE and proteomics approach to identify target autoantigens in healthy individuals and patients with autoimmune diseases, Ann. N.Y. Acad. Sci., 1109, 538-549, doi: 10.1196/annals.1398.060.
49. Beyer, N. H., Milthers, J., Lauridsen, B. A. M., Houen, G., and Frederiksen, L. J. (2007) Autoantibodies to the proteasome in monosymptomatic optic neuritis may predict progression to multiple sclerosis, Scand. J. Clin. Lab. Invest., 67, 696-706, doi: 10.1080/00365510701342062.
50. Tamesa, M. S., Kuramitsu, Y., Fujimoto, M., Maeda, N., Nagashima, Y., et al. (2009) Detection of autoantibodies against cyclophilin A and triosephosphate isomerase in sera from breast cancer patients by proteomic analysis, Electrophoresis, 30, 2168-2181, doi: 10.1002/elps.200800675.
51. Dutoit-Lefèvre, V., Dubucquoi, S., Launay, D., Sobanski, V., Dussart, P., et al. (2015) An optimized fluorescence-based bidimensional immunoproteomic approach for accurate screening of autoantibodies, PLoS One, 10, e0132142, doi: 10.1371/journal.pone.0132142.
52. Ganesan, V., Ascherman, D. P., and Minden, J. S. (2016) Immunoproteomics technologies in the discovery of autoantigens in autoimmune diseases, Biomol. Concepts, 7, 133-143, doi: 10.1515/bmc-2016-0007.
53. Rabilloud, T., Chevallet, M., Luche, S., and Lelong, C. (2010) Two-dimensional gel electrophoresis in proteomics: past, present and future, J. Proteomics, 73, 2064-2077, doi: 10.1016/j.jprot.2010.05.016.
54. Gires, O., Münz, M., Schaffrik, M., Kieu, C., Rauch, J., Ahlemann, M., et al. (2004) Profile identification of disease-associated humoral antigens using AMIDA, a novel proteomics-based technology, Cell. Mol. Life Sci., 61, 1198-1207, doi: 10.1007/s00018-004-4045-8.
55. Rauch, J., Ahlemann, M., Schaffrik, M., Mack, B., Ertongur, S., et al. (2004) Allogenic antibody-mediated identification of head and neck cancer antigens, Biochem. Biophys. Res. Commun., 323, 156-162, doi: 10.1016/j.bbrc.2004.08.071.
56. Ganesan, V., Schmidt, B., Avula, R., Cooke, D., Maggiacomo, T., et al. (2015) Immuno-proteomics: development of a novel reagent for separating antibodies from their target proteins, Biochim. Biophys. Acta, 1854, 592-600, doi: 10.1016/j.bbapap.2014.10.011.
57. Kamhieh-Milz, J., Sterzer, V., Celik, H., Khorramshahi, O., Moftah, R. F. H., and Salama, A. (2017) Identification of novel autoantigens via mass spectroscopy-based antibody-mediated identification of autoantigens (MS-AMIDA) using immune thrombocytopenic purpura (ITP) as a model disease, J. Proteomics., 157, 59-70, doi: 10.1016/j.jprot.2017.01.012.
58. Atak, A., Mukherjee, S., Jain, R., Gupta, S., Singh, V. A., et al. (2016) Protein microarray applications: autoantibody detection and posttranslational modification, Proteomics, 16, 2557-2569, doi: 10.1002/pmic.201600104.
59. Ayoglu, B., Schwenk, J. M., and Nilsson, P. (2016) Antigen arrays for profiling autoantibody repertoires, Bioanalysis, 8, 1105-1126, doi: 10.4155/bio.16.31.
60. Grötzinger, C. (2016) Peptide microarrays for medical applications in autoimmunity, infection, and cancer, Methods Mol. Biol., 1352, 213-221, doi: 10.1007/978-1-4939-3037-1_16.
61. Mischo, A., Wadle, A., Wätzig, K., Jäger, D., Stockert, E., et al. (2003) Recombinant antigen expression on yeast surface (RAYS) for the detection of serological immune responses in cancer patients, Cancer Immunol., 3, 5.
62. Wadle, A., Mischo, A., Imig, J., Wüllner, B., Hensel, D., et al. (2005) Serological identification of breast cancer-related antigens from a Saccharomyces cerevisiae surface display library, Int. J. Cancer., 117, 104-113, doi: 10.1002/ijc.21147.
63. Raju, R., Rakocevic, G., Chen, Z., Hoehn, G., Semino-Mora, C., et al. (2006) Autoimmunity to GABAA-receptor-associated protein in stiff-person syndrome, Brain, 129, 3270-3276, doi: 10.1093/brain/awl245.
64. Yamamoto, M., Naishiro, Y., Suzuki, C., Kokai, Y., Suzuki, R., et al. (2010) Proteomics analysis in 28 patients with systemic IgG4-related plasmacytic syndrome, Rheumatol. Int., 30, 565-568, doi: 10.1007/s00296-009-1030-4.
65. Ohyama, K., and Kuroda, N. (2013) Immune complexome analysis, Adv. Clin. Chem., 60, 129-141, doi: 10.1016/B978-0-12-407681-5.00004-0.
66. Ohyama, K., Baba, M., Tamai, M., Aibara, N., Ichinose, K., et al. (2015) Proteomic profiling of antigens in circulating immune complexes associated with each of seven autoimmune diseases, Clin. Biochem., 48, 181-185, doi: 10.1016/j.clinbiochem.2014.11.008.
67. Hardouin, J., Lasserre, J.-P., Canelle, L., Duchateau, M., Vlieghe, C., et al. (2007) Usefulness of autoantigens depletion to detect autoantibody signatures by multiple affinity protein profiling, J. Sep. Sci., 30, 352-358, doi: 10.1002/jssc.200600324.
68. Hardouin, J., Lasserre, J.-P., Sylvius, L., Joubert-Caron, R., and Caron, M. (2007) Cancer immunomics: from serological proteome analysis to multiple affinity protein profiling, Ann. N.Y. Acad. Sci., 1107, 223-230, doi: 10.1196/annals.1381.024.
69. Grandjean, M., Dieu, M., Raes, M., and Feron, O. (2013) A new method combining sequential immunoaffinity depletion and differential in gel electrophoresis to identify autoantibodies as cancer biomarkers, J. Immunol. Methods, 396, 23-32, doi: 10.1016/j.jim.2013.07.006.
70. Petrak, J., Ivanek, R., Toman, O., Cmejla, R., Cmejlova, J., et al. (2008) Déjà vu in proteomics. A hit parade of repeatedly identified differentially expressed proteins, Proteomics, 8, 1744-1749, doi: 10.1002/pmic.200700919.
71. Ye, Y., Kuhn, C., Kösters, M., Arnold, G. J., Ishikawa-Ankerhold, H., et al. (2019) Anti α-enolase antibody is a novel autoimmune biomarker for unexplained recurrent miscarriages, EBioMedicine, 41, 610-622, doi: 10.1016/j.ebiom.2019.02.027.
72. Bruschi, M., Carnevali, M. L., Murtas, C., Candiano, G., Petretto, A., et al. (2011) Direct characterization of target podocyte antigens and auto-antibodies in human membranous glomerulonephritis: alfa-enolase and borderline antigens, J. Proteomics, 74, 2008-2017, doi: 10.1016/j.jprot.2011.05.021.
73. Peng, B., Huang, X., Nakayasu, E. S., Petersen, J. R., Qiu, S., et al. (2013) Using immunoproteomics to identify alpha-enolase as an autoantigen in liver fibrosis, J. Proteome Res., 12, 1789-1796, doi: 10.1021/pr3011342.
74. Nabeta, M., Abe, Y., Kagawa, L., Haraguchi, R., Kito, K., et al. (2009) Identification of anti-α-enolase autoantibody as a novel serum marker for endometriosis, Proteomics Clin. Appl., 3, 1201-1210, doi: 10.1002/prca.200900055.
75. O’Dwyer, D. T., Smith, A. I., Matthew, M. L., Andronicos, N. M., Ranson, M., et al. (2002) Identification of the 49-kDa autoantigen associated with lymphocytic hypophysitis as α-enolase, J. Clin. Endocrinol. Metab., 87, 752-757, doi: 10.1210/jcem.87.2.8205.
76. Cappello, P., Tomaino, B., Chiarle, R., Ceruti, P., Novarino, A., et al. (2009) An integrated humoral and cellular response is elicited in pancreatic cancer by α-enolase, a novel pancreatic ductal adenocarcinoma-associated antigen, Int. J. Cancer, 125, 639-648, doi: 10.1002/ijc.24355.
77. Li, W.-H., Zhao, J., Li, H.-Y., Liu, H., Li, A.-L., et al. (2006) Proteomics-based identification of autoantibodies in the sera of healthy Chinese individuals from Beijing, Proteomics, 6, 4781-4789, doi: 10.1002/pmic.200500909.
78. Servettaz, A., Guilpain, P., Camoin, L., Mayeux, P., Broussard, C., et al. (2008) Identification of target antigens of antiendothelial cell antibodies in healthy individuals: a proteomic approach, Proteomics., 8, 1000-1008, doi: 10.1002/pmic.200700794.
79. Merbl, Y., Zucker-Toledano, M., Quintana, F. J., and Cohen, I. R. (2007) Newborn humans manifest autoantibodies to defined self molecules detected by antigen microarray informatics, J. Clin. Invest., 117, 712-718, doi: 10.1172/JCI29943.
80. Madi, A., Hecht, I., Bransburg-Zabary, S., Merbl, Y., Pick, A., et al. (2009) Organization of the autoantibody repertoire in healthy newborns and adults revealed by system level informatics of antigen microarray data, Proc. Natl. Acad. Sci. USA, 106, 14484-14489, doi: 10.1073/pnas.0901528106.
81. Nagele, E. P., Han, M., Acharya, N. K., DeMarshall, C., Kosciuk, M. C., and Nagele, R. G. (2013) Natural IgG autoantibodies are abundant and ubiquitous in human sera, and their number is influenced by age, gender, and disease, PLoS One, 8, e60726, doi: 10.1371/journal.pone.0060726.
82. Neiman, M., Hellström, C., Just, D., Mattsson, C., Fagerberg, L., et al. (2019) Individual and stable autoantibody repertoires in healthy individuals, Autoimmunity, 52, 1-11, doi: 10.1080/08916934.2019.1581774.
83. Lobo, P. I. (2016) Role of natural autoantibodies and natural IgM anti-leucocyte autoantibodies in health and disease, Front. Immunol., 7, 198, doi: 10.3389/fimmu.2016.00198.
84. Siloşi, I., Siloşi, C. A., Boldeanu, M. V., Cojocaru, M., Biciuşcă, V., et al. (2016) The role of autoantibodies in health and disease, Rom. J. Morphol. Embryol., 57, 633-638.
85. Maddur, M. S., Lacroix-Desmazes, S., Dimitrov, J. D., Kazatchkine, M. D., Bayry, J., and Kaveri, S. V. (2020) Natural antibodies: from first-line defense against pathogens to perpetual immune homeostasis, Clin. Rev. Allergy Immunol., 58, 213-228, doi: 10.1007/s12016-019-08746-9.
86. Sanchez, T. W., Zhang, G., Li, J., Dai, L., Mirshahidi, S., et al. (2016) Immunoseroproteomic profiling in African American men with prostate cancer: evidence for an autoantibody response to glycolysis and plasminogen-associated proteins, Mol. Cell. Proteomics, 15, 3564-3580, doi: 10.1074/mcp.M116.060244.
87. Capello, M., Cappello, P., Linty, F. C., Chiarle, R., Sperduti, I., et al. (2013) Autoantibodies to Ezrin are an early sign of pancreatic cancer in humans and in genetically engineered mouse models, J. Hematol. Oncol., 6, 67, doi: 10.1186/1756-8722-6-67.
88. Larman, H. B., Laserson, U., Querol, L., Verhaeghen, K., Solimini, N. L., et al. (2013) PhIP-Seq characterization of autoantibodies from patients with multiple sclerosis, type 1 diabetes and rheumatoid arthritis, J. Autoimmun., 43, 1-9, doi: 10.1016/j.jaut.2013.01.013.
89. Davoudi, S., Ahmadi, T., Papavasilieou, E., Leskov, I., and Sobrin, L. (2018) Phage immunoprecipitation sequencing of autoantigens in autoimmune retinopathy, Ocul. Immunol. Inflamm., 26, 417-424, doi: 10.1080/09273948.2016.1232738.
90. Vazquez, S. E., Ferré, E. M. N., Scheel, D. W., Sunshine, S., Miao, B., et al. (2020) Identification of novel, clinically correlated autoantigens in the monogenic autoimmune syndrome APS1 by proteome-wide Phip-Seq, eLife, 9, doi: 10.7554/eLife.55053.
91. Mandel-Brehm, C., Dubey, D., Kryzer, T. J., O’Donovan, B. D., Tran, B., et al. (2019) Kelch-like Protein 11 antibodies in seminoma-associated paraneoplastic encephalitis, N. Engl. J. Med., 381, 47-54, doi: 10.1056/NEJMoa1816721.
92. Looi, K. S., Nakayasu, E. S., De Diaz, R. A., Tan, E. M., Almeida, I. C., and Zhang, J. Y. (2008) Using proteomic approach to identify tumor-associated antigens as markers in hepatocellular carcinoma, J. Proteome Res., 7, 4004-4012, doi: 10.1021/pr800273h.
93. Cottrell, T. R., Hall, J. C., Rosen, A., and Casciola-Rosen, L. (2012) Identification of novel autoantigens by a triangulation approach, J. Immunol. Methods, 385, 35-44, doi: 10.1016/j.jim.2012.07.024.
94. Greenberg, S. A., Higgs, B. W., Morehouse, C., Walsh, R. J., Won Kong, S., et al. (2012) Relationship between disease activity and type 1 interferon- and other cytokine-inducible gene expression in blood in dermatomyositis and polymyositis, Genes Immun., 13, 207-213, doi: 10.1038/gene.2011.61.
95. Mammen, A. L. (2011) Autoimmune myopathies: autoantibodies, phenotypes and pathogenesis, Nat. Rev. Neurol., 7, 343-354, doi: 10.1038/nrneurol.2011.63.
96. Grandjean, M., Sermeus, A., Branders, S., Defresne, F., Dieu, M., et al. (2013) Hypoxia integration in the serologi-cal proteome analysis unmasks tumor antigens and fosters the identification of anti-phospho-EEF2 antibodies as potential cancer biomarkers, PLoS One, 8, e76508, doi: 10.1371/journal.pone.0076508.
97. Höckel, M., and Vaupel, P. (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects, J. Natl. Cancer Inst., 93, 266-276, doi: 10.1093/jnci/93.4.266.
98. Wouters, B. G., and Koritzinsky, M. (2008) Hypoxia signalling through mTOR and the unfolded protein response in cancer, Nat. Rev. Cancer, 8, 851-864, doi: 10.1038/nrc2501.
99. Connolly, E., Braunstein, S., Formenti, S., and Schneider, R. J. (2006) Hypoxia inhibits protein synthesis through a 4E-BP1 and elongation factor 2 kinase pathway controlled by MTOR and uncoupled in breast cancer cells, Mol. Cell. Biol., 26, 3955-3965, doi: 10.1128/mcb.26.10.3955-3965.2006.
100. Romero-Ruiz, A., Bautista, L., Navarro, V., Heras-Garvín, A., March-Díaz, R., et al. (2012) Prolyl hydroxylase-dependent modulation of eukaryotic elongation factor 2 activity and protein translation under acute hypoxia, J. Biol. Chem., 287, 9651-9658, doi: 10.1074/jbc.M111.299180.
101. Arora, S., Yang, J. M., Craft, J., and Hait, W. (2002) Detection of anti-elongation factor 2 kinase (calmodulin-dependent protein kinase III) antibodies in patients with systemic lupus erythematosus, Biochem. Biophys. Res. Commun., 293, 1073-1076, doi: 10.1016/S0006-291X(02)00324-8.
102. Belousov, P. V., Afanasyeva, M. A., Gubernatorova, E. O., Bogolyubova, A. V., Uvarova, A. N., et al. (2019) Multi-dimensional immunoproteomics coupled with in vitro recapitulation of oncogenic NRASQ61R identifies diagnostically relevant autoantibody biomarkers in thyroid neoplasia, Cancer Lett., 467, 96-106, doi: 10.1016/j.canlet.2019.07.013.
103. Radbruch, A., Muehlinghaus, G., Luger, E. O., Inamine, A., Smith, K. G. C., et al. (2006) Competence and competition: the challenge of becoming a long-lived plasma cell, Nat. Rev. Immunol., 6, 741-750, doi: 10.1038/nri1886.
104. Wang, S., He, Z., Wang, X., Li, H., and Liu, X. S. (2019) Antigen presentation and tumor immunogenicity in cancer immunotherapy response prediction, eLife, 8, doi: 10.7554/eLife.49020.
105. Tetsuka, S., Tominaga, K., Ohta, E., Kuroiwa, K., Sakashita, E., et al. (2013) Paraneoplastic cerebellar degeneration associated with an onconeural antibody against creatine kinase, brain-type, J. Neurol. Sci., 335, 48-57, doi: 10.1016/j.jns.2013.08.022.
106. Darnell, J. C., Albert, M. L., and Darnell, R. B. (2000) Cdr2, a target antigen of naturally occurring human tumor immunity, is widely expressed in gynecological tumors, Cancer Res., 60, 2136-2139.
107. Wang, M., Weiss, M., Simonovic, M., Haertinger, G., Schrimpf, S. P., et al. (2012) PaxDb, a database of protein abundance averages across all three domains of life, Mol. Cell. Proteomics, 11, 492-500, doi: 10.1074/mcp.O111.014704.
108. Pittock, S. J., Kryzer, T. J., and Lennon, V. A. (2004) Paraneoplastic antibodies coexist and predict cancer, not neurological syndrome, Ann. Neurol., 56, 715-719, doi: 10.1002/ana.20269.
109. Dalmau, J., Furneaux, H. M., Gralla, R. J., Kris, M. G., and Posner, J. B. (1990) Detection of the anti-Hu antibody in the serum of patients with small cell lung cancer – a quantitative western blot analysis, Ann. Neurol., 27, 544-552, doi: 10.1002/ana.410270515.
110. Graus, F., Dalmau, J., Reńé, R., Tora, M., Malats, N., et al. (1997) Anti-Hu antibodies in patients with small-cell lung cancer: association with complete response to therapy and improved survival, J. Clin. Oncol., 15, 2866-2872, doi: 10.1200/JCO.1997.15.8.2866.
111. Verschuuren, J. J., Perquin, M., Ten Velde, G., De Baets, M., Van Breda Vriesman, P., and Twijnstra, A. (1999) Anti-Hu antibody titre and brain metastases before and after treatment for small cell lung cancer, J. Neurol. Neurosurg. Psychiatry, 67, 353-357, doi: 10.1136/jnnp.67.3.353.
112. Matsumoto, T., Ryuge, S., Kobayashi, M., Kageyama, T., Hattori, M., et al. (2012) Anti-HuC and -HuD autoantibodies are differential sero-diagnostic markers for small cell carcinoma from large cell neuroendocrine carcinoma of the lung, Int. J. Oncol., 40, 1957-1962, doi: 10.3892/ijo.2012.1405.
113. Bazhin, A. V., Savchenko, M. S., Shifrina, O. N., Demoura, S. A., Chikina, S. Y., et al. (2004) Recoverin as a paraneoplastic antigen in lung cancer: the occurrence of anti-recoverin autoantibodies in sera and recoverin in tumors, Lung Cancer, 44, 193-198, doi: 10.1016/j.lungcan.2003.10.006.
114. Djureinovic, D., Hallström, B. M., Horie, M., Margareta Mattsson, J. S., Fleur, L., et al. (2019) Profiling cancer testis antigens in non-small-cell lung cancer, JCI Insight., 1, 86837, doi: 10.1172/jci.insight.86837.
115. Sautès-Fridman, C., Petitprez, F., Calderaro, J., and Fridman, W. H. (2019) Tertiary lymphoid structures in the era of cancer immunotherapy, Nat. Rev. Cancer, 19, 307-325, doi: 10.1038/s41568-019-0144-6.
116. Hansen, M., Nielsen, H., and Ditzel, H. (2001) The tumor-infiltrating B cell response in medullary breast cancer is oligoclonal and directed against the autoantigen actin exposed on the surface of apoptotic cancer cells, Proc. Natl. Acad. Sci. USA, 98, 12659-12664, doi: 10.1073/pnas.171460798.
117. Kotlan, B., Simsa, P., Teillaud, J.-L., Fridman, W. H., Toth, J., et al. (2005) Novel ganglioside antigen identified by B cells in human medullary breast carcinomas: the proof of principle concerning the tumor-infiltrating B lymphocytes, J. Immunol., 175, 2278-2285, doi: 10.4049/jimmunol.175.4.2278.
118. Pavoni, E., Monteriù, G., Santapaola, D., Petronzelli, F., Anastasi, A., et al. (2007) Tumor-infiltrating B lymphocytes as an efficient source of highly specific immunoglobulins recognizing tumor cells, BMC Biotechnol., 7, 70, doi: 10.1186/1472-6750-7-70.
119. Garaud, S., Zayakin, P., Buisseret, L., Rulle, U., Silina, K., et al. (2018) Antigen specificity and clinical significance of IgG and IgA autoantibodies produced in situ by tumor-Infiltrating B cells in breast cancer, Front. Immunol., 9, 2660, doi: 10.3389/fimmu.2018.02660.
120. Wang, D., Yang, L., Zhang, P., LaBaer, J., Hermjakob, H., et al. (2017) AAgAtlas 1.0: a human autoantigen database, Nucleic Acids Res., 45, D769-D776, doi: 10.1093/nar/gkw946.