БИОХИМИЯ, 2021, том 86, вып. 1, с. 89–99

УДК 577.152.123

Термодинамика феррильной формы Р-типа цитохром c-оксидазы быка

© 2021 Л. Микулова 1, И. Пекова 2, Д. Янкура 2, М. Ступак 3, М. Фабиан 1*

Center for Interdisciplinary Biosciences, Technology and Innovation Park, University of P. J. Šafárik, 04154 Košice, Slovak Republic; E-mail: marian.fabian@upjs.sk

Department of Biophysics, Faculty of Science, University of P. J. Šafárik, 04154 Košice, Slovak Republic

Department of Medical and Clinical Biochemistry, Faculty of Medicine, University of P. J. Šafárik, 04011 Košice, Slovak Republic

Поступила в редакцию 28.08.2020
После доработки 25.11.2020
Принята к публикации 25.11.2020

DOI: 10.31857/S0320972521010073

КЛЮЧЕВЫЕ СЛОВА: цитохром с-оксидаза, перекись водорода, феррильное состояние, калориметрия изотермического титрования.

Аннотация

Во время восстановления молекулы O2 до H2O наблюдаются несколько феррильных состояний каталитического центра гема a3-CuB цитохром c-оксидазы (CcO) дыхательной цепи. Одна из феррильных форм P-типа, PM, образуется в результате реакции двухэлектронного восстановленного CcO с O2. В этом состоянии железо гема a3 находится в феррильном состоянии. Также в каталитическом центре присутствует свободный радикал. Однако до сих пор экспериментально не установлена энергетика образования PM. В настоящей работе с помощью метода изотермической титрационной калориметрии и UV-Vis абсорбционной спектрофотометрии в оптическом диапазоне длин волн с примыкающей к нему ультрафиолетовой областью спектра было изучено образование состояния PM в реакции взаимодействия окисленной бычьей цитохром с-оксидазы (O) с одной молекулой H2O2. С помощью обоих методов были разделены две кинетические фазы, относящиеся к образованию PM, и его эндогенная конверсия обратно в состояние O. Величина ΔH всего процесса (–66 ккал/моль H2O2) превышала значение выделившегося тепла (–50,8 ккал/моль O2) в реакции восстановления O2 ферроцитохромом с (pH 8,25 °C). Интересно, что значение ΔH (–32 ккал/моль феррильного состояния), представляющее первую фазу, намного превышает энтальпию образования PM. Полученные данные показывают, что во время первой фазы радикал в состоянии PM фактически гасится и образуется спектрально аналогичная феррильная форма второго P-типа (PR). Кроме того, было показано, что вклад энтропии в изменения энергии Гиббса (ΔG = –46 ккал/моль O2) во время каталитического восстановления молекулы O2 ферроцитохромом c минимален (–0,7 кал/моль K).

Сноски

* Адресат для корреспонденции.

Финансирование

Настоящая работа была выполнена в рамках проекта «Открытое научное сообщество для проведения современных междисциплинарных исследований в медицине» («Open scientific community for modern interdisciplinary research in medicine (OPENMED)-ITMS2014+: 313011V455»), проводимого Operational Program Integrated Infrastructure и финансируемого ERDF и Грантовым Агентством Словакии (Slovak Grant Agency) (VEGA 1/0464/18).

Благодарности

Эта работа посвящается памяти А.А. Константинова, выдающегося ученого, вдохновляющего коллегу и дорогого друга.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов в финансовой или какой-либо иной сфере.

Соблюдение этических норм

В настоящей работе нет описания работ, выполненных авторами статьи и проведенных с участием людей или использованием в качестве объектов исследования лабораторных животных.

Список литературы

1. Pereira, M. M., Santana, M., and Teixeira, M. A (2001) Novel scenario for the evolution of haem-copper oxygen reductases, Biochim. Biophys. Acta Bioenerg., 1505, 185-208.

2. Sousa, F. L., Alves, R. J., Ribeiro, M. A., Pereira-Leal, J B., Teixeira, M., et al. (2012) The superfamily of heme–copper oxygen reductases: types and evolutionary considerations, Biochim. Biophys. Acta, 1817, 629-637.

3. Wikstrom, M. K. (1977) Proton pump coupled to cytochrome c oxidase in mitochondria, Nature, 266, 271-273.

4. Wikstrom, M., Krab, K., and Sharma, V. (2018) Oxygen activation and energy conservation by cytochrome c oxidase, Chem. Rev., 118, 2469-2490.

5. Kim, Y. C., Wikstrom, M., Hummer, G. (2007) Kinetic models of redox-coupled proton pumping, Proc. Natl. Acad. Sci. USA, 104, 2169-2174.

6. Rauhamaki, V., and Wikstrom, M. (2014) The causes of reduced proton-pumping efficiency in type B and C respiratory heme-copper oxidases, and in some mutated variants of type A, Biochim. Biophys. Acta Bioenerg., 1837, 999-1003.

7. Han, H., Hemp, J., Pace, L. A., Ouyang, H., Ganesan, K., et al. (2011) Adaptation of aerobic respiration to low O2 environments, Proc. Natl. Acad. Sci. USA, 108, 14109-14114.

8. Pan, L. P., Hibdon, S., Liu, R. Q., Durham, B., and Millett, F. (1993) Intracomplex electron transfer between ruthenium-cytochrome c derivatives and cytochrome c oxidase, Biochemistry, 32, 8492-8498.

9. Szundi, I., Cappuccio, J. A., Borovok, N., Kotlyar, A. B., and Einarsdottir, O. (2001) Photoinduced electron transfer in the cytochrome c/cytochrome c oxidase complex using thiouredopyrenetrisulfonate-labeled cytochrome c optical multichannel detection, Biochemistry, 40, 2186-2193.

10. Geren, L., Durham, B., and Millett, F. (2009) Use of ruthenium photoreduction techniques to study electron transfer in cytochrome oxidase, Method Enzymol., 456, 507-520.

11. Wikstrom, M. (2012) Active site intermediates in the reduction of O2 by cytochrome oxidase, and their derivatives, Biochim. Biophys. Acta, 1817, 468-475.

12. Konstantinov, A. A. (2012) Cytochrome c oxidase: Intermediates of the catalytic cycle and their energy-coupled interconversion, FEBS Lett., 586, 630-639.

13. Wikstrom, M. (1981) Energy-dependent reversal of the cytochrome oxidase reaction, Proc. Natl. Acad. Sci. USA, 78, 4051-4054.

14. Wikstrom, M., and Morgan, J. E. (1992) The dioxygen cycle. Spectral, kinetic, and thermodynamic characteristics of ferryl and peroxy intermediates observed by reversal of the cytochrome oxidase reaction, J. Biol. Chem., 267, 10266-10273.

15. Proshlyakov, D. A., Pressler, M. A., and Babcock, G. T. (1998) Dioxygen activation and bond cleavage by mixed-valence cytochrome c oxidase, Proc. Natl. Acad. Sci. USA, 95, 8020-8025.

16. Fabian, M., Wong, W. W., Gennis, R. B., and Palmer, G. (1999) Mass spectrometric determination of dioxygen bond splitting in the “peroxy” intermediate of cytochrome c oxidase, Proc. Natl. Acad. Sci. USA, 96, 13114-13117.

17. Pinakoulaki, E., Daskalakis, V., Ohta, T., Richter, O. M., Budiman, K., et al. (2013) The protein effect in the structure of two ferryl-oxo intermediates at the same oxidation level in the heme copper binuclear center of cytochrome c oxidase, J. Biol. Chem., 288, 20261-20266.

18. Proshlyakov, D. A., Pressler, M. A., DeMaso, C., Leykam, J. F., DeWitt, D. L., and Babcock, G. T. (2000) Oxygen activation and reduction in respiration: involvement of redox-active tyrosine 244, Science, 290, 1588-1591.

19. Gorbikova, E. A., Belevich, I., Wikstrom, M., and Verkhovsky, M. I. (2008) The proton donor for OO bond scission by cytochrome c oxidase, Proc. Natl. Acad. Sci. USA, 105, 10733-10737.

20. Morgan, J. E., Verkhovsky, M. I., and Wikstrom, M. (1996) Observation and assignment of peroxy and ferryl intermediates in the reduction of dioxygen to water by cytochrome c oxidase, Biochemistry, 35, 12235-12240.

21. Björck, M. L., and Brzezinski, P. (2018) Control of transmembrane charge transfer in cytochrome c oxidase by the membrane potential, Nat. Commun., 9, 1-8.

22. Einarsdóttir, O., Szundi, I., Van Eps, N., and Sucheta, A. (2002) PM and PR forms of cytochrome c oxidase have different spectral properties, J. Inorg. Bioch., 91, 87-93.

23. Belevich, I., Verkhovsky, M. I., and Wikstrom, M. (2006) Proton-coupled electron transfer drives the proton pump of cytochrome c oxidase, Nature, 440, 829-832.

24. Faxen, K., Gilderson, G., Ädelroth, P., and Brzezinski, P. A. (2005) Mechanistic principle for proton pumping by cytochrome c oxidase, Nature, 437, 286-289.

25. Bloch, D., Belevich, I., Jasaitis, A., Ribacka, C., Puustinen, A., Verkhovsky, M. I., and Wikstrom, M. (2004) The catalytic cycle of cytochrome c oxidase is not the sum of its two halves, Proc. Natl. Acad. Sci. U.S.A, 101, 529-533.

26. Verkhovsky, M. I., Jasaitis, A., Verkhovskaya, M. L., Morgan, J. E., and Wikstrom, M. (1999) Proton translocation by cytochrome c oxidase, Nature, 400, 480-483.

27. Szundi, I., Funatogawa, C., Soulimane, T., and Einarsdóttir, O. (2020) The reactions of O 2 and NO with mixed-valence ba3 cytochrome c oxidase from Thermus thermophilus, Biophys. J., 118, 386-395.

28. Siletsky, S. A., Belevich, I., Jasaitis, A., Konstantinov, A. A., Wikström, M., et al. (2007) Time-resolved single-turnover of ba3 oxidase from Thermus thermophilus, Biochim. Biophys. Acta, 1767, 1383-1392.

29. Smirnova, I. A., Zaslavsky, D., Fee, J. A., Gennis, R. B., and Brzezinski, P. (2008) Electron and proton transfer in the ba3 oxidase from Thermus thermophilus, J. Bioenerg. Biomem., 40, 281-287.

30. Poiana, F., von Ballmoos, C., Gonska, N., Blomberg, M. R. A., Ädelroth, P., and Brzezinski, P. (2017) Splitting of the O–O bond at the heme-copper catalytic site of respiratory oxidases, Sci. Adv., 3, e1700279.

31. Blomberg, M. R. A. (2020) The mechanism for oxygen reduction in the C family cbb3 cytochrome c oxidases – implications for the proton pumping stoichiometry, J. Inorg. Biochem., 203, 11086.

32. Paulus, A., Rossius, S. G. H., Dijk, M., and de Vries, S. (2012) Oxoferryl-porphyrin radical catalytic intermediate in cytochrome bd oxidases protects cells from formation of reactive oxygen species, J. Biol. Chem., 287, 8830-8838.

33. Borisov, V. B., Forte, E., Sarti, P., and Giuffrè, A. (2011) Catalytic intermediates of cytochrome bd terminal oxidase at steady-state: ferryl and oxy-ferrous species dominate, Biochim. Biophys. Acta, 1807, 503-509.

34. Borisov, V. B., and Siletsky, S. A. (2019) Features of organization and mechanism of catalysis of two families of terminal oxidases: heme-copper and bd-type, Biochemistry (Moscow), 84, 1390-1402.

35. Soulimane, T., and Buse, G. (1995) Integral cytochrome-c-oxidase – preparation and progress towards a 3-dimensional crystallization, Eur. J. Biochem., 227, 588-595.

36. Liao, G. L., and Palmer, G. (1996) The reduced minus oxidized difference spectra of cytochromes a and a(3), Biochim. Biophys. Acta Bioenerg., 1274, 109-111.

37. Vygodina, T. V., and Konstantinov, A. A. (1988) H2O2-induced conversion of cytochrome c oxidase peroxy complex to oxoferryl state, Ann. NY Acad. Sci., 550, 124-138.

38. Fabian, M., and Palmer, G. (1995) The interaction of cytochrome oxidase with hydrogen peroxide: the relationship of compounds P and F, Biochemistry, 34, 13802-13810.

39. Bergmayer, H. U., Gawehn, K., and Grassl, M. (1970) Methoden der Enzymatischen Analyze (Bergmayer, H. U., ed.), 1, 440.

40. Kopcova, K., Mikulova, L., Pechova, I., Sztachova, T., Cizmar, E., et al. (2020) Modulation of the electron-proton coupling at cytochrome a by the ligation of the oxidized catalytic center in bovine cytochrome c oxidase, Biochim. Biophys. Acta Bioenerg., 1861, 148237.

41. Morin, P. E., and Freire, E. (1991) Direct calorimetric analysis of the enzymatic activity of yeast cytochrome c oxidase, Biochemistry, 30, 8494-8500.

42. Junemann, S., Heathcote, P., and Rich, P. R. (2000) The reactions of hydrogen peroxide with bovine cytochrome c oxidase, Biochim. Biophys. Acta, 1456, 56-66.

43. Siletsky, S., Kaulen, A. D., and Konstantinov, A. A. (1999) Resolution of electrogenic steps coupled to conversion of cytochrome c oxidase from the peroxy to the ferryl-oxo state, Biochemistry, 38, 4853-4861.

44. Yu, M. A., Egawa, T., Shinzawa-Itoh, K., Yoshikawa, S., Guallar, V., et al. (2012) Two tyrosyl radicals stabilize high oxidation states in cytochrome c oxidase for efficient energy conservation and proton translocation, J. Am. Chem. Soc., 134, 4753-4761.

45. Shimada, A., Etoh, Y., Kitoh-Fujisawa, R., Sasaki, A., Shinzawa-Itoh, K., et al. (2020) X-ray structures of catalytic intermediates of cytochrome c oxidase provide insights into its O2 activation and unidirectional proton-pump mechanisms, J. Biol. Chem., 295, 5818-5833.

46. Kaila, V. R., Verkhovsky, M. I., and Wikstrom, M. (2010) Proton-coupled electron transfer in cytochrome oxidase, Chem. Rev., 110, 7062-7081.

47. Jancura, D., Stanicova, J., Palmer, G., and Fabin, M. (2014) How hydrogen peroxide is metabolized by oxidized cytochrome c oxidase, Biochemistry, 53, 3564-3575.

48. Chen, Y. R., Gunther, M. R., and Mason, R. P. (1999) An electron spin resonance spin-trapping investigation of the free radicals formed by the reaction of mitochondrial cytochrome c oxidase with H2O2, J. Biol. Chem., 274, 3308-3314.

49. Weng, L. C., and Baker, G. M. (1991) Reaction of hydrogen peroxide with the rapid form of resting cytochrome oxidase, Biochemistry, 30, 5727-5733.

50. Brittain, T., Little, R. H., Greenwood, C., and Watmough, N. J. (1996) The reaction of Escherichia coli cytochrome bo with H2O2: evidence for the formation of an oxyferryl species by two distinct routes, FEBS Lett., 399, 21-25.

51. Konstantinov, A. A., Capitanio, N., Vygodina, T. V., and Papa, S. (1992) pH changes associated with cytochrome c oxidase reaction with H2O2. Protonation state of the peroxy and oxoferryl intermediates, FEBS Lett., 312, 71-74.

52. Ksenzenko, M., Vygodina, T. V., Berka, V., Ruuge, E. K., and Konstantinov, A. A. (1992) Cytochrome oxidase-catalyzed superoxide generation from hydrogen peroxide, FEBS Lett., 297, 63-66.

53. Luo, Y.-R. (2007) Comprehensive Handbook of Chemical Bond Energies, CRC Press, Boca Raton.

54. Blomberg, M. R. A., Siegbahn, P. E. M., Babcock, G. T., and Wikstrom, M. (2000) Modeling cytochrome oxidase: a quantum chemical study of the O-O bond ceavage mechanism, J. Am. Chem. Soc., 122, 12848-12858.

55. Blomberg, M. R., Siegbahn, P. E., and Wikstrom, M. (2003) Metal-bridging mechanism for O–O bond cleavage in cytochrome c oxidase, Inorg. Chem., 42, 5231-5243.

56. Blomberg, M. R. A. (2019) Active site midpoint potentials in different cytochrome c cxidase families: a computational comparison, Biochemistry, 58, 2028-2038.

57. Khan, K. K., Mondal, M. S., Padhy, L., and Mitra, S. (1998) The role of distal histidine in peroxidase activity of myoglobin–transient-kinetics study of the reaction of H2O2 with wild-type and distal-histidine-mutanted recombinant human myoglobin, Eur. J. Biochem., 257, 547-555.

58. Mondal, M. S., and Mitra, S. (1996) Kinetic studies of the two-step reactions of H2O2 with manganese-reconstituted myoglobin, Biochim. Biophys. Acta, 1296, 174-180.

59. Baek, H. K., and Van Wart, H. E. (1989) Elementary steps in the formation of horseradish peroxidase compound I: direct observation of compound 0, a new intermediate with a hyperporphyrin spectrum, Biochemistry, 28, 5714-5719.

60. Khan, K. K., Mondal, M. S., and Mitra, S. (1996) Kinetic studies of the reaction of hydrogen peroxide with manganesereconstituted horseradish peroxidase, J. Chem. Soc., Dalton Trans., 1059-1062.

61. Rigby, S. E., Junemann, S., Rich, P. R., and Heathcote, P. (2000) Reaction of bovine cytochrome c oxidase with hydrogen peroxide produces a tryptophan cation radical and a porphyrin cation radical, Biochemistry, 39, 5921-5928.

62. Budiman, K., Kannt, A., Lyubenova, S., Richter, O. M., Ludwig, B., et al. (2004) Tyrosine 167: the origin of the radical species observed in the reaction of cytochrome c oxidase with hydrogen peroxide in Paracoccus denitrificans, Biochemistry, 43, 11709-11716.

63. MacMillan, F., Kannt, A., Behr, J., Prisner, T., and Michel, H. (1999) Direct evidence for a tyrosine radical in the reaction of cytochrome c oxidase with hydrogen peroxide, Biochemistry, 38, 9179-9184.

64. Rich, P. R., Rigby, S. E., and Heathcote, P. (2002) Radicals associated with the catalytic intermediates of bovine cytochrome c oxidase, Biochim. Biophys. Acta, 1554, 137-146.

65. Musatov, A., Hebert, E., Carroll, C. A., Weintraub, S. T., and Robinson, N. C. (2004) Specific modification of two tryptophans within the nuclear-encoded subunits of bovine cytochrome c oxidase by hydrogen peroxide, Biochemistry, 43, 1003-1009.

66. Musatov, A., and Robinson, N. C. (2012) Susceptibility of mitochondrial electron-transport complexes to oxidative damage. Focus on cytochrome c oxidase, Free Radic. Res., 46, 1313-1326.

67. Lemma-Gray, P., Weintraub, S. T., Carroll, C. A., Musatov, A., and Robinson, N. C. (2007) Tryptophan 334 oxidation in bovine cytochrome c oxidase subunit I involves free radical migration, FEBS Lett., 581, 437-442.

68. Fabian, M., and Palmer, G. (1999) Redox state of peroxy and ferryl intermediates in cytochrome c oxidase catalysis, Biochemistry, 38, 6270-6275.

69. King, N. K., and Winfield, M. E. (1963) The mechanism of metmyoglobin oxidation, J. Biol. Chem., 238, 1520-1528.

70. Wilks, A., and Ortiz de Montellano, P. R. (1992) Intramolecular translocation of the protein radical formed in the reaction of recombinant sperm whale myoglobin with H2O2, J. Biol. Chem., 267, 8827-8833.

71. Tew, D., and Ortiz de Montellano, P. R. (1988) The myoglobin protein radical. Coupling of Tyr-103 to Tyr-151 in the H2O2-mediated cross-linking of sperm whale myoglobin, J. Biol. Chem., 263, 17880-17886.

72. Witting, P. K., Douglas, D. J., and Mauk, A. G. (2000) Reaction of human myoglobin and H2O2. Involvement of a thiyl radical produced at cysteine 110, J. Biol. Chem., 275, 20391-20398.

73. Reeder, B. J., Svistunenko, D. A., Cooper, C. E., and Wilson, M. T. (2004) The radical and redox chemistry of myoglobin and hemoglobin: from in vitro studies to human pathology, Antioxid. Redox Signal., 6, 954-966.

74. Svistunenko, D. A., Dunne, J., Fryer, M., Nicholls, P., Reeder, B. J., et al. (2002) Comparative study of tyrosine radicals in hemoglobin and myoglobins treated with hydrogen peroxide, Biophys. J., 83, 2845-2855.

75. Svistunenko, D. A. (2001) An EPR study of the peroxyl radicals induced by hydrogen peroxide in the haem proteins, Biochim. Biophys. Acta, 1546, 365-378.

76. Erman, J. E., and Yonetani, T. (1975) A kinetic study of the endogenous reduction of the oxidized sites in the primary cytochrome c peroxidase-hydrogen peroxide compound, Biochim. Biophys. Acta, 393, 350-357.

77. Hiner, A. N., Martinez, J. I., Arnao, M. B., Acosta, M., Turner, D. D., et al. (2001) Detection of a tryptophan radical in the reaction of ascorbate peroxidase with hydrogen peroxide, Eur. J. Biochem., 268, 3091-3098.

78. Miller, V. P., Goodin, D. B., Friedman, A. E., Hartmann, C., and Ortiz de Montellano, P. R. (1995) Horseradish peroxidase Phe172Tyr mutant. Sequential formation of compound I with a porphyrin radical cation and a protein radical, J. Biol. Chem., 270, 18413-18419.

79. Wu, G., Rogge, C. E., Wang, J. S., Kulmacz, R. J., Palmer, G., and Tsai, A. L. (2007) Oxyferryl heme and not tyrosyl radical is the likely culprit in prostaglandin H synthase-1 peroxidase inactivation, Biochemistry, 46, 534-542.

80. Blomberg, M. R. A., and Siegbahn, P. E. M. (2014) Proton pumping in cytochrome c oxidase: energetic requirements and the role of two proton channels, Biochim. Biophys. Acta, 1837, 1165-1177.

81. Sharpe, M. A., and Ferguson-Miller, S. (2008) A chemically explicit model for the mechanism of proton pumping in heme–copper oxidases, J. Bioenerg. Biomembr., 40, 541-549.

82. Brzezinski, P., and Gennis, R. B. (2008) Cytochrome c oxidase: exciting progress and remaining mysteries, J. Bioenerg. Biomembr., 40, 521-531.

83. Rich, P. R. (2017) Mitochondrial cytochrome c oxidase: catalysis, coupling and controversies, Biochem. Soc. Trans., 45, 813-829.