БИОХИМИЯ, 2021, том 86, вып. 1, с. 100–108

УДК 577.152.193

Загадка 2-Cys-пероксиредоксинов: какова их роль в клетке?

Обзор

© 2021 А.В. Пескин *, К.С. Уинтерборн

Centre for Free Radical Research, University of Otago Christchurch,, 8140 Christchurch, New Zealand; E-mail: alexander.peskin@otago.ac.nz

Поступила в редакцию 02.09.2020
После доработки 09.10.2020
Принята к публикации 09.10.2020

DOI: 10.31857/S0320972521010085

КЛЮЧЕВЫЕ СЛОВА: пероксиредоксин, тиолы, редокс, сигнальные пути, пероксид.

Аннотация

2-Cys пероксиредоксины являются широко распространенными белками, содержащими активную тиольную группу, которые эффективно вступают в реакции с различными пероксидами. В отличие от других ферментов, их исключительно высокая реакционная способность не зависит от кофакторов. Механизм окисления и восстановления пероксиредоксинов представляет этим белкам хорошую возможность действовать как антиоксиданты, а кроме того, участвовать в редокс-путях передачи сигнала. Понимание тонкостей функционирования пероксиредоксинов необходимо для трансляционной медицины.

Сноски

* Адресат для корреспонденции.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических норм

Настоящая статья не содержит описания выполненных авторами исследований с участием людей или использованием животных в качестве объектов.

Список литературы

1. Kim, K. H., Lee, K. Y., Kim, I. H., Rhee, S. G., and Stadtman, E. R. (1988) The Isolation and purification of a specific protector protein which inhibits enzyme inactivation by a thiol/Fe(III)/O2 mixed-function oxidation system, J. Biol. Chem., 263, 4704-4711.

2. Kim, I. H., Kim, K., and Rhee, S. G. (1989) Induction of an antioxidant protein of Saccharomyces cerevisiae by O2, Fe3+, or 2-mercaptoethanol, Proc. Natl. Acad. Sci. USA, 86, 6018-6022.

3. Chae, H. Z., Kim, I. H., Kim, K., and Rhee, S. G. (1993) Cloning, sequencing, and mutation of thiol-specific antioxidant gene of Saccharomyces cerevisiae, J. Biol. Chem., 268, 16815-16821.

4. Chae, H. Z., Robison, K., Poole, L. B., Church, G., Storz, G., and Rhee, S. G. (1994) Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes, Proc. Natl. Acad. Sci. USA, 91, 7017-7021.

5. Jacobson, F. S., Morgan, R. W., Christman, M. F., and Ames, B. N. (1989) An alkyl hydroperoxide reductase from Salmonella typhimurium involved in the defense of DNA against oxidative damage. Purification and properties, J. Biol. Chem., 264, 1488-1496.

6. Tartaglia, L. A., Storz, G., Brodsky, M. H., Lai, A., and Ames, B. N. (1990) Alkylhydroperoxide reductase from Salmonella typhimurium. Sequence and homology to thioredoxin reductase and other flavoprotein disulfideoxidoreductases, J. Biol. Chem., 265, 10535-10540.

7. Chae, H. Z., Chung, S. J., and Rhee, S. G. (1994) Thioredoxin-dependent peroxide reductase from yeast, J. Biol. Chem., 269, 27670-27678.

8. Poole, L. B., and Nelson, K. J. (2016) Distribution and features of the six classes of peroxiredoxins, Mol. Cells, 39, 53-59.

9. Knoops, B., Loumaye, E., and Van Der Eecken, V. (2007) Evolution of the peroxiredoxins, in Peroxiredoxin systems. Subcellular biochemistry, vol 44, (Flohé, L., and Harris, J. R., eds.) Springer, Dordrecht.

10. Harris, J. R. (1969) Some negative staining features of a protein from erythrocyte ghosts, J. Mol. Biol., 46, 329-335.

11. Wood, Z. A., Schröder, E., Harris, J. R., and Poole, L. B. (2003) Structure, mechanism and regulation of peroxiredoxins, Trends Biochem. Sci., 28, 32-40.

12. Hall, A., Parsonage, D., Poole, L. B., and Karplus, P. A. (2010) Structural evidence that peroxiredoxin catalytic power is based on transition state stabilization, J. Mol. Biol., 402, 194-209.

13. Pedre, B., van Bergen, L. V., Pallo, A., Rosado, L. A., Dufe, V. T., et al. (2016) The active site architecture in peroxiredoxins: a case study on Mycobacterium tuberculosis AhpE, Chem. Commun., 52, 10293-10296.

14. Netto, L. E. S., Chae, H. Z., Kang, S.-W., Rhee, S. G., and Stadtman, E. R. (1996) Removal of hydrogen peroxide by thiol-specific antioxidant enzyme (Tsa) is involved with its antioxidant properties: Tsa possesses thiol peroxidase activity, J. Biol. Chem., 271, 15315-15321.

15. Hofmann, B., Hecht, H.-J., and Flohe, L. (2002) Peroxiredoxins, Biol. Chem., 383, 347-364.

16. Dietz, K. J. (2003) Plant peroxiredoxins, Annu. Rev. Plant Biol., 54, 93-107.

17. Bryk, R., Griffin, P., and Nathan, C. (2000) Peroxynitrite reductase activity of bacterial peroxiredoxins, Nature, 407, 211-221.

18. Wong, C.-M., Zhou, Y., Ng, R. W. M., Kung, H.-F., and Jin, D.-Y. (2002) Cooperation of yeast peroxiredoxins Tsa1p and Tsa2p in the cellular defense against oxidative and nitrosative stress, J. Biol. Chem., 277, 5385-5394.

19. Ogusucu, R., Rettori, D., Munhoz, D. C., Netto, L. E., and Augusto, O. (2007) Reactions of yeast thioredoxin peroxidases I and II with hydrogen peroxide and peroxynitrite: rate constants by competitive kinetics, Free Radic. Biol. Med., 42, 326-334.

20. Manta, B., Hugo, M., Ortiz, C., Ferrer-Sueta, G., Trujillo, M., and Denicola, A. (2009) The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2, Arch. Biochem. Biophys., 484, 146-154.

21. De Armas, M. I., Esteves, R., Viera, N., Reyes, A. M., Mastrogiovanni, M., et al. (2019) Rapid peroxynitrite reduction by human peroxiredoxin 3: implications for the fate of oxidants in mitochondria, Free Radic. Biol. Med., 130, 369-378.

22. Peskin, A. V., Cox, A. G., Nagy, P., Morgan, P. E., Hampton, M. B., and Winterbourn, C. C. (2010) Rapid removal of amino acid, peptide and protein hydroperoxides by reaction with peroxiredoxins 2 and 3, Biochem. J., 432, 313-321.

23. Peskin, A. V., Pace, P. E., Behring, J. B., Paton, L. N., Soethoudt, M., Bachschmid, M. M., and Winterbourn, C. C. (2016) Glutathionylation of the active site cysteines of peroxiredoxin 2 and recycling by glutaredoxin, J. Biol. Chem., 291, 3053-3062.

24. Chang, T.-S., Jeong, W., Woo, H. A., Lee, S. M., Park, S., and Rhee, S. G. (2004) Characterization of mammalian sulfiredoxin and its reactivation ofhyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine, J. Biol. Chem., 279, 50994-51001.

25. Perkins, A., Poole, L. B., and Karplus, P. A. (2014) Tuning of peroxiredoxin catalysis for various physiological roles, Biochemistry, 53, 7693-7705.

26. Peskin, A. V., Dickerhof, N., Poynton, R. A., Paton, L. N., Pace, P. E., Hampton, M. B., and Winterbourn, C. C. (2013) Hyperoxidation of peroxiredoxins 2 and 3: rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine, J. Biol. Chem., 288, 14170-14177.

27. Peskin, A. V., Low, F. M., Paton, L. N., Maghzal, G. J., Hampton, M. B., and Winterbourn, C. C. (2007) The high reactivity of peroxiredoxin 2 with H2O2 is not reflected in its reaction with other oxidants and thiol reagents, J. Biol. Chem., 282, 11885-11892.

28. Winterbourn, C. C., and Peskin, A. V. (2016) Kinetic approaches to measuring peroxiredoxin reactivity, Mol. Cells, 39, 26-30.

29. Carvalho, L. A. C., Truzzi, D. R., Fallani, T. S., Alves, S. V., Toledo, J. C., et al. (2017) Urate hydroperoxide oxidizes human peroxiredoxin 1 and peroxiredoxin 2, J. Biol. Chem., 292, 8705-8715.

30. Winterbourn, C. C., and Metodiewa, D. (1999) Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide, Free Radic. Biol. Med., 27, 322-328.

31. Nelson, K. J., Parsonage, D., Hall, A., Karplus, P. A., and Poole, L. B. (2008) Cysteine pKa values for the bacterial peroxiredoxin AhpC, Biochemistry, 47, 12860-12868.

32. Winterbourn, C. C. (2008) Reconciling the chemistry and biology of reactive oxygen species, Nat. Chem. Biol., 4, 278-286.

33. Schröder, E., Littlechild, J. A., Lebedev, A. A., Errington, N., Vagin, A. A., and Isupov, M. N. (2000) Crystal structure of decameric 2-Cys peroxiredoxin from human erythrocytes at 1.7 Å resolution, Structure, 8, 605-615.

34. Hall, A., Nelson, K., Poole, L. B., and Karplus, P. A. (2011) Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins, Antioxid. Redox Signal., 15, 795-815.

35. Parsonage, D., Youngblood, D. S., Sarma, G. N., Wood, Z. A., Karplus, P. A., and Poole, L. B. (2005) Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin, Biochemistry, 44, 10583-10592.

36. Nagy, P., Karton, A., Betz, A., Peskin, A. V., Pace, P., et al. (2011) Model for the exceptional reactivity of peroxiredoxins 2 and 3 with hydrogen peroxide: a kinetic and computational study, J. Biol. Chem., 286, 18048-18055.

37. Yewdall, N. A., Peskin, A. V., Hampton, M. B., Goldstone, D. C., Pearce, F. G., and Gerrard, J. A. (2018) Quaternary structure influences the peroxidase activity of peroxiredoxin 3, Biochem. Biophys. Res. Commun., 497, 558-563.

38. Stacey, M. M., Peskin, A. V., Vissers, M. C., and Winterbourn, C. C. (2009) Chloramines and hypochlorous acid oxidize erythrocyte peroxiredoxin 2, Free Radic. Biol. Med., 47, 1468-1476.

39. Wood, Z. A., Poole, L. B., and Karplus, P. A (2003) Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling, Science, 300, 650-653.

40. Peskin, A. V., Meotti, F. C., de Souza, L. F., Anderson, R. F., Winterbourn, C. C., and Salvador, A. (2020) Intra-dimer cooperativity between the active site cysteines during the oxidation of peroxiredoxin 2, Free Radic. Biol. Med., 158, 115-125.

41. Bolduc, J. A., Nelson, K. J., Haynes, A. C., Lee, J., Reisz, J. A., et al. (2018) Novel hyperoxidation resistance motifs in 2-Cys peroxiredoxins, J. Biol. Chem., 293, 11901-11912.

42. Poynton, R. A., Peskin, A. V., Haynes, A. C., Lowther, W. T., Hampton, M. B., and Winterbourn, C. C. (2016) Kinetic analysis of structural influences on the susceptibility of peroxiredoxins 2 and 3 to hyperoxidation, Biochem. J., 473, 411-421.

43. Cheah, F. C., Peskin, A. V., Wong, F.-L., Ithnin, A., Othman, A., and Winterbourn, C. C. (2014) Increased basal oxidation of peroxiredoxin 2 and limited peroxiredoxin recycling in glucose-6-phosphate dehydrogenase-deficient erythrocytes from newborn infants, FASEB J., 28, 3205-3210.

44. Low, F. M., Hampton, M. B., Peskin, A. V., and Winterbourn, C. C. (2007) Peroxiredoxin 2 functions as a noncatalytic scavenger of low-level hydrogen peroxide in the erythrocyte, Blood, 109, 2611-2617.

45. Woo, H. A., Chae, H. Z., Hwang, S. C., Yang, K.-S., Kang, S. W., et al. (2003) Reversible oxidation of the catalytic site of cysteine of peroxiredoxins to cysteine sulfinic acid in mammalian cells, Science, 300, 653-656.

46. Biteau, B., Labarre, J., and Toledano, M. B. (2003) ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin, Nature, 425, 980-984.

47. Jönsson, T. J., Lynnette, C., Johnson, L. C., and Lowther, W. T. (2008) Structure of the sulphiredoxin–peroxiredoxin complex reveals an essential repair embrace, Nature, 451, 98-101.

48. Chae, H. Z., Kim, H. J., Kang, S. W., and Rhee, S. G. (1999) Characterization of three isoforms of mammalian peroxiredoxin that reduce peroxides in the presence of thioredoxin, Diabetes Res. Clin. Pract., 45, 101-112.

49. Veal, E. A., Underwood, Z. E., Tomalin, L. E., Morgan, B. A., and Pillay, C. S. (2018) Hyperoxidation of peroxiredoxins: gain or loss of function? Antioxid. Redox Signal., 28, 574-590.

50. Winterbourn, C. C., and Hampton, M. B. (2015) Signalling via a peroxiredoxin sensor, Nature Chem. Biol., 11, 5-6.

51. Cao, J., Schulte, J., Knight, A., Leslie, N. R., Zagozdzon, A., et al. (2009) Prdx1 inhibits tumorigenesis via regulating PTEN/AKT activity, EMBO J., 28, 1505-1517.

52. Jarvis, R. M., Hughes, S. M., and Ledgerwood, E. C. (2012) Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells, Free Radic. Biol. Med., 53, 1522-1530.

53. Sobotta, M. C., Liou, W., Stocker, S., Talwar, D., Oehler, M., et al. (2015) Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling, Nat. Chem. Biol., 11, 64-70.

54. Pace, P. E., Peskin, A. V., Konigstorfer, A., Jasoni, C. J., Winterbourn, C. C., and Hampton, M. B. (2018) Peroxiredoxin interaction with the cytoskeletal-regulatory protein CRMP2: investigation of a putative redox relay, Free Radic. Biol. Med., 129, 383-393.

55. Jang, H. H., Lee, K. O., Chi, Y. H., Jung, B. G., Park, S. K., et al. (2004) Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function, Cell, 117, 625-635.

56. Teixeira, F., Castro, H., Cruz, T., Tse, E., Koldewey, P., et al. (2015) Mitochondrial peroxiredoxin functions as crucial chaperone reservoir in Leishmania infantum, Proc. Natl. Acad. Sci. USA, 112, E616-E624.

57. Hanzén, S., Vielfort, K., Yang, J., Roger, F., Andersson, V., et al. (2016) Lifespan control by redox-dependent recruitment of chaperones to misfolded proteins, Cell, 166, 140-151.

58. Kisucka, J., Chauhan, A. K., Patten, I. S., Yesilaltay, A., Neumann, C., et al. (2008) Peroxiredoxin1 prevents excessive endothelial activation and early atherosclerosis, Circ. Res., 103, 598-605.

59. Radyuk, S. N., and Orr, W. C. (2018) The multifaceted impact of peroxiredoxins on aging and disease, Antioxid. Redox Signal., 29, 1293-1311.

60. Forshaw, T. E., Holmila, R., Nelson, K. J., Lewis, J. E., Kemp, M. L., et al. (2019) Peroxiredoxins in cancer and response to radiation therapies, Antioxidants, 8, 11.

61. Liu, C. X., Yin, Q. Q., Zhou, H. C., Wu, Y. L., Pu, J. X., et al. (2012) Adenanthin targets peroxiredoxin I and II to induce differentiation of leukemic cells, Nat. Chem. Biol., 8, 486-493.

62. Soethoudt, M., Peskin, A. V., Dickerhof, N., Paton, L. N., Pace, P. E., and Winterbourn, C. C. (2014) Interaction of adenanthin with glutathione and thiol enzymes: Selectivity for thioredoxin reductase and inhibition of peroxiredoxin recycling, Free Radic. Biol. Med., 77, 331-339.