БИОХИМИЯ, 2021, том 86, вып. 3, с. 374–394

УДК 577.2

Микробный арсенал противовирусной защиты. Глава I

Обзор

© 2021 А.Б. Исаев 1*, О.С. Мушарова 1,2, К.В. Северинов 1,3*

Сколковский институт науки и технологий, 143028 Москва, Россия; электронная почта: tcft18@gmail.com

Институт молекулярной генетики РАН, 123182 Москва, Россия

Waksman Institute of Microbiology, Piscataway, NJ 08854, USA; E-mail: severik@waksman.rutgers.edu

Поступила в редакцию 10.08.2020
После доработки 18.08.2020
Принята к публикации 12.09.2020

DOI: 10.31857/S0320972521030076

КЛЮЧЕВЫЕ СЛОВА: бактериофаги, взаимодействия бактериофагов с клетками-хозяевами, антивирусная защита, иммунные системы, CRISPR-Cas, рестрикция-модификация, BREX, DISARM, фосфоротиоат, системы Dnd.

Аннотация

Бактериофаги или фаги представляют собой вирусы, которые инфицируют бактериальные клетки (в рамках этого обзора мы также рассмотрим вирусы, которые инфицируют архей). Постоянная угроза заражения фагами является одной из основных движущих сил эволюции бактериальных геномов. Чтобы противостоять инфекции, бактерии выработали многочисленные защитные стратегии, позволяющие избежать распознавания фагами или прямо препятствующие размножению фагов внутри клетки. Исследования бактериофагов и бактериальных систем защиты были исторически тесно переплетены с развитием методов классической молекулярной биологии и генной инженерии. В настоящее время благодаря распространению фаговой терапии, широкому применению технологий CRISPR-Cas и развитию биоинформатических подходов, которые облегчают задачу обнаружения новых систем, исследования в области биологии фагов переживают возрождение. В настоящем обзоре описываются различные стратегии, используемые микробами для того, чтобы противостоять фаговой инфекции. Особое внимание уделено новым защитным системам, открытым в последние годы. Первая глава обзора посвящена защите связанной с поверхностью клетки, роли малых молекул, а также системам врожденного иммунитета, зависящим от модификации ДНК.

Сноски

* Адресат для корреспонденции.

Финансирование

Выполнение данной работы происходило при финансовой поддержке Российского фонда фундаментальных исследований (грант № 19-14-50560). А.И. также поддержан грантом Российского фонда фундаментальных исследований (грант № 19-34-90160), О.М. поддержана грантом Российского научного фонда (грант № 19-74-00118).

Благодарности

Авторы выражают благодарность Анне Ершовой и Андрею Летарову за критические замечания к отдельным разделам статьи. Иллюстрации были подготовлены при помощи программы BioRender.

Вклад авторов

А.И. подготовил текст обзорной статьи, А.И. и О.М. подготовили рисунки, К.С. провел редактуру статьи.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических норм

Настоящая статья не содержит описания каких-либо исследований с участием людей или животных в качестве объектов.

Список литературы

1. Clokie, M. R. J., Millard, A. D., Letarov, A. V., and Heaphy, S. (2011) Phages in nature, Bacteriophage, 1, 31-45.

2. Díaz-Muñoz, S. L., and Koskella, B. (2014) Bacteriaphage interactions in natural environments, in Advances in Applied Microbiology, Elsevier, Vol. 89, pp. 135-183.

3. Batinovic, S., Wassef, F., Knowler, S. A., Rice, D. T. F., Stanton, C. R., et al. (2019) Bacteriophages in natural and artificial environments, Pathogens, 8, 100.

4. Wommack, K. E., and Colwell, R. R. (2000) Virioplankton: viruses in aquatic ecosystems, Microbiol. Mol. Biol. Rev., 64, 69-114.

5. Parikka, K. J., Le Romancer, M., Wauters, N., and Jacquet, S. (2017) Deciphering the virus-to-prokaryote ratio (VPR): insights into virus-host relationships in a variety of ecosystems, Biol. Rev., 92, 1081-1100.

6. Rodriguez-Valera, F., Martin-Cuadrado, A.-B., Rodriguez-Brito, B., Pasic, L., Thingstad, T. F., et al. (2009) Explaining microbial population genomics through phage predation, Nat. Preced., doi: 10.1038/npre.2009.3489.1.

7. Breitbart, M., Bonnain, C., Malki, K., and Sawaya, N. A. (2018) Phage puppet masters of the marine microbial realm, Nat. Microbiol., 3, 754-766.

8. Brüssow, H., Canchaya, C., and Hardt, W.-D. (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion, Microbiol. Mol. Biol. Rev., 68, 560-602.

9. Chiang, Y. N., Penadés, J. R., and Chen, J. (2019) Genetic transduction by phages and chromosomal islands: the new and noncanonical, PLoS Pathog., 15, e1007878.

10. Lang, A. S., Westbye, A. B., and Beatty, J. T. (2017) The distribution, evolution, and roles of gene transfer agents in prokaryotic genetic exchange, Annu. Rev. Virol., 4, 87-104.

11. Keen, E. C., Bliskovsky, V. V, Malagon, F., Baker, J. D., Prince, J. S., et al. (2017) Novel “superspreader” bacteriophages promote horizontal gene transfer by transformation, MBio, 8, e02115-16.

12. Koonin, E. V., Wolf, Y. I., and Katsnelson, M. I. (2017) Inevitability of the emergence and persistence of genetic parasites caused by evolutionary instability of parasite-free states, Biol. Direct, 12, 1-12.

13. Szathmáry, E., and Demeter, L. (1987) Group selection of early replicators and the origin of life, J. Theor. Biol., 128, 463-486.

14. Krupovic, M., Dolja, V. V., and Koonin, E. V. (2019) Origin of viruses: primordial replicators recruiting capsids from hosts, Nat. Rev. Microbiol., 17, 449-458.

15. Koonin, E. V., Makarova, K. S., and Wolf, Y. I. (2017) Evolutionary Genomics of Defense Systems in Archaea and Bacteria, Annu. Rev. Microbiol., 71, 233-261.

16. Galperin, M. Y., and Koonin, E. V. (2000) Who’s your neighbor? New computational approaches for functional genomics, Nat. Biotechnol., 18, 609-613.

17. Shmakov, S. A., Faure, G., Makarova, K. S., Wolf, Y. I., Severinov, K. V., and Koonin, E. V. (2019) Systematic prediction of functionally linked genes in bacterial and archaeal genomes, Nat. Protoc., 14, 3013-3031.

18. Makarova, K. S., Wolf, Y. I., Snir, S., and Koonin, E. V. (2011) Defense islands in bacterial and archaeal genomes and prediction of novel defense systems, J. Bacteriol., 193, 6039-56.

19. Oliveira, P. H., Touchon, M., and Rocha, E. P. C. (2014) The interplay of restriction–modification systems with mobile genetic elements and their prokaryotic hosts, Nucleic Acids Res., 42, 10618-10631.

20. Koonin, E. V., Makarova, K. S., Wolf, Y. I., and Krupovic, M. (2020) Evolutionary entanglement of mobile genetic elements and host defence systems: guns for hire, Nat. Rev. Genet., 21, 119-131.

21. Doron, S., Melamed, S., Ofir, G., Leavitt, A., Lopatina, A., et al. (2018) Systematic discovery of antiphage defense systems in the microbial pangenome, Science, 359, eaar4120.

22. Gao, L., Altae-Tran, H., Böhning, F., Makarova, K. S., Segel, M., et al. (2020) Diverse enzymatic activities mediate antiviral immunity in prokaryotes, Science, 369, 1077-1084.

23. Makarova, K. S., Wolf, Y. I., and Koonin, E. V. (2019) Towards functional characterization of archaeal genomic dark matter, Biochem. Soc. Trans., 47, 389-398.

24. Eraslan, G., Avsec, Ž., Gagneur, J., and Theis, F. J. (2019) Deep learning: new computational modelling techniques for genomics, Nat. Rev. Genet., 20, 389-403.

25. Eitzinger, S., Asif, A., Watters, K. E., Iavarone, A. T., Knott, G. J., et al. (2020) Machine learning predicts new anti-CRISPR proteins, Nucleic Acids Res., 48, 4698-4708.

26. Gussow, A. B., Park, A. E., Borges, A. L., Shmakov, S. A., Makarova, K. S., et al. (2020) Machine-learning approach expands the repertoire of anti-CRISPR protein families, Nat. Commun., 11, 1-12.

27. Kronheim, S., Daniel-Ivad, M., Duan, Z., Hwang, S., Wong, A. I., et al. (2018) A chemical defence against phage infection, Nature, 564, 283-286.

28. Fillol-Salom, A., Miguel-Romero, L., Marina, A., Chen, J., and Penadés, J. R. (2020) Beyond the CRISPR-Cas safeguard: PICI-encoded innate immune systems protect bacteria from bacteriophage predation, Curr. Opin. Microbiol., 56, 52-58.

29. O’Hara, B. J., Barth, Z. K., McKitterick, A. C., and Seed, K. D. (2017) A highly specific phage defense system is a conserved feature of the Vibrio cholerae mobilome, PLoS Genet., 13, 1-17.

30. Roberts, R. J., Vincze, T., Posfai, J., and Macelis, D. (2015) REBASE – a database for DNA restriction and modification: enzymes, genes and genomes, Nucleic Acids Res., 43, D298-D299.

31. Akarsu, H., Bordes, P., Mansour, M., Bigot, D.-J., Genevaux, P., and Falquet, L. (2019) TASmania: a bacterial toxin-antitoxin systems database, PLOS Comput. Biol., 15, e1006946.

32. Zhang, F., Zhao, S., Ren, C., Zhu, Y., Zhou, H., et al. (2018) CRISPRminer is a knowledge base for exploring CRISPR-Cas systems in microbe and phage interactions, Commun. Biol., 1, 1-5.

33. Pourcel, C., Touchon, M., Villeriot, N., Vernadet, J.-P., Couvin, D., et al. (2020) CRISPRCasdb a successor of CRISPRdb containing CRISPR arrays and cas genes from complete genome sequences, and tools to download and query lists of repeats and spacers, Nucleic Acids Res., 48, D535-D544.

34. Zhang, Y., Zhang, Z., Zhang, H., Zhao, Y., Zhang, Z., and Xiao, J. (2020) PADS Arsenal: A database of prokaryotic defense systems related genes, Nucleic Acids Res., 48, D590-D598.

35. Mendler, K., Chen, H., Parks, D. H., Lobb, B., Hug, L. A., and Doxey, A. C. (2019) Annotree: visualization and exploration of a functionally annotated microbial tree of life, Nucleic Acids Res., 47, 4442-4448.

36. Howard-Varona, C., Lindback, M. M., Bastien, G. E., Solonenko, N., Zayed, A. A., et al. (2020) Phage-specific metabolic reprogramming of virocells, ISME J., 14, 881-895.

37. Ghosh, S., Hamdan, S. M., Cook, T. E., and Richardson, C. C. (2008) Interactions of Escherichia coli thioredoxin, the processivity factor, with bacteriophage T7 DNA polymerase and helicase, J. Biol. Chem., 283, 32077-32084.

38. Qimron, U., Marintcheva, B., Tabor, S., and Richardson, C. C. (2006) Genomewide screens for Escherichia coli genes affecting growth of T7 bacteriophage, Proc. Natl. Acad. Sci. USA, 103, 19039-19044.

39. Maynard, N. D., Birch, E. W., Sanghvi, J. C., Chen, L., Gutschow, M. V., and Covert, M. W. (2010) A forward-genetic screen and dynamic analysis of lambda phage host-dependencies reveals an extensive interaction network and a new anti-viral strategy, PLoS Genet., 6, e1001017.

40. Bohm, K., Porwollik, S., Chu, W., Dover, J. A., Gilcrease, E. B., et al. (2018) Genes affecting progression of bacteriophage P22 infection in Salmonella identified by transposon and single gene deletion screens, Mol. Microbiol., 108, 288-305.

41. Piya, D., Lessor, L., Koehler, B., Stonecipher, A., Cahill, J., and Gill, J. J. (2020) Genome-wide screens reveal Escherichia coli genes required for growth of T1-like phage LL5 and V5-like phage LL12, Sci. Rep., 10, 1-9.

42. Rousset, F., Cui, L., Siouve, E., Becavin, C., Depardieu, F., and Bikard, D. (2018) Genome-wide CRISPR-dCas9 screens in E. coli identify essential genes and phage host factors, PLoS Genet., 14, e1007749.

43. Kortright, K. E., Chan, B. K., and Turner, P. E. (2020) High-throughput discovery of phage receptors using transposon insertion sequencing of bacteria, Proc. Natl. Acad. Sci. USA, 117, 18670-18679.

44. Mutalik, V. K., Adler, B. A., Rishi, H. S., Piya, D., Zhong, C., et al. (2020) High-throughput mapping of the phage resistance landscape in E. coli, PLoS Biol., 18, e3000877.

45. Luria, S. E., and Delbrück, M. (1943) Mutations of bacteria from virus sensitivity to virus resistance, Genetics, 28, 491.

46. Isaev, A., Drobiazko, A., Sierro, N., Gordeeva, J., Yosef, I., et al. (2020) Phage T7 DNA mimic protein Ocr is a potent inhibitor of BREX defence, Nucleic Acids Res., 48, 5397-5406.

47. Pinilla-Redondo, R., Shehreen, S., Marino, N. D., Fagerlund, R. D., Brown, C. M., et al. (2020) Discovery of multiple anti-CRISPRs highlights anti-defense gene clustering in mobile genetic elements, Nat. Commun., 11, 1-11.

48. Samson, J. E., Magadán, A. H., Sabri, M., and Moineau, S. (2013) Revenge of the phages: defeating bacterial defences, Nat. Rev. Microbiol., 11, 675-87.

49. Hwang, S., and Maxwell, K. L. (2019) Meet the anti-CRISPRs: widespread protein inhibitors of CRISPR-Cas systems, Cris. J., 2, 23-30.

50. Hampton, H. G., Watson, B. N. J., and Fineran, P. C. (2020) The arms race between bacteria and their phage foes, Nature, 577, 327-336.

51. Bertozzi Silva, J., Storms, Z., and Sauvageau, D. (2016) Host receptors for bacteriophage adsorption, FEMS Microbiol. Lett., 363, fnw002.

52. Dowah, A. S. A., and Clokie, M. R. J. (2018) Review of the nature, diversity and structure of bacteriophage receptor binding proteins that target Gram-positive bacteria, Biophys. Rev., 10, 535-542.

53. Stone, E., Campbell, K., Grant, I., and McAuliffe, O. (2019) Understanding and exploiting phage-host interactions, Viruses, 11, 567.

54. Dragoš, A., and Kovács, Á. T. (2017) The peculiar functions of the bacterial extracellular matrix, Trends Microbiol., 25, 257-266.

55. Hansen, M. F., Svenningsen, S. Lo, Røder, H. L., Middelboe, M., and Burmølle, M. (2019) Big impact of the tiny: bacteriophage-bacteria interactions in biofilms, Trends Microbiol., 27, 739-752.

56. Abedon, S. T. (2017) Phage “delay” towards enhancing bacterial escape from biofilms: a more comprehensive way of viewing resistance to bacteriophages, AIMS Microbiol., 3, 186.

57. Fernández, L., Rodríguez, A., and García, P. (2018) Phage or foe: an insight into the impact of viral predation on microbial communities, ISME J., 12, 1171-1179.

58. Henriksen, K., Rørbo, N., Rybtke, M. L., Martinet, M. G., Tolker-Nielsen, T., et al. (2019) P. aeruginosa flow-cell biofilms are enhanced by repeated phage treatments but can be eradicated by phage-ciprofloxacin combination, Pathog. Dis., 77, ftz011.

59. Hosseinidoust, Z., Tufenkji, N., and van de Ven, T. G. M. (2013) Formation of biofilms under phage predation: considerations concerning a biofilm increase, Biofouling, 29, 457-468.

60. Bull, J. J., Christensen, K. A., Scott, C., Jack, B. R., Crandall, C. J., and Krone, S. M. (2018) Phage-bacterial dynamics with spatial structure: self organization around phage sinks can promote increased cell densities, Antibiotics, 7, 8.

61. Tan, D., Dahl, A., and Middelboe, M. (2015) Vibriophages differentially influence biofilm formation by Vibrio anguillarum strains, Appl. Environ. Microbiol., 81, 4489-4497.

62. Vidakovic, L., Singh, P. K., Hartmann, R., Nadell, C. D., and Drescher, K. (2018) Dynamic biofilm architecture confers individual and collective mechanisms of viral protection, Nat. Microbiol., 3, 26-31.

63. Scanlan, P. D., and Buckling, A. (2012) Co-evolution with lytic phage selects for the mucoid phenotype of Pseudomonas fluorescens SBW25, ISME J., 6, 1148-1158.

64. Wilkinson, B. J., and Holmes, K. M. (1979) Staphylococcus aureus cell surface: capsule as a barrier to bacteriophage adsorption, Infect. Immun., 23, 549-552.

65. Kim, M. S., Kim, Y. D., Hong, S. S., Park, K., Ko, K. S., and Myung, H. (2015) Phage-encoded colanic acid-degrading enzyme permits lytic phage infection of a capsule-forming resistant mutant Escherichia coli strain, Appl. Environ. Microbiol., 81, 900-909.

66. Reyes-Robles, T., Dillard, R. S., Cairns, L. S., Silva-Valenzuela, C. A., Housman, M., et al. (2018) Vibrio cholerae outer membrane vesicles inhibit bacteriophage infection, J. Bacteriol., 200, 1-9.

67. Manning, A. J., and Kuehn, M. J. (2011) Contribution of bacterial outer membrane vesicles to innate bacterial defense, BMC Microbiol., 11, 258.

68. Tzipilevich, E., Habusha, M., and Ben-Yehuda, S. (2017) Acquisition of phage sensitivity by bacteria through exchange of phage receptors, Cell, 168, 186-199.e12.

69. Betts, A., Gifford, D. R., MacLean, R. C., and King, K. C. (2016) Parasite diversity drives rapid host dynamics and evolution of resistance in a bacteria-phage system, Evolution (N.Y.), 70, 969-978.

70. Braun, V. (2009) FhuA (TonA), the career of a protein, J. Bacteriol., 191, 3431-3436.

71. Chatterjee, S., and Rothenberg, E. (2012) Interaction of bacteriophage l with its E. coli receptor, LamB, Viruses, 4, 3162-3178.

72. Kulikov, E. E., Golomidova, A. K., Prokhorov, N. S., Ivanov, P. A., and Letarov, A. V. (2019) High-throughput LPS profiling as a tool for revealing of bacteriophage infection strategies, Sci. Rep., 9, 1-10.

73. Moller, A. G., Lindsay, J. A., and Read, T. D. (2019) Determinants of phage host range in Staphylococcus species, Appl. Environ. Microbiol., 85, e00209-19.

74. Wright, R. C. T., Friman, V.-P., Smith, M. C. M., and Brockhurst, M. A. (2018) Cross-resistance is modular in bacteria-phage interactions, PLoS Biol., 16, e2006057.

75. Christen, M., Beusch, C., Bösch, Y., Cerletti, D., Flores-Tinoco, C. E., et al. (2016) Quantitative selection analysis of bacteriophage ϕCbK susceptibility in Caulobacter crescentus, J. Mol. Biol., 428, 419-430.

76. Bikard, D., and Marraffini, L. A. (2012) Innate and adaptive immunity in bacteria: mechanisms of programmed genetic variation to fight bacteriophages, Curr. Opin. Immunol., 24, 15-20.

77. Van Houte, S., Buckling, A., and Westra, E. R. (2016) Evolutionary ecology of prokaryotic immune mechanisms, Microbiol. Mol. Biol. Rev., 80, 745-763.

78. Riede, I., and Eschbach, M. L. (1986) Evidence that TraT interacts with OmpA of Escherichia coli, FEBS Lett., 205, 241-245.

79. Harvey, H., Bondy-Denomy, J., Marquis, H., Sztanko, K. M., Davidson, A. R., and Burrows, L. L. (2018) Pseudomonas aeruginosa defends against phages through type IV pilus glycosylation, Nat. Microbiol., 3, 47-52.

80. Kim, M., and Ryu, S. (2012) Spontaneous and transient defence against bacteriophage by phase-variable glucosylation of O-antigen in Salmonella enterica serovar Typhimurium, Mol. Microbiol., 86, 411-425.

81. Fallico, V., Ross, R. P., Fitzgerald, G. F., and McAuliffe, O. (2011) Genetic response to bacteriophage infection in Lactococcus lactis reveals a four-strand approach involving induction of membrane stress proteins, D-alanylation of the cell wall, maintenance of proton motive force, and energy conservation, J. Virol., 85, 12032-12042.

82. Power, P. M., Sweetman, W. A., Gallacher, N. J., Woodhall, M. R., Kumar, G. A., et al. (2009) Simple sequence repeats in Haemophilus influenzae, Infect. Genet. Evol., 9, 216-228.

83. Turkington, C. J. R., Morozov, A., Clokie, M. R. J., and Bayliss, C. D. (2019) Phage-resistant phase-variant sub-populations mediate herd immunity against bacteriophage invasion of bacterial meta-populations, Front. Microbiol., 10, 1473.

84. Seed, K. D., Faruque, S. M., Mekalanos, J. J., Calderwood, S. B., Qadri, F., and Camilli, A. (2012) Phase variable O antigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in Vibrio cholerae O1, PLoS Pathog, 8, e1002917.

85. Komano, T. (1999) Shufflons: multiple inversion systems and integrons, Annu. Rev. Genet., 33, 171-191.

86. Brouwer, M. S. M., Jurburg, S. D., Harders, F., Kant, A., Mevius, D. J., et al. (2019) The shufflon of IncI1 plasmids is rearranged constantly during different growth conditions, Plasmid, 102, 51-55.

87. Porter, N. T., Hryckowian, A. J., Merrill, B. D., Fuentes, J. J., Gardner, J. O., et al. (2020) Phase-variable capsular polysaccharides and lipoproteins modify bacteriophage susceptibility in Bacteroides thetaiotaomicron, Nat. Microbiol., 5, 1170-1181.

88. Quemin, E. R. J., and Quax, T. E. F. (2015) Archaeal viruses at the cell envelope: entry and egress, Front. Microbiol., 6, 552.

89. Hartman, R., Eilers, B. J., Bollschweiler, D., Munson-McGee, J. H., Engelhardt, H., et al. (2019) The molecular mechanism of cellular attachment for an archaeal virus, Structure, 27, 1634-1646.

90. Deng, L., He, F., Bhoobalan-Chitty, Y., Martinez-Alvarez, L., Guo, Y., and Peng, X. (2014) Unveiling cell surface and type IV secretion proteins responsible for archaeal rudivirus entry, J. Virol., 88, 10264-10268.

91. Asheshov, I. N., Strelitz, F., and Hall, E. A. (1949) Antibiotics active against bacterial viruses, Br. J. Exp. Pathol., 30, 175.

92. Cohen, S. S. (1949) Growth requirements of bacterial viruses, Bacteriol. Rev., 13, 1.

93. Putnam, F. W. (1953) Bacteriophages: nature and reproduction, in Advances in Protein Chemistry, Elsevier, Vol. 8, pp. 175-284.

94. Neter, E. (1942) Effects of tyrothricin and actinomycin a upon bacteriophage and bacterial toxins and toxin-like substances, J. Bacteriol., 43.

95. Jones, D. (1945) The effect of antibiotic substances upon bacteriophage, J. Bacteriol., 50, 341.

96. Knezevic, P., and Sabo, V. A. (2019) Combining bacteriophages with other antibacterial agents to combat bacteria, in Phage Therapy: A Practical Approach, Springer, pp. 257-293.

97. Morita, J., Tanaka, A., Komano, T., and Oki, T. (1979) Inactivation of phage ϕ X174 by anthracycline antibiotics, aclacinomycin A, doxorubicin and daunorubicin, Agric. Biol. Chem., 43, 2629-2631.

98. Duan, Z. (2016) Identification and Characterization of Novel Anti-Phage Compounds Using a High Throughput Approach, Master Thesis, University of Toronto.

99. Rivera-Serrano, E. E., Gizzi, A. S., Arnold, J. J., Grove, T.L., Almo, S. C., and Cameron, C. E. (2020) Viperin reveals its true function, Annu. Rev. Virol., 7, 421-446.

100. Gizzi, A. S., Grove, T. L., Arnold, J. J., Jose, J., Jangra, R. K., et al. (2018) A naturally occurring antiviral ribonucleotide encoded by the human genome, Nature, 558, 610-614.

101. Fenwick, M. K., Li, Y., Cresswell, P., Modis, Y., and Ealick, S. E. (2017) Structural studies of viperin, an antiviral radical SAM enzyme, Proc. Natl. Acad. Sci. USA, 114, 6806-6811.

102. Bernheim, A., Millman, A., Ofir, G., Meitav, G., Avraham, C., et al. (2021) Prokaryotic viperins produce diverse antiviral molecules, Nature, 589, 120-124.

103. Ng, W.-L., and Bassler, B. L. (2009) Bacterial quorum-sensing network architectures, Annu. Rev. Genet., 43, 197-222.

104. Moreau, P., Diggle, S. P., and Friman, V. (2017) Bacterial cell-to-cell signaling promotes the evolution of resistance to parasitic bacteriophages, Ecol. Evol., 7, 1936-1941.

105. Srivastava, D., and Waters, C. M. (2012) A tangled web: regulatory connections between quorum sensing and cyclic di-GMP, J. Bacteriol., 194, 4485-4493.

106. Høyland-Kroghsbo, N. M., Mærkedahl, R. B., and Svenningsen, S. Lo (2013) A quorum-sensing-induced bacteriophage defense mechanism, MBio, 4, e00362-12.

107. Tan, D., Svenningsen, S. Lo, and Middelboe, M. (2015) Quorum sensing determines the choice of antiphage defense strategy in Vibrio anguillarum, MBio, 6, 1-10.

108. Castillo, D., Rørbo, N., Jørgensen, J., Lange, J., Tan, D., et al. (2019) Phage defense mechanisms and their genomic and phenotypic implications in the fish pathogen Vibrio anguillarum, FEMS Microbiol. Ecol., 95, fiz004.

109. Patterson, A. G., Jackson, S. A., Taylor, C., Evans, G. B., Salmond, G. P. C., et al. (2016) Quorum sensing controls adaptive immunity through the regulation of multiple CRISPR-Cas systems, Mol. Cell, 64, 1102-1108.

110. Høyland-Kroghsbo, N. M., Paczkowski, J., Mukherjee, S., Broniewski, J., Westra, E., et al. (2017) Quorum sensing controls the Pseudomonas aeruginosa CRISPR-Cas adaptive immune system, Proc. Natl. Acad. Sci. USA, 114, 131-135.

111. Silpe, J. E., and Bassler, B. L. (2019) A host-produced quorum-sensing autoinducer controls a phage lysis-lysogeny decision, Cell, 176, 268-280.

112. Erez, Z., Steinberger-Levy, I., Shamir, M., Doron, S., Stokar-Avihail, A., et al. (2017) Communication between viruses guides lysis-lysogeny decisions, Nature, 541, 488-493.

113. Stokar-Avihail, A., Tal, N., Erez, Z., Lopatina, A., and Sorek, R. (2019) Widespread utilization of peptide communication in phages infecting soil and pathogenic bacteria, Cell Host Microbe, 25, 746-755.

114. Bernard, C., Li, Y., Lopez, P., and Bapteste, E. (2020) Beyond arbitrium: identification of a second communication system in Bacillus phage phi3T that may regulate host defense mechanisms, ISME J., 15, 545-549, doi: 10.1038/s41396-020-00795-9.

115. Grayson, P., and Molineux, I. J. (2007) Is phage DNA ‘injected’into cells – biologists and physicists can agree, Curr. Opin. Microbiol., 10, 401-409.

116. Labrie, S. J., Samson, J. E., and Moineau, S. (2010) Bacteriophage resistance mechanisms, Nat. Rev. Microbiol., 8, 317-327.

117. Abedon, S. T. (2015) Bacteriophage secondary infection, Virol. Sin., 30, 3-10.

118. Bebeacua, C., Lorenzo Fajardo, J. C., Blangy, S., Spinelli, S., Bollmann, S., et al. (2013) X-ray structure of a superinfection exclusion lipoprotein from phage TP-J34 and identification of the tape measure protein as its target, Mol. Microbiol., 89, 152-65.

119. Ali, Y., Koberg, S., Heßner, S., Sun, X., Rabe, B., et al. (2014) Temperate Streptococcus thermophilus phages expressing superinfection exclusion proteins of the Ltp type, Front. Microbiol., 5, 98.

120. Cumby, N., Edwards, A. M., Davidson, A. R., and Maxwell, K. L. (2012) The bacteriophage HK97 gp15 moron element encodes a novel superinfection exclusion protein, J. Bacteriol., 194, 5012-5019.

121. Cumby, N., Reimer, K., Mengin-Lecreulx, D., Davidson, A. R., and Maxwell, K. L. (2015) The phage tail tape measure protein, an inner membrane protein and a periplasmic chaperone play connected roles in the genome injection process of E. coli phage HK 97, Mol. Microbiol., 96, 437-447.

122. Lu, M. J., and Henning, U. (1994) Superinfection exclusion by T-even-type coliphages, Trends Microbiol., 2, 137-9.

123. Lu, M. J., and Henning, U. (1989) The immunity (imm) gene of Escherichia coli bacteriophage T4, J. Virol., 63, 3472-3478.

124. Ko, C., and Hatfull, G. F. (2018) Mycobacteriophage Fruitloop gp52 inactivates Wag31 (DivIVA) to prevent heterotypic superinfection, Mol. Microbiol., 108, 443-460.

125. Mahony, J., McGrath, S., Fitzgerald, G. F., and van Sinderen, D. (2008) Identification and characterization of lactococcal-prophage-carried superinfection exclusion genes, Appl. Environ. Microbiol., 74, 6206-6215.

126. Hofer, B., Ruge, M., and Dreiseikelmann, B. (1995) The superinfection exclusion gene (sieA) of bacteriophage P22: identification and overexpression of the gene and localization of the gene product, J. Bacteriol., 177, 3080-3086.

127. Nesper, J., Blaß, J., Fountoulakis, M., and Reidl, J. (1999) Characterization of the major control region of Vibrio cholerae bacteriophage K139: immunity, exclusion, and integration, J. Bacteriol., 181, 2902-2913.

128. Kliem, M., and Dreiseikelmann, B. (1989) The superimmunity gene sim of bacteriophage P1 causes superinfection exclusion, Virology, 171, 350-355.

129. Carballo-Ontiveros, M. A., Cazares, A., Vinuesa, P., Kameyama, L., and Guarneros, G. (2020) The concerted action of two B3-like prophage genes exclude superinfecting bacteriophages by blocking DNA entry into Pseudomonas aeruginosa, J. Virol., 94, e00953-20, doi: 10.1128/JVI.00953-20.

130. Domingo-Calap, P., Mora-Quilis, L., and Sanjuán, R. (2020) Social bacteriophages, Microorganisms, 8, 1-10.

131. Ragunathan, P. T., and Vanderpool, C. K. (2019) Cryptic-prophage-encoded small protein DicB protects Escherichia coli from phage infection by inhibiting inner membrane receptor proteins, J. Bacteriol., 201, e00475-19.

132. Dillingham, M. S., and Kowalczykowski, S. C. (2008) RecBCD enzyme and the repair of double-stranded DNA breaks, Microbiol. Mol. Biol. Rev., 72, 642-671.

133. Cheng, K., Wilkinson, M., Chaban, Y., and Wigley, D. B. (2020) A conformational switch in response to Chi converts RecBCD from phage destruction to DNA repair, Nat. Struct. Mol. Biol., 27, 71-77.

134. Raleigh, E. A., and Brooks, J. E. (1998) Restriction modification systems: where they are and what they do, in Bacterial Genomes, Springer, doi: 10.1007/978-1-4615-6369-3_8.

135. Loenen, W. A. M., Dryden, D. T. F., Raleigh, E. A., Wilson, G. G., and Murray, N. E. (2014) Highlights of the DNA cutters: a short history of the restriction enzymes, Nucleic Acids Res., 42, 3-19.

136. Bertani, G., and Weigle, J. J. (1953) Host controlled variation in bacterial viruses, J. Bacteriol., 65, 113.

137. Luria, S. E. (1953) Host-induced modifications of viruses, in Cold Spring Harbor Symposia on Quantitative Biology, Cold Spring Harbor Laboratory Press, Vol. 18, pp. 237-244.

138. Berg, P., and Mertz, J. E. (2010) Personal reflections on the origins and emergence of recombinant DNA technology, Genetics, 184, 9-17.

139. Roberts, R. J., Belfort, M., Bestor, T., Bhagwat, A. S., Bickle, T. A., et al. (2003) A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes, Nucleic Acids Res., 31, 1805-12.

140. Bower, E. K. M., Cooper, L. P., Roberts, G. A., White, J. H., Luyten, Y., et al. (2018) A model for the evolution of prokaryotic DNA restriction–modification systems based upon the structural malleability of Type I restriction–modification enzymes, Nucleic Acids Res., 46, 9067-9080.

141. Pingoud, A., Fuxreiter, M., Pingoud, V., and Wende, W. (2005) Type II restriction endonucleases: structure and mechanism, Cell. Mol. Life Sci., 62, 685.

142. Pingoud, A., Wilson, G. G., and Wende, W. (2014) Type II restriction endonucleases – a historical perspective and more, Nucleic Acids Res., 42, 7489-7527.

143. Nelson, M., Raschke, E., and McClelland, M. (1993) Effect of site-specific methylation on restriction endonucleases and DNA modification methyltransferases, Nucleic Acids Res., 21, 3139.

144. Morgan, R. D., Bhatia, T. K., Lovasco, L., and Davis, T. B. (2008) MmeI: a minimal Type II restriction–modification system that only modifies one DNA strand for host protection, Nucleic Acids Res., 36, 6558-6570.

145. Janulaitis, A., Petrusyte, M., Maneliene, Z., Klimasauskas, S., and Butkus, V. (1992) Purification and properties of the Eco57l restriction endonuclease and methylas – prototypes of a new class (type IV), Nucleic Acids Res., 20, 6043-6049.

146. Sorokin, V., Severinov, K., and Gelfand, M. S. (2009) Systematic prediction of control proteins and their DNA binding sites, Nucleic Acids Res., 37, 441-451.

147. Klimuk, E., Bogdanova, E., Nagornykh, M., Rodic, A., Djordjevic, M., et al. (2018) Controller protein of restriction–modification system Kpn2I affects transcription of its gene by acting as a transcription elongation roadblock, Nucleic Acids Res., 46, 10810-10826.

148. Zakharova, M., Minakhin, L., Solonin, A., and Severinov, K. (2004) Regulation of RNA polymerase promoter selectivity by covalent modification of DNA, J. Mol. Biol., 335, 103-111.

149. Murray, N. E. (2000) Type I restriction systems: sophisticated molecular machines (a legacy of Bertani and Weigle), Microbiol. Mol. Biol. Rev., 64, 412-434.

150. Loenen, W. A. M., Dryden, D. T. F., Raleigh, E. A., and Wilson, G. G. (2014) Type I restriction enzymes and their relatives, Nucleic Acids Res., 42, 20-44.

151. Gao, Y., Cao, D., Zhu, J., Feng, H., Luo, X., et al. (2020) Structural insights into assembly, operation and inhibition of a type I restriction–modification system, Nat. Microbiol., 5, 1107-1118.

152. Neaves, K. J., Cooper, L. P., White, J. H., Carnally, S. M., Dryden, D. T. F., et al. (2009) Atomic force microscopy of the EcoKI Type I DNA restriction enzyme bound to DNA shows enzyme dimerization and DNA looping, Nucleic Acids Res., 37, 2053-2063.

153. Bianco, P. R., and Hurley, E. M. (2005) The type I restriction endonuclease EcoR124I, couples ATP hydrolysis to bidirectional DNA translocation, J. Mol. Biol., 352, 837-859.

154. Janscak, P., MacWilliams, M. P., Sandmeier, U., Nagaraja, V., and Bickle, T. A. (1999) DNA translocation blockage, a general mechanism of cleavage site selection by type I restriction enzymes, EMBO J., 18, 2638-2647.

155. Studier, F. W., and Bandyopadhyay, P. K. (1988) Model for how type I restriction enzymes select cleavage sites in DNA, Proc. Natl. Acad. Sci. USA, 85, 4677-4681.

156. Smith, R. M., Diffin, F. M., Savery, N. J., Josephsen, J., and Szczelkun, M. D. (2009) DNA cleavage and methylation specificity of the single polypeptide restriction–modification enzyme LlaGI, Nucleic Acids Res., 37, 7206-7218.

157. Chand, M. K., Carle, V., Anuvind, K. G., and Saikrishnan, K. (2020) DNA-mediated coupling of ATPase, translocase and nuclease activities of a Type ISP restriction–modification enzyme, Nucleic Acids Res., 48, 2594-2603.

158. Makovets, S., Titheradge, A. J. B., and Murray, N. E. (1998) ClpX and ClpP are essential for the efficient acquisition of genes specifying type IA and IB restriction systems, Mol. Microbiol., 28, 25-35.

159. Simons, M., Diffin, F. M., and Szczelkun, M. D. (2014) ClpXP protease targets long-lived DNA translocation states of a helicase-like motor to cause restriction alleviation, Nucleic Acids Res., 42, 12082-12091.

160. Dybvig, K., Sitaraman, R., and French, C. T. (1998) A family of phase-variable restriction enzymes with differing specificities generated by high-frequency gene rearrangements, Proc. Natl. Acad. Sci. USA, 95, 13923-13928.

161. Rao, D. N., Dryden, D. T. F., and Bheemanaik, S. (2014) Type III restriction–modification enzymes: a historical perspective, Nucleic Acids Res., 42, 45-55.

162. Butterer, A., Pernstich, C., Smith, R. M., Sobott, F., Szczelkun, M. D., and Toth, J. (2014) Type III restriction endonucleases are heterotrimeric: comprising one helicase-nuclease subunit and a dimeric methyltransferase that binds only one specific DNA, Nucleic Acids Res., 42, 5139-5150.

163. Gupta, Y. K., Chan, S.-H., Xu, S., and Aggarwal, A. K. (2015) Structural basis of asymmetric DNA methylation and ATP-triggered long-range diffusion by EcoP15I, Nat. Commun., 6, 1-10.

164. Janscak, P., Sandmeier, U., Szczelkun, M. D., and Bickle, T. A. (2001) Subunit assembly and mode of DNA cleavage of the type III restriction endonucleases EcoP1I and EcoP15I, J. Mol. Biol., 306, 417-431.

165. Van Aelst, K., Tуth, J., Ramanathan, S. P., Schwarz, F. W., Seidel, R., and Szczelkun, M. D. (2010) Type III restriction enzymes cleave DNA by long-range interaction between sites in both head-to-head and tail-to-tail inverted repeat, Proc. Natl. Acad. Sci., 107, 9123-9128.

166. Schwarz, F. W., Tóth, J., van Aelst, K., Cui, G., Clausing, S., et al. (2013) The helicase-like domains of type III restriction enzymes trigger long-range diffusion along DNA, Science, 340, 353-356.

167. Ahmad, I., Kulkarni, M., Gopinath, A., and Saikrishnan, K. (2018) Single-site DNA cleavage by Type III restriction endonuclease requires a site-bound enzyme and a trans-acting enzyme that are ATPase-activated, Nucleic Acids Res., 46, 6229-6237.

168. Srikhanta, Y. N., Fox, K. L., and Jennings, M. P. (2010) The phasevarion: phase variation of type III DNA methyltransferases controls coordinated switching in multiple genes, Nat. Rev. Microbiol., 8, 196-206.

169. Weigele, P., and Raleigh, E. A. (2016) Biosynthesis and function of modified bases in bacteria and their viruses, Chem. Rev., 116, 12655-12687.

170. Tock, M. R., and Dryden, D. T. (2005) The biology of restriction and anti-restriction, Curr. Opin. Microbiol., 8, 466-472.

171. Loenen, W. A. M., and Raleigh, E. A. (2014) The other face of restriction: modification-dependent enzymes, Nucleic Acids Res., 42, 56-69.

172. Czapinska, H., Kowalska, M., Zagorskaitė, E., Manakova, E., Slyvka, A., et al. (2018) Activity and structure of EcoKMcrA, Nucleic Acids Res., 46, 9829-9841.

173. Siwek, W., Czapinska, H., Bochtler, M., Bujnicki, J. M., and Skowronek, K. (2012) Crystal structure and mechanism of action of the N6-methyladenine-dependent type IIM restriction endonuclease R. DpnI, Nucleic Acids Res., 40, 7563-7572.

174. Liu, G., Ou, H.-Y., Wang, T., Li, L., Tan, H., et al. (2010) Cleavage of phosphorothioated DNA and methylated DNA by the type IV restriction endonuclease ScoMcrA, PLoS Genet., 6, e1001253.

175. Sutherland, E., Coe, L., and Raleigh, E. A. (1992) McrBC: a multisubunit GTP-dependent restriction endonuclease, J. Mol. Biol., 225, 327-348.

176. Xu, S., Corvaglia, A. R., Chan, S.-H., Zheng, Y., and Linder, P. (2011) A type IV modification-dependent restriction enzyme SauUSI from Staphylococcus aureus subsp. aureus USA300, Nucleic Acids Res., 39, 5597-5610.

177. Vasu, K., and Nagaraja, V. (2013) Diverse functions of restriction–modification systems in addition to cellular defense, Microbiol. Mol. Biol. Rev., 77, 53-72.

178. Murphy, J., Mahony, J., Ainsworth, S., Nauta, A., and van Sinderen, D. (2013) Bacteriophage orphan DNA methyltransferases: insights from their bacterial origin, function, and occurrence, Appl. Environ. Microbiol., 79, 7547-7555.

179. Adhikari, S., and Curtis, P. D. (2016) DNA methyltransferases and epigenetic regulation in bacteria, FEMS Microbiol. Rev., 40, 575-591.

180. Kobayashi, I. (2001) Behavior of restriction–modification systems as selfish mobile elements and their impact on genome evolution, Nucleic Acids Res., 29, 3742-3756.

181. Ershova, A. S., Rusinov, I. S., Spirin, S. A., Karyagina, A. S., and Alexeevski, A. V. (2015) Role of restriction–modification systems in prokaryotic evolution and ecology, Biochemistry (Moscow), 80, 1373-1386.

182. Seib, K. L., Srikhanta, Y. N., Atack, J. M., and Jennings, M. P. (2020) Epigenetic regulation of virulence and immunoevasion by phase-variable restriction–modification systems in bacterial pathogens, Annu. Rev. Microbiol., 74, 655-671.

183. Dimitriu, T., Szczelkun, M. D., and Westra, E. R. (2020) Evolutionary ecology and interplay of prokaryotic innate and adaptive immune systems, Curr. Biol., 30, R1189-R1202.

184. Lomovskaia, N. D., Mkrtumian, N. M., and Gostimskaya, N. L. (1970) Isolation and characterization of the actinophage of Streptomyces coelicolor, Genetica, 6, 135.

185. Chinenova, T. A., Mkrtumian, N. M., and Lomovskaia, N. D. (1982) Genetic characteristics of a new phage resistance trait in Streptomyces coelicolor A3(2), Genetika, 18, 1945-1952.

186. Chater, K. F. (1986) Streptomyces phages and their applications to Streptomyces genetics, in The Bacteria, Academic Press Orlando, vol. 9, pp. 119-158.

187. Bedford, D. J., Laity, C., and Buttner, M. J. (1995) Two genes involved in the phase-variable phi C31 resistance mechanism of Streptomyces coelicolor A3(2), J. Bacteriol., 177, 4681-9.

188. Laity, C., Chater, K. F., Lewis, C. G., and Buttner, M. J. (1993) Genetic analysis of the phi C31-specific phage growth limitation (Pgl) system of Streptomyces coelicolor A3(2), Mol. Microbiol., 7, 329-36.

189. Sumby, P., and Smith, M. C. M. (2002) Genetics of the phage growth limitation (Pgl) system of Streptomyces coelicolor A3(2), Mol. Microbiol., 44, 489-500.

190. Hoskisson, P. A., Sumby, P., and Smith, M. C. M. (2015) The phage growth limitation system in Streptomyces coelicolor A(3)2 is a toxin/antitoxin system, comprising enzymes with DNA methyltransferase, protein kinase and ATPase activity, Virology, 477, 100-109.

191. Goldfarb, T., Sberro, H., Weinstock, E., Cohen, O., Doron, S., et al. (2015) BREX is a novel phage resistance system widespread in microbial genomes, EMBO J., 34, 169-183.

192. Pu, T., Mei, Z., Zhang, W., Liang, W., Zhou, X., et al. (2020) An in vitro DNA phosphorothioate modification reaction, Mol. Microbiol., 113, 452-463.

193. Gordeeva, J., Morozova, N., Sierro, N., Isaev, A., Sinkunas, T., et al. (2019) BREX system of Escherichia coli distinguishes self from non-self by methylation of a specific DNA site, Nucleic Acids Res., 47, 253-265.

194. LeGault, K., Hays, S. G., Angermeyer, A., McKitterick, A. C., Johura, F., et al. (2020) Temporal shifts in antibiotic resistance elements govern virus-pathogen conflicts, bioRxiv, doi: 10.1101/2020.12.16.423150.

195. Hui, W., Zhang, W., Kwok, L.-Y., Zhang, H., Kong, J., and Sun, T. (2019) Identification and functional analysis of the pglX gene of Lactobacillus casei Zhang bacteriophage exclusive (BREX) system, Appl. Environ. Microbiol., AEM-01001.

196. Atanasiu, C., Su, T. J., Sturrock, S. S., and Dryden, D. T. F. (2002) Interaction of the ocr gene 0.3 protein of bacteriophage T7 with Eco KI restriction/modification enzyme, Nucleic Acids Res., 30, 3936-3944.

197. Bandyopadhyay, P. K., Studier, F. W., Hamilton, D. L., and Yuan, R. (1985) Inhibition of the type I restriction–modification enzymes EcoB and EcoK by the gene 0.3 protein of bacteriophage T7, J. Mol. Biol., 182, 567-578.

198. Ofir, G., Melamed, S., Sberro, H., Mukamel, Z., Silverman, S., et al. (2018) DISARM is a widespread bacterial defence system with broad anti-phage activities, Nat. Microbiol., 3, 90-98.

199. Mahankali, M., Alter, G., and Gomez-Cambronero, J. (2015) Mechanism of enzymatic reaction and protein-protein interactions of PLD from a 3D structural model, Cell. Signal., 27, 69-81.

200. Thiaville, J. J., Kellner, S. M., Yuan, Y., Hutinet, G., Thiaville, P. C., et al. (2016) Novel genomic island modifies DNA with 7-deazaguanine derivatives, Proc. Natl. Acad. Sci. USA, 113, E1452-E1459.

201. Iyer, L. M., Zhang, D., Maxwell Burroughs, A., and Aravind, L. (2013) Computational identification of novel biochemical systems involved in oxidation, glycosylation and other complex modifications of bases in DNA, Nucleic Acids Res., 41, 7635-7655.

202. Hutinet, G., Kot, W., Cui, L., Hillebrand, R., Balamkundu, S., et al. (2019) 7-Deazaguanine modifications protect phage DNA from host restriction systems, Nat. Commun., 10, 1-12.

203. Kot, W., Olsen, N. S., Nielsen, T. K., Hutinet, G., de Crécy-Lagard, V., et al. (2020) Detection of preQ0 deazaguanine modifications in bacteriophage CAjan DNA using Nanopore sequencing reveals same hypermodification at two distinct DNA motifs, Nucleic Acids Res., 48, 10383-10396.

204. Wang, L., Jiang, S., Deng, Z., Dedon, P. C., and Chen, S. (2019) DNA phosphorothioate modification – a new multi-functional epigenetic system in bacteria, FEMS Microbiol. Rev., 43, 109-122.

205. Xiong, L., Liu, S., Chen, S., Xiao, Y., Zhu, B., et al. (2019) A new type of DNA phosphorothioation-based antiviral system in archaea, Nat. Commun., 10, 1-11.

206. Xiong, X., Wu, G., Wei, Y., Liu, L., Zhang, Y., et al. (2020) SspABCD-SspE is a phosphorothioation-sensing bacterial defence system with broad anti-phage activities, Nat. Microbiol., 5, 917-928.

207. Zhou, X., He, X., Liang, J., Li, A., Xu, T., et al. (2005) A novel DNA modification by sulphur, Mol. Microbiol., 57, 1428-1438.

208. Wang, L., Chen, S., Xu, T., Taghizadeh, K., Wishnok, J. S., et al. (2007) Phosphorothioation of DNA in bacteria by dnd genes, Nat. Chem. Biol., 3, 709-710.

209. He, W., Huang, T., Tang, Y., Liu, Y., Wu, X., et al. (2015) Regulation of DNA phosphorothioate modification in Salmonella enterica by DndB, Sci. Rep., 5, 12368.

210. You, D., Wang, L., Yao, F., Zhou, X., and Deng, Z. (2007) A Novel DNA Modification by sulfur: DndA is a NifS-like cysteine desulfurase capable of assembling DndC as an iron-sulfur cluster protein in Streptomyces lividans, Biochemistry, 46, 6126-6133.

211. Yao, F., Xu, T., Zhou, X., Deng, Z., and You, D. (2009) Functional analysis of spfD gene involved in DNA phosphorothioation in Pseudomonas fluorescens Pf0-1, FEBS Lett., 583, 729-733.

212. Wu, Y., Tang, Y., Dong, X., Zheng, Y. Y., Haruehanroengra, P., et al. (2020) RNA phosphorothioate modification in prokaryotes and eukaryotes, ACS Chem. Biol., 15, 1301-1305.

213. Tong, T., Chen, S., Wang, L., Tang, Y., Ryu, J. Y., et al. (2018) Occurrence, evolution, and functions of DNA phosphorothioate epigenetics in bacteria, Proc. Natl. Acad. Sci., 115, E2988-E2996.

214. Xu, T., Yao, F., Zhou, X., Deng, Z., and You, D. (2010) A novel host-specific restriction system associated with DNA backbone S-modification in Salmonella, Nucleic Acids Res., 38, 7133-41.

215. Cao, B., Cheng, Q., Gu, C., Yao, F., DeMott, M. S., et al. (2014) Pathological phenotypes and in vivo DNA cleavage by unrestrained activity of a phosphorothioate-based restriction system in Salmonella, Mol. Microbiol., 93, 776-785.

216. Gan, R., Wu, X., He, W., Liu, Z., Wu, S., et al. (2014) DNA phosphorothioate modifications influence the global transcriptional response and protect DNA from double-stranded breaks, Sci. Rep., 4, 6642.

217. Cao, B., Chen, C., DeMott, M. S., Cheng, Q., Clark, T. A., et al. (2014) Genomic mapping of phosphorothioates reveals partial modification of short consensus sequences, Nat. Commun., 5, 1-13.

218. Li, J., Chen, Y., Zheng, T., Kong, L., Zhu, S., et al. (2019) Quantitative mapping of DNA phosphorothioatome reveals phosphorothioate heterogeneity of low modification frequency, PLoS Genet., 15, e1008026.

219. Wu, X., Cao, B., Aquino, P., Chiu, T.-P., Chen, C., et al. (2020) Epigenetic competition reveals density-dependent regulation and target site plasticity of phosphorothioate epigenetics in bacteria, Proc. Natl. Acad. Sci. USA, 117, 14322-14330, doi: 10.1073/pnas.2002933117.