БИОХИМИЯ, 2021, том 86, вып. 1, с. 30–42

УДК 577.151.63

Терминальная оксидаза цитохром bd защищает бактерии от токсического воздействия сероводорода

Обзор

© 2021 В.Б. Борисов 1*, Е. Форте 2

НИИ физико-химической биологии им. А.Н. Белозерского, Московский государственный университет имени М.В. Ломоносова, 119991 Москва, Россия; электронная почта: bor@belozersky.msu.ru

Римский университет Ла Сапиенца, Отдел биохимических наук, I-00185 Рим, Италия

Поступила в редакцию 15.09.2020
После доработки 15.09.2020
Принята к публикации 26.10.2020

DOI: 10.31857/S0320972521010036

КЛЮЧЕВЫЕ СЛОВА: дыхательная цепь, терминальная оксидаза, гем-медная оксидаза, цитохром bd, гем.

Аннотация

Сероводород (H2S) называют третьим (после окиси азота и окиси углерода) «газотрансмиттером» или эндогенной газообразной сигнальной молекулой. Эта молекула играет важную роль в организмах различных таксономических групп – от бактерий до животных и людей. В клетках млекопитающих H2S в наномолярных концентрациях обладает цитопротекторным действием, однако в более высоких концентрациях он цитотоксичен. Первичной мишенью действия H2S являются митохондрии. В субмикромолярных концентрациях H2S ингибирует митохондриальную гем-медную цитохром с-оксидазу, тем самым блокируя аэробное дыхание и окислительное фосфорилирование, что приводит к гибели клеток. Поскольку концентрация H2S в кишечнике чрезвычайно высока, возникает вопрос: как населяющие его бактерии могут поддерживать функционирование своих кислород-зависимых дыхательных цепей переноса электронов в таких условиях? В обзоре дается ответ на этот вопрос: в свете недавно полученных экспериментальных данных рассматривается ключевая роль неканонических терминальных оксидаз типа bd в поддержании аэробного дыхания и роста энтеробактерии Escherichia coli, входящей в состав кишечной микробиоты, в присутствии H2S в токсичных концентрациях.

Сноски

* Адресат для корреспонденции.

Финансирование

Работа выполнена при финансовой поддержке Российского научного фонда (проект № 19-14-00063).

Благодарности

В.Б. Борисов благодарит В.П. Скулачева и А.Д. Виноградова за интерес к работе и полезное обсуждение. В.Б. Борисов также выражает глубокую признательность А.А. Константинову (скончался 1 мая 2020 г.). А.А. Константинов в 1993 году предложил В.Б. Борисову начать изучение цитохрома bd, когда автор был аспирантом.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Соблюдение этических норм

Настоящая статья не содержит каких-либо исследований с участием людей или использованием животных в качестве объектов.

Список литературы

1. Cuevasanta, E., Denicola, A., Alvarez, B., and Moller, M. N. (2012) Solubility and permeation of hydrogen sulfide in lipid membranes, PLoS One, 7, e34562, doi: 10.1371/journal.pone.0034562.

2. Forte, E., and Giuffrè, A. (2016) How bacteria breathe in hydrogen sulphide-rich environments, Biochem. J., 38, 8-11, doi: 10.1042/BIO03805008.

3. Li, Q., and Lancaster, J. R., Jr. (2013) Chemical foundations of hydrogen sulfide biology, Nitric Oxide, 35, 21-34, doi: 10.1016/j.niox.2013.07.001.

4. Murphy, B., Bhattacharya, R., and Mukherjee, P. (2019) Hydrogen sulfide signaling in mitochondria and disease, FASEB J., 33, 13098-13125, doi: 10.1096/fj.201901304R.

5. Powell, C. R., Dillon, K. M., and Matson, J. B. (2018) A review of hydrogen sulfide (H2S) donors: chemistry and potential therapeutic applications, Biochem. Pharmacol., 149, 110-123, doi: 10.1016/j.bcp.2017.11.014.

6. Yang, J., Minkler, P., Grove, D., Wang, R., Willard, B., Dweik, R., and Hine, C. (2019) Non-enzymatic hydrogen sulfide production from cysteine in blood is catalyzed by iron and vitamin B6, Commun. Biol., 2, 194, doi: 10.1038/s42003-019-0431-5.

7. Kabil, O., and Banerjee, R. (2014) Enzymology of H2S biogenesis, decay and signaling, Antioxid. Redox Signal., 20, 770-782, doi: 10.1089/ars.2013.5339.

8. Shibuya, N., Koike, S., Tanaka, M., Ishigami-Yuasa, M., Kimura, Y., et al. (2013) A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells, Nat. Commun., 4, 1366, doi: 10.1038/ncomms2371.

9. Filipovic, M. R., Zivanovic, J., Alvarez, B., and Banerjee, R. (2018) Chemical biology of H2S signaling through persulfidation, Chem. Rev., 118, 1253-1337, doi: 10.1021/acs.chemrev.7b00205.

10. Nicholls, P., Marshall, D. C., Cooper, C. E., and Wilson, M. T. (2013) Sulfide inhibition of and metabolism by cytochrome c oxidase, Biochem. Soc. Trans., 41, 1312-1316, doi: 10.1042/BST20130070.

11. Szabo, C., Ransy, C., Modis, K., Andriamihaja, M., Murghes, B., et al. (2014) Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. Biochemical and physiological mechanisms, Br. J. Pharmacol., 171, 2099-2122, doi: 10.1111/bph.12369.

12. Corpas, F. J., and Palma, J. M. (2020) H2S signaling in plants and applications in agriculture, J. Adv. Res., 24, 131-137, doi: 10.1016/j.jare.2020.03.011.

13. Carbonero, F., Benefiel, A. C., Alizadeh-Ghamsari, A. H., and Gaskins, H. R. (2012) Microbial pathways in colonic sulfur metabolism and links with health and disease, Front. Physiol., 3, 448, doi: 10.3389/fphys.2012.00448.

14. Shatalin, K., Shatalina, E., Mironov, A., and Nudler, E. (2011) H2S: a universal defense against antibiotics in bacteria, Science, 334, 986-990, doi: 10.1126/science.1209855.

15. Kimura, H. (2014) Production and physiological effects of hydrogen sulfide, Antioxid. Redox Signal., 20, 783-793, doi: 10.1089/ars.2013.5309.

16. Furne, J., Saeed, A., and Levitt, M. D. (2008) Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values, Am. J. Physiol. Regul. Integr. Comp. Physiol., 295, R1479-R1485, doi: 10.1152/ajpregu.90566.2008.

17. Sender, R., Fuchs, S., and Milo, R. (2016) Revised estimates for the number of human and bacteria cells in the body, PLoS Biol., 14, e1002533, doi: 10.1371/journal.pbio.1002533.

18. Hugon, P., Dufour, J. C., Colson, P., Fournier, P. E., Sallah, K., and Raoult, D. (2015) A comprehensive repertoire of prokaryotic species identified in human beings, Lancet Infect. Dis., 15, 1211-1219, doi: 10.1016/S1473-3099(15)00293-5.

19. Deplancke, B., Finster, K., Graham, W. V., Collier, C. T., Thurmond, J. E., and Gaskins, H. R. (2003) Gastrointestinal and microbial responses to sulfate-supplemented drinking water in mice, Exp. Biol. Med. (Maywood), 228, 424-433, doi: 10.1177/153537020322800413.

20. Attene-Ramos, M. S., Wagner, E. D., Gaskins, H. R., and Plewa, M. J. (2007) Hydrogen sulfide induces direct radical-associated DNA damage, Mol. Cancer Res., 5, 455-459, doi: 10.1158/1541-7786.MCR-06-0439.

21. Levitt, M. D., Springfield, J., Furne, J., Koenig, T., and Suarez, F. L. (2002) Physiology of sulfide in the rat colon: use of bismuth to assess colonic sulfide production, J. Appl. Physiol., 92, 1655-1660, doi: 10.1152/japplphysiol.00907.2001.

22. Suarez, F., Furne, J., Springfield, J., and Levitt, M. (1998) Production and elimination of sulfur-containing gases in the rat colon, Am. J. Physiol., 274, G727-G733, doi: 10.1152/ajpgi.1998.274.4.G727.

23. Jorgensen, J., and Mortensen, P. B. (2001) Hydrogen sulfide and colonic epithelial metabolism: implications for ulcerative colitis, Dig. Dis. Sci., 46, 1722-1732, doi: 10.1023/A:1010661706385.

24. Hill, B. C., Woon, T. C., Nicholls, P., Peterson, J., Greenwood, C., and Thomson, A. J. (1984) Interactions of sulphide and other ligands with cytochrome c oxidase. An electron-paramagnetic-resonance study, Biochem. J., 224, 591-600, doi: 10.1042/bj2240591.

25. Forte, E., Borisov, V. B., Falabella, M., Colaco, H. G., Tinajero-Trejo, M., Poole, R. K., et al. (2016) The terminal oxidase cytochrome bd promotes sulfide-resistant bacterial respiration and growth, Sci. Rep., 6, 23788, doi: 10.1038/srep23788.

26. Karami, N., Nowrouzian, F., Adlerberth, I., and Wold, A. E. (2006) Tetracycline resistance in Escherichia coli and persistence in the infantile colonic microbiota, Antimicrob. Agents Chemother., 50, 156-161, doi: 10.1128/AAC.50.1.156-161.2006.

27. Borisov, V. B., Siletsky, S. A., Paiardini, A., Hoogewijs, D., Forte, E., et al. (2020) Bacterial oxidases of the cytochrome bd family: redox enzymes of unique structure, function and utility as drug targets, Antioxid. Redox Signal., doi: 10.1089/ars.2020.8039.

28. Borisov, V. B., and Verkhovsky, M. I. (2015) Oxygen as Acceptor, EcoSal Plus, 6, doi: 10.1128/ecosalplus.ESP-0012-2015.

29. Jünemann, S. (1997) Cytochrome bd terminal oxidase, Biochim. Biophys. Acta, 1321, 107-127, doi: 10.1016/S0005-2728(97)00046-7.

30. Azarkina, N., Borisov, V., and Konstantinov, A. A. (1997) Spontaneous spectral changes of the reduced cytochrome bd, FEBS Lett., 416, 171-174, doi: 10.1016/S0014-5793(97)01196-4.

31. Gavrikova, E. V., Grivennikova, V. G., Borisov, V. B., Cecchini, G., and Vinogradov, A. D. (2009) Assembly of a chimeric respiratory chain from bovine heart submitochondrial particles and cytochrome bd terminal oxidase of Escherichia coli, FEBS Lett., 583, 1287-1291, doi: 10.1016/j.febslet.2009.03.022.

32. Borisov, V. B., Gennis, R. B., Hemp, J., and Verkhovsky, M. I. (2011) The cytochrome bd respiratory oxygen reductases, Biochim. Biophys. Acta, 1807, 1398-1413, doi: 10.1016/j.bbabio.2011.06.016.

33. Sousa, F. L., Alves, R. J., Ribeiro, M. A., Pereira-Leal, J. B., Teixeira, M., and Pereira, M. M. (2012) The superfamily of heme-copper oxygen reductases: types and evolutionary considerations, Biochim. Biophys. Acta, 1817, 629-637, doi: 10.1016/j.bbabio.2011.09.020.

34. Siletsky, S. A., Borisov, V. B., and Mamedov, M. D. (2017) Photosystem II and terminal respiratory oxidases: molecular machines operating in opposite directions, Front. Biosci. (Landmark Ed.), 22, 1379-1426, doi: 10.2741/4550.

35. Borisov, V. B., and Siletsky, S. A. (2019) Features of organization and mechanism of catalysis of two families of terminal oxidases: heme-copper and bd-type, Biochemistry (Moscow), 84, 1390-1402, doi: 10.1134/S0006297919110130.

36. Konstantinov, A. A., Siletsky, S., Mitchell, D., Kaulen, A., and Gennis, R. B. (1997) The roles of the two proton input channels in cytochrome c oxidase from Rhodobacter sphaeroides probed by the effects of site-directed mutations on time-resolved electrogenic intraprotein proton transfer, Proc. Natl. Acad. Sci. USA, 94, 9085-9090, doi: 10.1073/pnas.94.17.9085.

37. Abramson, J., Riistama, S., Larsson, G., Jasaitis, A., Svensson-Ek, M., et al. (2000) The structure of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding site., Nat. Struct. Biol., 7, 910-917, doi: 10.1038/82824.

38. Chepuri, V., Lemieux, L. J., Au, D. C.-T., and Gennis, R. B. (1990) The sequence of the cyo operon indicates substantial structural similarities between the cytochrome o ubiquinol oxidase of Escherichia coli and the aa3-type family of the cytochrome c oxidases, J. Biol. Chem., 265, 11185-11192.

39. Choi, S. K., Schurig-Briccio, L., Ding, Z., Hong, S., Sun, C., and Gennis, R. B. (2017) Location of the substrate binding site of the cytochrome bo3 ubiquinol oxidase from Escherichia coli, J. Am. Chem. Soc., 139, 8346-8354, doi: 10.1021/jacs.7b03883.

40. Cotter, P. A., Chepuri, V., Gennis, R. B., and Gunsalus, R. P. (1990) Cytochrome o (cyoABCDE) and d (cydAB) oxidase gene expression in Escherichia coli is regulated by oxygen, pH, and the fnr gene product, J. Bacteriol., 172, 6333-6338, doi: 10.1128/jb.172.11.6333-6338.1990.

41. Svensson, M., and Nilsson, T. (1993) Flow-flash study of the reaction between cytochrome bo and oxygen, Biochemistry, 32, 5442-5447, doi: 10.1021/bi00071a021.

42. Belevich, I., Borisov, V. B., Konstantinov, A. A., and Verkhovsky, M. I. (2005) Oxygenated complex of cytochrome bd from Escherichia coli: stability and photolability, FEBS Lett., 579, 4567-4570, doi: 10.1016/j.febslet.2005.07.011.

43. Arutyunyan, A. M., Sakamoto, J., Inadome, M., Kabashima, Y., and Borisov, V. B. (2012) Optical and magneto-optical activity of cytochrome bd from Geobacillus thermodenitrificans, Biochim. Biophys. Acta, 1817, 2087-2094, doi: 10.1016/j.bbabio.2012.06.009.

44. Borisov, V. B. (1996) Cytochrome bd: structure and properties, Biochemistry (Moscow), 61, 565-574.

45. Azarkina, N., Siletsky, S., Borisov, V., von Wachenfeldt, C., Hederstedt, L., and Konstantinov, A. A. (1999) A cytochrome bb‘-type quinol oxidase in Bacillus subtilis strain 168, J. Biol. Chem., 274, 32810-32817, doi: 10.1074/jbc.274.46.32810.

46. Yang, K., Borisov, V. B., Konstantinov, A. A., and Gennis, R. B. (2008) The fully oxidized form of the cytochrome bd quinol oxidase from E. coli does not participate in the catalytic cycle: direct evidence from rapid kinetics studies, FEBS Lett., 582, 3705-3709, doi: 10.1016/j.febslet.2008.09.038.

47. Forte, E., Borisov, V. B., Vicente, J. B., and Giuffrè, A. (2017) Cytochrome bd and gaseous ligands in bacterial physiology, Adv. Microb. Physiol., 71, 171-234, doi: 10.1016/bs.ampbs.2017.05.002.

48. Borisov, V. B. (2020) Effect of membrane environment on ligand-binding properties of the terminal oxidase cytochrome bd-I from Escherichia coli, Biochemistry (Moscow), 85, 1603-1612, doi: 10.1134/S0006297920120123.

49. Pereira, M. M., Gomes, C. M., and Teixeira, M. (2002) Plasticity of proton pathways in haem-copper oxygen reductases, FEBS Lett., 522, 14-18, doi: 10.1016/S0014-5793(02)02920-4.

50. Yoshikawa, S., and Shimada, A. (2015) Reaction mechanism of cytochrome c oxidase, Chem. Rev., 115, 1936-1989, doi: 10.1021/cr500266a.

51. Papa, S., Capitanio, G., and Papa, F. (2018) The mechanism of coupling between oxido-reduction and proton translocation in respiratory chain enzymes, Biol. Rev. Camb. Philos. Soc., 93, 322-349, doi: 10.1111/brv.12347.

52. Borisov, V. B. (2002) Defects in mitochondrial respiratory complexes III and IV, and human pathologies, Mol. Aspects Med., 23, 385-412, doi: 10.1016/s0098-2997(02)00013-4.

53. Borisov, V. B. (2004) Mutations in respiratory chain complexes and human diseases, Ital. J. Biochem., 53, 34-40.

54. Puustinen, A., Finel, M., Haltia, T., Gennis, R. B., and Wikström, M. (1991) Properties of the two terminal oxidases of Escherichia coli, Biochemistry, 30, 3936-3942, doi: 10.1021/bi00230a019.

55. Jasaitis, A., Borisov, V. B., Belevich, N. P., Morgan, J. E., Konstantinov, A. A., and Verkhovsky, M. I. (2000) Electrogenic reactions of cytochrome bd, Biochemistry, 39, 13800-13809, doi: 10.1021/bi001165n.

56. Wikström, M., Morgan, J. E., and Verkhovsky, M. I. (1997) Proton and electrical charge translocation by cytochrome c-oxidase, Biochim. Biophys. Acta, 1318, 299-306, doi: 10.1016/S0005-2728(96)00152-1.

57. Belevich, I., Borisov, V. B., Zhang, J., Yang, K., Konstantinov, A. A., et al. (2005) Time-resolved electrometric and optical studies on cytochrome bd suggest a mechanism of electron-proton coupling in the di-heme active site, Proc. Natl. Acad. Sci. USA, 102, 3657-3662, doi: 10.1073/pnas.0405683102.

58. Belevich, I., Borisov, V. B., and Verkhovsky, M. I. (2007) Discovery of the true peroxy intermediate in the catalytic cycle of terminal oxidases by real-time measurement, J. Biol. Chem., 282, 28514-28519, doi: 10.1074/jbc.M705562200.

59. Borisov, V. B., Belevich, I., Bloch, D. A., Mogi, T., and Verkhovsky, M. I. (2008) Glutamate 107 in subunit I of cytochrome bd from Escherichia coli is part of a transmembrane intraprotein pathway conducting protons from the cytoplasm to the heme b595/heme d active site, Biochemistry, 47, 7907–7914, doi: 10.1021/bi800435a.

60. Borisov, V. B., Murali, R., Verkhovskaya, M. L., Bloch, D. A., Han, H., et al. (2011) Aerobic respiratory chain of Escherichia coli is not allowed to work in fully uncoupled mode, Proc. Natl. Acad. Sci. USA, 108, 17320-17324, doi: 10.1073/pnas.1108217108.

61. Safarian, S., Hahn, A., Mills, D. J., Radloff, M., Eisinger, M. L., et al. (2019) Active site rearrangement and structural divergence in prokaryotic respiratory oxidases, Science, 366, 100-104, doi: 10.1126/science.aay0967.

62. Theßeling, A., Rasmussen, T., Burschel, S., Wohlwend, D., Kagi, J., et al. (2019) Homologous bd oxidases share the same architecture but differ in mechanism, Nat. Commun., 10, 5138, doi: 10.1038/s41467-019-13122-4.

63. Miller, M. J., and Gennis, R. B. (1983) The purification and characterization of the cytochrome d terminal oxidase complex of the Escherichia coli aerobic respiratory chain, J. Biol. Chem., 258, 9159-9165.

64. Kita, K., Konishi, K., and Anraku, Y. (1984) Terminal oxidases of Escherichia coli aerobic respiratory chain. II. Purification and properties of cytochrome b558d complex from cells grown with limited oxygen and evidence of branched electron-carrying systems, J. Biol. Chem., 259, 3375-3381.

65. Sun, Y. H., de Jong, M. F., den Hartigh, A. B., Roux, C. M., Rolan, H. G., and Tsolis, R. M. (2012) The small protein CydX is required for function of cytochrome bd oxidase in Brucella abortus, Front. Cell. Infect. Microbiol., 2, 47, doi: 10.3389/fcimb.2012.00047.

66. VanOrsdel, C. E., Bhatt, S., Allen, R. J., Brenner, E. P., Hobson, J. J., et al. (2013) The Escherichia coli CydX protein is a member of the CydAB cytochrome bd oxidase complex and is required for cytochrome bd oxidase activity, J. Bacteriol., 195, 3640-3650, doi: 10.1128/JB.00324-13.

67. Hoeser, J., Hong, S., Gehmann, G., Gennis, R. B., and Friedrich, T. (2014) Subunit CydX of Escherichia coli cytochrome bd ubiquinol oxidase is essential for assembly and stability of the di-heme active site, FEBS Lett., 588, 1537-1541, doi: 10.1016/j.febslet.2014.03.036.

68. Chen, H., Luo, Q., Yin, J., Gao, T., and Gao, H. (2015) Evidence for requirement of CydX in function but not assembly of the cytochrome bd oxidase in Shewanella oneidensis, Biochim. Biophys. Acta, 1850, 318-328, doi: 10.1016/j.bbagen.2014.10.005.

69. Hobson, J. J., Gallegos, A. S., Atha, B. W., 3rd, Kelly, J. P., Lein, C. D., et al. (2018) Investigation of amino acid specificity in the CydX small protein shows sequence plasticity at the functional level, PLoS One, 13, e0198699, doi: 10.1371/journal.pone.0198699.

70. Duc, K. M., Kang, B. G., Lee, C., Park, H. J., Park, Y. M., et al. (2020) The small protein CydX is required for cytochrome bd quinol oxidase stability and function in Salmonella Typhimurium: a phenotypic study, J. Bacteriol., 202, e00348-19, doi: 10.1128/JB.00348-19.

71. Hill, J. J., Alben, J. O., and Gennis, R. B. (1993) Spectroscopic evidence for a heme-heme binuclear center in the cytochrome bd ubiquinol oxidase from Escherichia coli, Proc. Natl. Acad. Sci. USA, 90, 5863-5867, doi: 10.1073/pnas.90.12.5863.

72. Tsubaki, M., Hori, H., Mogi, T., and Anraku, Y. (1995) Cyanide-binding site of bd-type ubiquinol oxidase from Escherichia coli, J. Biol. Chem., 270, 28565-28569, doi: 10.1074/jbc.270.48.28565.

73. Borisov, V., Arutyunyan, A. M., Osborne, J. P., Gennis, R. B., and Konstantinov, A. A. (1999) Magnetic circular dichroism used to examine the interaction of Escherichia coli cytochrome bd with ligands, Biochemistry, 38, 740-750, doi: 10.1021/bi981908t.

74. Vos, M. H., Borisov, V. B., Liebl, U., Martin, J. L., and Konstantinov, A. A. (2000) Femtosecond resolution of ligand-heme interactions in the high-affinity quinol oxidase bd: A di-heme active site? Proc. Natl. Acad. Sci. USA, 97, 1554-1559, doi: 10.1073/pnas.030528197.

75. Borisov, V. B., Sedelnikova, S. E., Poole, R. K., and Konstantinov, A. A. (2001) Interaction of cytochrome bd with carbon monoxide at low and room temperatures: evidence that only a small fraction of heme b595 reacts with CO, J. Biol. Chem., 276, 22095-22099, doi: 10.1074/jbc.M011542200.

76. Borisov, V. B., Liebl, U., Rappaport, F., Martin, J. L., Zhang, J., et al. (2002) Interactions between heme d and heme b595 in quinol oxidase bd from Escherichia coli: a photoselection study using femtosecond spectroscopy, Biochemistry, 41, 1654-1662, doi: 10.1021/bi0158019.

77. Arutyunyan, A. M., Borisov, V. B., Novoderezhkin, V. I., Ghaim, J., Zhang, J., et al. (2008) Strong excitonic interactions in the oxygen-reducing site of bd-type oxidase: the Fe-to-Fe distance between hemes d and b595 is 10 A, Biochemistry, 47, 1752-1759, doi: 10.1021/bi701884g.

78. Borisov, V. B. (2008) Interaction of bd-type quinol oxidase from Escherichia coli and carbon monoxide: heme d binds CO with high affinity, Biochemistry (Moscow), 73, 14-22, doi: 10.1134/S0006297908010021.

79. Bloch, D. A., Borisov, V. B., Mogi, T., and Verkhovsky, M. I. (2009) Heme/heme redox interaction and resolution of individual optical absorption spectra of the hemes in cytochrome bd from Escherichia coli, Biochim. Biophys. Acta, 1787, 1246-1253, doi: 10.1016/j.bbabio.2009.05.003.

80. Rappaport, F., Zhang, J., Vos, M. H., Gennis, R. B., and Borisov, V. B. (2010) Heme-heme and heme-ligand interactions in the di-heme oxygen-reducing site of cytochrome bd from Escherichia coli revealed by nanosecond absorption spectroscopy, Biochim. Biophys. Acta, 1797, 1657-1664, doi: 10.1016/j.bbabio.2010.05.010.

81. Borisov, V. B., and Verkhovsky, M. I. (2013) Accommodation of CO in the di-heme active site of cytochrome bd terminal oxidase from Escherichia coli, J. Inorg. Biochem., 118, 65-67, doi: 10.1016/j.jinorgbio.2012.09.016.

82. Siletsky, S. A., Zaspa, A. A., Poole, R. K., and Borisov, V. B. (2014) Microsecond time-resolved absorption spectroscopy used to study CO compounds of cytochrome bd from Escherichia coli, PLoS One, 9, e95617, doi: 10.1371/journal.pone.0095617.

83. Siletsky, S. A., Rappaport, F., Poole, R. K., and Borisov, V. B. (2016) Evidence for fast electron transfer between the high-spin haems in cytochrome bd-I from Escherichia coli, PLoS One, 11, e0155186, doi: 10.1371/journal.pone.0155186.

84. Siletsky, S. A., Dyuba, A. V., Elkina, D. A., Monakhova, M. V., and Borisov, V. B. (2017) Spectral-kinetic analysis of recombination reaction of heme centers of bd-type quinol oxidase from Escherichia coli with carbon monoxide, Biochemistry (Moscow), 82, 1354-1366, doi: 10.1134/S000629791711013X.

85. Forte, E., Borisov, V. B., Konstantinov, A. A., Brunori, M., Giuffrè, A., and Sarti, P. (2007) Cytochrome bd, a key oxidase in bacterial survival and tolerance to nitrosative stress, Ital. J. Biochem., 56, 265-269.

86. Borisov, V. B., Forte, E., Siletsky, S. A., Arese, M., Davletshin, A. I., Sarti, P., and Giuffrè, A. (2015) Cytochrome bd protects bacteria against oxidative and nitrosative stress: a potential target for next-generation antimicrobial agents, Biochemistry (Moscow), 80, 565-575, doi: 10.1134/S0006297915050077.

87. Giuffrè, A., Borisov, V. B., Mastronicola, D., Sarti, P., and Forte, E. (2012) Cytochrome bd oxidase and nitric oxide: From reaction mechanisms to bacterial physiology, FEBS Lett., 586, 622–629, doi: 10.1016/j.febslet.2011.07.035.

88. Giuffrè, A., Borisov, V. B., Arese, M., Sarti, P., and Forte, E. (2014) Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress, Biochim. Biophys. Acta, 1837, 1178–1187, doi: 10.1016/j.bbabio.2014.01.016.

89. Borisov, V., Gennis, R., and Konstantinov, A. A. (1995) Peroxide complex of cytochrome bd: kinetics of generation and stability, Biochem. Mol. Biol. Int., 37, 975-982.

90. Borisov, V. B., Gennis, R. B., and Konstantinov, A. A. (1995) Interaction of cytochrome bd from Escherichia coli with hydrogen peroxide, Biochemistry (Moscow), 60, 231-239.

91. Borisov, V. B., Davletshin, A. I., and Konstantinov, A. A. (2010) Peroxidase activity of cytochrome bd from Escherichia coli, Biochemistry (Moscow), 75, 428-436, doi: 10.1134/S000629791004005X.

92. Borisov, V. B., Forte, E., Davletshin, A., Mastronicola, D., Sarti, P., and Giuffrè, A. (2013) Cytochrome bd oxidase from Escherichia coli displays high catalase activity: An additional defense against oxidative stress, FEBS Lett., 587, 2214-2218, doi: 10.1016/j.febslet.2013.05.047.

93. Forte, E., Borisov, V. B., Davletshin, A., Mastronicola, D., Sarti, P., and Giuffrè, A. (2013) Cytochrome bd oxidase and hydrogen peroxide resistance in Mycobacterium tuberculosis, mBio, 4, e01006-01013, doi: 10.1128/mBio.01006-13.

94. Al-Attar, S., Yu, Y., Pinkse, M., Hoeser, J., Friedrich, T., Bald, D., and de Vries, S. (2016) Cytochrome bd displays significant quinol peroxidase activity, Sci. Rep., 6, 27631, doi: 10.1038/srep27631.

95. Borisov, V. B., Forte, E., Siletsky, S. A., Sarti, P., and Giuffrè, A. (2015) Cytochrome bd from Escherichia coli catalyzes peroxynitrite decomposition, Biochim. Biophys. Acta, 1847, 182-188, doi: 10.1016/j.bbabio.2014.10.006.

96. Borisov, V. B., Forte, E., Konstantinov, A. A., Poole, R. K., Sarti, P., and Giuffrè, A. (2004) Interaction of the bacterial terminal oxidase cytochrome bd with nitric oxide, FEBS Lett., 576, 201-204, doi: 10.1016/j.febslet.2004.09.013.

97. Borisov, V. B., Forte, E., Sarti, P., Brunori, M., Konstantinov, A. A., and Giuffrè, A. (2006) Nitric oxide reacts with the ferryl-oxo catalytic intermediate of the CuB-lacking cytochrome bd terminal oxidase, FEBS Lett., 580, 4823-4826, doi: 10.1016/j.febslet.2006.07.072.

98. Borisov, V. B., Forte, E., Sarti, P., Brunori, M., Konstantinov, A. A., and Giuffrè, A. (2007) Redox control of fast ligand dissociation from Escherichia coli cytochrome bd, Biochem. Biophys. Res. Commun., 355, 97-102, doi: 10.1016/j.bbrc.2007.01.118.

99. Mason, M. G., Shepherd, M., Nicholls, P., Dobbin, P. S., Dodsworth, K. S., et al. (2009) Cytochrome bd confers nitric oxide resistance to Escherichia coli, Nat. Chem. Biol., 5, 94-96, doi: 10.1038/nchembio.135.

100. Borisov, V. B., Forte, E., Giuffrè, A., Konstantinov, A., and Sarti, P. (2009) Reaction of nitric oxide with the oxidized di-heme and heme-copper oxygen-reducing centers of terminal oxidases: Different reaction pathways and end-products, J. Inorg. Biochem., 103, 1185-1187, doi: 10.1016/j.jinorgbio.2009.06.002.

101. Forte, E., Borisov, V. B., Siletsky, S. A., Petrosino, M., and Giuffrè, A. (2019) In the respiratory chain of Escherichia coli cytochromes bd-I and bd-II are more sensitive to carbon monoxide inhibition than cytochrome bo3, Biochim. Biophys. Acta (Bioenerg.), 1860, 148088, doi: 10.1016/j.bbabio.2019.148088.

102. Alexeeva, S., Hellingwerf, K. J., and Teixeira de Mattos, M. J. (2003) Requirement of ArcA for redox regulation in Escherichia coli under microaerobic but not anaerobic or aerobic conditions, J. Bacteriol., 185, 204-209, doi: 10.1128/jb.185.1.204-209.2003.

103. Atlung, T., and Brøndsted, L. (1994) Role of the transcriptional activator AppY in regulation of the cyx appA operon of Escherichia coli by anaerobiosis, phosphate starvation, and growth phase, J. Bacteriol., 176, 5414-5422, doi: 10.1128/jb.176.17.5414-5422.1994.

104. Brøndsted, L., and Atlung, T. (1996) Effect of growth conditions on expression of the acid phosphatase (cyx-appA) operon and the appY gene, which encodes a transcriptional activator of Escherichia coli, J. Bacteriol., 178, 1556-1564, doi: 10.1128/jb.178.6.1556-1564.1996.

105. Belevich, I., Borisov, V. B., Bloch, D. A., Konstantinov, A. A., and Verkhovsky, M. I. (2007) Cytochrome bd from Azotobacter vinelandii: evidence for high-affinity oxygen binding, Biochemistry, 46, 11177-11184, doi: 10.1021/bi700862u.

106. Poole, R. K., Kumar, C., Salmon, I., and Chance, B. (1983) The 650 nm chromophore in Escherichia coli is an “Oxy-” or oxygenated compound, not the oxidized form of cytochrome oxidase d: A hypothesis, J. Gen. Microbiol., 129, 1335-1344, doi: 10.1099/00221287-129-5-1335.

107. Kahlow, M. A., Loehr, T. M., Zuberi, T. M., and Gennis, R. B. (1993) The oxygenated complex of cytochrome d terminal oxidase: direct evidence for Fe-O2 coordination in a chlorin-containing enzyme by Resonance Raman spectroscopy, J. Am. Chem. Soc., 115, 5845-5846, doi: 10.1021/ja00066a071.

108. Borisov, V. B., Smirnova, I. A., Krasnosel’skaya, I. A., and Konstantinov, A. A. (1994) Oxygenated cytochrome bd from Escherichia coli can be converted into the oxidized form by lipophilic electron acceptors, Biochemistry (Moscow), 59, 437-443.

109. Borisov, V. B., Forte, E., Sarti, P., and Giuffrè, A. (2011) Catalytic intermediates of cytochrome bd terminal oxidase at steady-state: Ferryl and oxy-ferrous species dominate, Biochim. Biophys. Acta, 1807, 503-509, doi: 10.1016/j.bbabio.2011.02.007.

110. Petersen, L. C. (1977) The effect of inhibitors on the oxygen kinetics of cytochrome c oxidase, Biochim. Biophys. Acta, 460, 299-307, doi: 10.1016/0005-2728(77)90216-X.

111. Nicholls, P. (1975) The effect of sulphide on cytochrome aa3. Isosteric and allosteric shifts of the reduced α-peak, Biochim. Biophys. Acta, 396, 24-35, doi: 10.1016/0005-2728(75)90186-3.

112. Cooper, C. E., and Brown, G. C. (2008) The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance, J. Bioenerg. Biomembr., 40, 533-539, doi: 10.1007/s10863-008-9166-6.

113. Rabeh, W. M., and Cook, P. F. (2004) Structure and mechanism of O-acetylserine sulfhydrylase, J. Biol. Chem., 279, 26803-26806, doi: 10.1074/jbc.R400001200.

114. Korshunov, S., Imlay, K. R., and Imlay, J. A. (2016) The cytochrome bd oxidase of Escherichia coli prevents respiratory inhibition by endogenous and exogenous hydrogen sulfide, Mol. Microbiol., 101, 62-77, doi: 10.1111/mmi.13372.

115. Saini, V., Chinta, K. C., Reddy, V. P., Glasgow, J. N., Stein, A., et al. (2020) Hydrogen sulfide stimulates Mycobacterium tuberculosis respiration, growth and pathogenesis, Nat. Commun., 11, 557, doi: 10.1038/s41467-019-14132-y.

116. Nicholls, P., and Kim, J. K. (1982) Sulphide as an inhibitor and electron donor for the cytochrome c oxidase system, Can. J. Biochem., 60, 613-623, doi: 10.1139/o82-076.

117. Nicholls, P., Petersen, L. C., Miller, M., and Hansen, F. B. (1976) Ligand-induced spectral changes in cytochrome c oxidase and their possible significance, Biochim. Biophys. Acta, 449, 188-196, doi: 10.1016/0005-2728(76)90132-8.