БИОХИМИЯ, 2021, том 86, вып. 1, с. 14–29

УДК 577.121.7

Молекулярная биология цитохромов Bacillus subtilis на 2020 год

Обзор

© 2021 Л. Хедерштедт

The Microbiology Group, Department of Biology, Lund University,, 22362 Lund, Sweden; E-mail: Lars.Hederstedt@biol.lu.se

Поступила в редакцию 09.09.2020
После доработки 01.11.2020
Принята к публикации 01.11.2020

DOI: 10.31857/S0320972521010024

КЛЮЧЕВЫЕ СЛОВА: дыхательная цепь, грамположительные бактерии, оксидоредуктазы, сукцинатдегидрогеназа, NCIB 3610, цитохромы, Bacillus.

Аннотация

Bacillus subtilis служит моделью грамположительной бактерии и экспериментальной системой для исследования дыхательных ферментов. В настоящем обзоре представлены гемовые белки, известные в настоящее время для хорошо охарактеризованного лабораторного штамма B. subtilis 168. В обзоре основное внимание уделяется достижениям в исследованиях, проведенных за последние три десятилетия, в отношении функции и состава комплекса цитохрома bc, терминальных оксидаз и сукцинат:менахинон-оксидоредуктазы. Аэробная дыхательная система штамма 168 является типичной для вида В. subtilis, как определено по цитохромному составу неодомашненного штамма B. subtilis NCIB 3610 и ряду сконструированных цитохром-дефицитных мутантов этого штамма. В обзоре освещены необъяснённые и нерешённые проблемы молекулярной биологии цитохромов дыхательной цепи B. subtilis.

Благодарности

Обзор написан в память об Александре Александровиче Константинове. Наши лаборатории в Лундском Университете и Московском государственном университете активно сотрудничали в исследованиях респираторных цитохромов B. subtilis в период с 1993 по 1999 год при поддержке грантов Шведской королевской академии наук. Это привело, кроме прочего, к публикациям статей из списка литературы [57, 68, 90]. Благодарю Андре Франка за практическую помощь в конструировании и анализе мутантных штаммов.

Конфликт интересов

Автор заявляет об отсутствии конфликта интересов в финансовом или ином аспекте.

Соблюдение этических норм

Настоящая статья не содержит описания выполненных автором исследований с участием людей или использованием животных в качестве объектов.

Список литературы

1. Arjes, H. A., Vo, L., Dunn, C. M., Willis, L., DeRosa, C. A., et al. (2020) Biosurfactant-mediated membrane depolarization maintains viability during oxygen depletion in Bacillus subtilis, Curr. Biol., 30, 1-12, doi: 10.1016/j.cub.2020.01.073.

2. Nicholson, W. N., Munakata, N., Horneck, G., Melosh, H. J., and Setlow, P. (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments, Microbiol. Mol. Biol. Rev., 64, 548-572.

3. Von Wachenfeldt, C., and Hederstedt, L. (1992) Molecular biology of Bacillus subtilis cytochromes, FEMS Microbiol. Lett., 100, 91-100.

4. Von Wachenfeldt, C., and Hederstedt, L. (2002) Respiratory cytochromes, other heme proteins, and heme biosynthesis, in Bacillus subtilis and its closest relatives. From genes to cells. (Sonenshein, A. L., Hoch, J. A., and Losick, R. eds) ASM Press, Washington DC, pp. 63-179.

5. Zhu, B., and Stülke, J. (2018) SubtiWiki in 2018: from genes and proteins to functional network annotation of the model organism Bacillus subtilis, Nucleic Acids Res., 46, D743-D748, doi: 10.1093/nar/gkx908.

6. Garcia-Horsman, J. A., Barquera, B., Rumbley, J., Ma, J., and Gennis, R. B. (1994) The superfamily of heme-copper respiratory oxidases, J. Bacteriol., 176, 5587-5600.

7. Zamboni, N., and Sauer, U. (2003) Knockout of the high-coupling cytochrome aa3 oxidase reduces TCA cycle fluxes in Bacillus subtilis, FEMS Microbiol. Lett., 226, 121-126, doi: 10.1016/S0378-1097(03)00614-1.

8. Winstedt, L., and von Wachenfeldt, C. (2000) Terminal oxidases of Bacillus subtilis strain 168: one quinol oxidase, cytochrome aa3 or cytochrome bd, is required for aerobic growth, J. Bacteriol., 182, 6557-6564.

9. Santana, M., Kunst, F., Hullo, M. F., Rapoport, G., Danchin, A., and Glaser, P. (1992) Molecular cloning, sequencing, and physiological characterization of the qox operon from Bacillus subtilis encoding the aa3-600 quinol oxidase, J. Biol. Chem., 267, 10225-10231.

10. Larsson, J. T., Rogstam, A., and von Wachenfeldt, C. (2005) Coordinated patterns of cytochrome bd and lactate dehydrogenase expression in Bacillus subtilis, Microbiology, 151, 3323-3335.

11. Borisov, V., Gennis, R. B., Hemp, J., and Verkhovsky, M. I. (2011) The cytochrome bd respiratory oxygen reductases, Biochim. Biophys. Acta, 1807, 1398-1413.

12. Schiott, T., and Hederstedt, L. (2000) Efficient spore synthesis in Bacillus subtilis depends on the CcdA protein, J. Bacteriol., 182, 2845-2854.

13. Le Brun, N. E., Bengtsson, J., and Hederstedt, L. (2000) Genes required for cytochrome c synthesis in Bacillus subtilis, Mol. Microbiol., 36, 638-650.

14. Erlendsson, L. S., Acheson, R. M., Hederstedt, L., and Le Brun, N. E. (2003) Bacillus subtilis ResA is a thiol-disulfide oxidoreductase involved in cytochrome c synthesis, J. Biol. Chem., 278, 17852-17858, doi: 10.1074/jbc.M300103200.

15. Xu, J., Ding, Z., Liu, B., Yi, S. M., Li, J., et al. (2019) Structure of the cytochrome aa3-600 heme-copper menaquinol oxidase bound to inhibitor HQNO shows TM0 is part of the quinol binding site, Proc. Natl. Acad. Sci. USA, 117, 872-876.

16. Melo, A. P. M., and Teixeira, M. (2016) Supramolecular organizaton of bacterial aerobic respiratory chains: from cells and back, Biochim. Biophys. Acta, 1857, 190-197.

17. Sousa, P. M. F., Videira, M. A. M., Santos, F. A. S., Hood, B. L., Conrads, T. P., and Melo, A. M. P. (2013) The bc:caa3 supercomplexes from the Gram positive bacterium Bacillus subtilis respiratory chain: a megacomplex organization? Arch. Biochem. Biophys., 537, 153-160.

18. Montes de Oca, L. Y. J. G., Chagolla-Lopez, A., de la Vara, L., Cabellos-Alevar, T., Gomez-Lojero, C., and Gutierrez Cirlos, E. B. (2012) The composition of the Bacillus subtilis aerobic respiratory chain supercomplexes, J. Bioenerg. Biomembr., 44, 473-486.

19. Gong, H., Li, J., Xu, A., Tang, Y., Ji, W., Gao, R., et al. (2018) An electron transfer path connects subunits of a mycobacterial respiratory supercomplex, Science, 362, eaat8923, doi: 10.1126/science.aat8923.

20. Wiseman, B., Nitharwal, R. G., Fedotovskaya, O., Schäfer, J., Guo, H., et al. (2018) Structure of a functional obligate complex III2IV2 respiratory supercomplex from Mycobacterium smegmatis, Nature Struct. Mol. Biol., 25, 1128-1136, doi: 10.1038/s41594-018-0160-3.

21. Montes de Oca, L. Y. J. G., Avelar, T. C., Picón Garrido, G. I., Chagoya-López, A., González de la Vara, L., et al. (2016) Cardiolipin deficiency causes a dissociation of the b6c:caa3 megacomplex in B. subtilis membranes, J. Bioenerg. Biomembr., 48, 451-467.

22. Yu, J., Hederstedt, L., and Piggot, P. J. (1995) The cytochrome bc complex (menaquinone:cytochrome c reductase) in Bacillus subtilis has a nontraditional subunit organization, J. Bacteriol., 177, 6751-6760.

23. Yu, J., and Le Brun, N. E. (1998) Studies of the cytochrome subunits of menaquinone:cytochrome c reductase (bc complex) of Bacillus subtilis. Evidence for the covalent attachment of heme to the cytochrome b subunit, J. Biol. Chem., 273, 8860-8866.

24. Baniulis, D., Yamashita, E., Zhang, H., Hasan, S. S., and Cramer, W A. (2008) Structure-function of the cytochrome b6f complex, Photochem. Photobiol., 84, 1349-1350.

25. De Vitry, C. (2011) Cytochrome c maturation system on the negative side of bioenergetic membranes: CCB or system IV, FEBS J., 278, 4189-4197.

26. Bengtsson, J., von Wachenfeldt, C., Winstedt, L., Nygaard, P., and Hederstedt, L. (2004) CtaG is required for formation of active cytochrome c oxidase in Bacillus subtilis, Microbiology, 150, 415-425.

27. Simon, J., and Hederstedt, L. (2011) Composition and function of cytochrome c biogenesis system II, FEBS J., 278, 4179-4188, doi: 10.1111/j.1742-4658.2011.08374.x.

28. Hederstedt, L. (2012) Heme A biosynthesis, Biochim. Biophys. Acta, 1817, 920-927, doi: 10.1016/j.bbabio.2012.03.025.

29. Mattatall, N. R., Jazairi, J., and Hill, B. C. (2000) Characterization of YpmQ, an accessory protein required for the expression of cytochrome c oxidase in Bacillus subtilis, J. Biol. Chem., 275, 28802-28809.

30. Von Wachenfeldt, C., Hallgren, J., and Hederstedt, L. (2020) Cytochrome c oxidase biosynthesis factors in Bacillus subtilis: Discovery of YtkA (CtaK) and YozB (CtaM), in press.

31. Van der Oost, J., von Wachenfeldt, C., Hederstedt, L., and Saraste, M. (1991) Bacillus subtilis cytochrome oxidase mutants: biochemical analysis and genetic evidence for two aa3-type oxidases, Mol. Microbiol., 5, 2063-2072.

32. Contreras-Zentella, M., Mendoza, G., Membrillo-Hernández, J., and Escamilla, J. E. (2003) A novel double heme substitution produces a functional bo3 variant of the quinol oxidase aa3 of Bacillus cereus, J. Biol. Chem., 278, 31473-31478.

33. Sone, N., and Fujiwara, Y. (1991) Haem O can replace haem A in the active site of cytochrome c oxidase from thermophilic bacterium PS3, FEBS Lett., 288, 154-158.

34. Svensson, B., Lubben, M., and Hederstedt, L. (1993) Bacillus subtilis CtaA and CtaB function in haem A biosynthesis, Mol. Microbiol., 10, 193-201.

35. Hederstedt, L., Lewin, A., and Throne-Holst, M. (2005) Heme A synthase enzyme functions dissected by mutagenesis of Bacillus subtilis CtaA, J. Bacteriol., 187, 8361-8369, doi: 10.1128/JB.187.24.8361-8369.2005.

36. Von Wachenfeldt, C., and Hederstedt, L. (1990) Bacillus subtilis 13-kilodalton cytochrome c-550 encoded by cccA consists of a membrane-anchor and a heme domain, J. Biol. Chem., 265, 13939-13948.

37. Von Wachenfeldt, C., and Hederstedt, L. (1993) Physico-chemical characterisation of membrane-bound and water-soluble forms of Bacillus subtilis cytochrome c-550, Eur. J. Biochem., 212, 499-509.

38. Bengtsson, J., Rivolta, C., Hederstedt, L., and Karamata, D. (1999) Bacillus subtilis contains two small c-type cytochromes with homologous heme domains but different types of membrane anchors, J. Biol. Chem., 274, 26179-26184.

39. Fujiwara, Y., Oka, M., Hamamoto, T., and Sone, N. (1993) Cytochrome c-551 of the thermophilic bacterium PS3, DNA sequence and analysis of the mature cytochrome, Biochim. Biophys. Acta, 1144, 213-218.

40. Sone, N., and Toh, H. (1994) Membrane-bound Bacillus cytochromes c and their phylogenetic position among bacterial class I cytochromes c, FEMS Microbiol. Lett., 122, 203-210.

41. Benini, S., Gonzales, A., Rypniewski, W. R., Wilson, K. S., van Beeumen, J. J., and Ciurli, S. (2000) Crystal structure of oxidized Bacillus pasteurii cytochrome c553 at 0.97-Å resolution, Biochemistry, 39, 13115-13126, doi: 10.1021/bi000402j.

42. Monedero, V., Boël, G., and Deutscher, J. (2001) Catabolite regulation of the cytochrome c550-encoding Bacillus subtilis cccA gene, J. Mol. Biol. Biotech., 3, 433-438.

43. Hambraeus, G., von Wachenfeldt, C., and Hederstedt, L. (2003) Genome-wide survey of mRNA half-lives in Bacillus subtilis identifies extremely stable mRNAs, Mol. Genet. Genomics, 269, 706-714, doi: 10.1007/s00438-003-0883-6.

44. Anderson, I., Sorokin, A. K., Kapatral, V., Reznik, G., Bhattacharya, A., Mikhailova, N., et al. (2005) Comparative genome analysis of Bacillus cereus group genomes with Bacillus subtilis, FEMS Microbiol. Lett., 250, 175-184, doi: 10.1016/j.femsle.2005.07.008.

45. Wilson, A. C., Hoch, J., and Perego, M. (2009) Two small c-type cytochromes affect virulence gene expression in Bacillus anthracis, Mol. Microbiol., 72, 109-123.

46. Gustavsson, T., Trane, M., Moparthi, V. K., Miklovyte, E., Mopharti, L., Gorecki, K., et al. (2010) A cytochrome c fusion protein domain for convenient detection, quantification, and enhanced production of membrane proteins in Escherichia coli-expression and characterization of cytochrome-tagged complex I subunits, Protein Sci., 19, 1445-1460, doi: 10.1002/pro.424.

47. Forte, E., Borisov, V. B., Vicente, J. B., and Giuffé, A. (2017) Cytochrome bd and gaseous ligands in bacterial physiology, Adv. Microbial. Physiol., 71, 171-234.

48. Sakamoto, J., Koga, E., Mizuta, T., Sato, C., Noguchi, S., and Sone, N. (1999) Gene structure and quinol oxidase activity of a cytochrome bd-type oxidase from Bacillus stearothermophilus, Biochim. Biophys. Acta, 1411, 147-158, doi: 10.1016/s0005-2728(99)00012-2.

49. Safarian, S., Rajendran, C., Müller, H., Preu, J., Langer, J. D., et al. (2016) Structure of a bd oxidase indicates similar mechanisms for membrane-integrated oxygen reductases, Science, 352, 583-586.

50. Safarian, S., Hahn, A., Mills, D. J., Radloff, M., Eisinger, M. L., et al. (2019) Active site rearrangement and structural divergence in prokaryotic respiratory oxidases, Science, 366, 100-104.

51. Winstedt, L., Yoshida, K., Fujita, Y., and von Wachenfeldt, C. (1998) Cytochrome bd biosynthesis in Bacillus subtilis: characterization of the cydABCD operon, J. Bacteriol., 180, 6571-6580.

52. Kjelgaard, P. (2007) Studies on Haemproteins of Gram-positive Bacteria, PhD thesis, Lund University, Lund, Sweden.

53. Winstedt, L., Frankenberg, L., Hederstedt, L., and Wachenfeldt, C. V. (2000) Enterococcus faecalis V583 contains a cytochrome bd-type respiratory oxidase, J. Bacteriol., 182, 3863-3866.

54. Puri-Taneja, A., Schau, M., Chen, Y., and Hulett, F. M. (2007) Regulators of the Bacillus subtilis cydABCD operon: identification of a negative regulator, CcpA, and a positive regulator, ResD, J. Bacteriol., 189, 3348-3358, doi: 10.1128/JB.00050-07.

55. Reents, H., Münch, R., Dammeyer, T., Jahn, D., and Härtig, E. (2006) The Fnr regulon of Bacillus subtilis, J. Bacteriol., 188, 1103-1112.

56. Wang, E., Bauer, M., Rogstam, A., Linse, S., Logan, D., and Von Wachenfeldt, C. (2008) Structure and functional properties of the Bacillus subtilis transcriptional repressor Rex, Mol. Microbiol., 69, 466-478.

57. Azarkina, N., Siletsky, S., Borisov, V., von Wachenfeldt, C., Hederstedt, L., and Konstantinov, A. A. (1999) A cytochrome bb’-type quinol oxidase in Bacillus subtilis strain 168, J. Biol. Chem., 274, 32810-32817.

58. Borriss, R., Danchin, A., Harwood, C. R., Médigue, C., Rocha, E. P. C., Sekowska, A., and Vallenet, D. (2017) Bacillus subtilis, the model Gram-positive bacterium: 20 years of annotation refinement, Microbial biotechnol., 11, 3-17.

59. Thebeling, A., Rasmussen, T., Burschel, S., Wohlwend, D., Kägi, J., et al. (2019) Homologous bd oxidases share the same architecture but differ in mechanism, Nat. Comm., 10, 5138, doi: 10.1038/s41467-019-13122-4.

60. Hederstedt, L. (2002) Succinate:quinone oxidoreductase in the bacteria Paracoccus denitrificans and Bacillus subtilis, Biochim. Biophys. Acta, 1553, 74-83.

61. Lancaster, C. R. D. (2013) The di-heme family of respiratory complex II enzymes, Biochim. Biophys. Acta, 1827, 679-687.

62. Hederstedt, L., and Ohnishi, T. (1992) Progress in succinate:quinone oxidoreductase research, in Molecular Mechanisms in Bioenergetics (Ernster, L., ed.), Elsevier, Amsterdam, pp. 163-198.

63. Berry, E. A., and Walker, F. A. (2008) Bis-histidine-coordinated hemes in four-helix bundels: how the geometry of the bundle controls the axial imidazole plane orientations in transmembrane cytochromes of mitochondrial Complexes II and III and related proteions, J. Biol. Inorg. Chem., 13, 481-498.

64. Hägerhäll, C., and Hederstedt, L. (1996) A structural model for the membrane-integral domain of succinate:quinone oxidoreductases, FEBS Lett., 389, 25-31.

65. Matsson, M., Tolstoy, D., Aasa, R., and Hederstedt, L. (2000) The distal heme center in Bacillus subtilis succinate:quinone reductase is crucial for electron transfer to menaquinone, Biochemistry, 39, 8617-8624.

66. Hägerhäll, C., Friden, H., Aasa, R., and Hederstedt, L. (1995) Transmembrane topology and axial ligands to hemes in the cytochrome b subunit of Bacillus subtilis succinate:menaquinone reductase, Biochemistry, 34, 11080-11089.

67. Hägerhäll, C., Aasa, R., von Wachenfeldt, C., and Hederstedt, L. (1992) Two hemes in Bacillus subtilis succinate:menaquinone oxidoreductase (complex II), Biochemistry, 31, 7411-7421.

68. Smirnova, I. A., Hägerhäll, C., Konstantinov, A. A., and Hederstedt, L. (1995) HOQNO interaction with cytochrome b in succinate:menaquinone oxidoreductase from Bacillus subtilis, FEBS Lett., 359, 23-26.

69. Fedor, J. G., Rothery, R. A., Giraldi, K. S., and Weiner, J. H. (2014) Q-site occupancy defines heme heterogenity in Escherichia coli nitrate reductase A (NarGHI), Biochemistry, 53, 1733-1741.

70. Schnorpfeil, M., Janausch, I. G., Biel, S., Kröger, A., and Unden, G. (2001) Generation of a proton potential by succinate dehydrogenase of Bacillus subtilis functioning as a fumarate reductase, Eur. J. Biochem., 268, 3069-3074.

71. Madej, M. G., Nasiri, H. R., Hilgendorff, N. S., Schwalbe, H., Unden, G., and Lancaster, C. R. D. (2006) Experimental evidence for proton motive force-dependent catalysis by the diheme-containing succinate:menaquinone oxidoreductase from the gram-positive bacterium Bacillus licheniformis, Biochemistry, 45, 15049-15055.

72. Schirawski, J., and Unden, G. (1998) Menaquinone-dependent succinate dehydrogenase of bacteria catalyzes reversed electron transport driven by the proton potential, Eur. J. Biochem., 257, 210-215.

73. Zaunmüller, T., Kelly, D. J., Glöckner, F. O., and Unden, G. (2006) Succinate dehydrogenase functioning by reverse redox loop mechanism and fumarate reductase in sulphate-reducing bacteria, Microbiology, 152, 2443-2453.

74. Gong, H., Gao, Y., Zhou, X., Xiao, Y., Wang, W., et al. (2020) Cryo-EM structure of trimeric Mycobacterium smegmatis succinate dehydrogenase with a membrane-anchor SdhF, Nat. Comm., 11, 4245, doi: 10.1038/s41467-020-18011-9.

75. Lancaster, C. R. D., Kröger, A., Auer, M., and Michel, H. (1999) Structure of fumarate reductase from Wolinella succinogenes at 2.2 Å resolution, Nature, 402, 377-385.

76. Guan, H.-H., Hsieh, Y.-C., Lin, P.-J., Huang, Y.-C., Yoshimura, M., et al. (2018) Structural insights into the electron/proton transfer pathways in the quinol:fumarate reductase from Desulfovibrio gigas, Sci. Rep., 8, 14935, doi: 10.1038/s41598-018-33193-5.

77. Wöhri, A. B., Johansson, L. C., Wadsten-Hindrichsen, P., Wahlghren, W. Y., Fisher, G., et al. (2008) A lipidic-sponge phase screen for membrane protein crystallization, Structure, 16, 1003-1009, doi: 10.1016/j.str.2008.06.003.

78. Baureder, M., and Hederstedt, L. (2011) Production, purification and detergent exchange of isotopically labeled Bacillus subtilis cytochrome b558 (SdhC), Protein Expr. Purif., 80, 97-101, doi: 10.1016/j.pep.2011.05.013.

79. Hoffman, T., Troup, B., Szabo, A., Hungerer, C., and Jahn, D. (1995) The anaerobic life of Bacillus subtilis: cloning of the genes encoding the respiratory nitrate reductase system, FEMS Microbiol. Lett., 131, 219-225.

80. Richardson, D. J., Berks, B. C., Rusell, D. A., Spiro, S., and Taylor, C. J. (2001) Functional, biochemical and genetic diversity of prokaryotic nitrate reductases, Cell. Mol. Life Sci., 58, 165-178.

81. Bertero, M. G., Rothery, R. A., Palak, M., Hou, C., Lim, D., et al. (2003) Insight into the respiratory electron transfer pathway from the structure of nitrate reductase A, Nat. Struct. Biol., 10, 681-686.

82. Blasco, D., Guigliarelli, B., Magalon, A., Asso, M., Giordano, G., and Rothery, R. A. (2001) The coordination and function of the redox centers of membrane-bound nitrate reductases, Cell. Mol. Life Sci., 58, 179-193.

83. Zeigler, D. R., Prágai, Z., Rodriguez, S., Chevreux, B., Muffler, A., et al. (2008) The Origins of 168, W23, and other Bacillus subtilis legacy strains, J. Bacteriol., 190, 6983-6995.

84. Burton, A. T., and Kearns, D. B. (2020) The large pBS32/pLS32c plasmid of ancestral Bacillus subtilis, J. Bacteriol., 202, e00290-20, doi: 10.1128/JB-00290-20.

85. Konkol, M. A., Blair, K. M., and Kearns, D. B. (2013) Plasmid-encoded ComI inhibits competence in the ancestral 3610 strain of Bacillus subtilis, J. Bacteriol., 195, 4085-4093.

86. Nye, T. M., Schroeder, J. W., Kearns, D. B., and Simmons, L. A. (2017) Complete genome sequence of undomesticated Bacillus subtilis strain NCIB 3610, Genome Announc., 5, e00364-e00317, doi: 10.1128/genomeA.00364-17.

87. Hederstedt, L. (1986) Molecular properties, genetics, and biosynthesis of Bacillus subtilis succinate dehydrogenase complex, Methods Enzymol., 126, 399-414.

88. Kolodkin-Gal, I., Elsholz, A. K. W., Muth, C., Girguis, P. R., Kolter, R., and Losick, R. (2013) Respiration control of multicellularity in Bacillus subtilis by a complex of the cytochrome chain with a membrabe-embedded histidine kinase, Genes Dev., 27, 887-899.

89. Zhou, X., Zhang, N., Xia, L., Li, Q., Shao, J., Shen, Q., and Zhang, R. (2018) ResDE two-component regulatory system mediates oxygen limitaton-induced biofilm formation by Bacillus amyloliquefaciens SQR9, App. Environ. Microbiol., 84, e02744-02717.

90. Azarkina, N., and Konstantinov, A. A. (2002) Stimulation of menaquinone-dependent electron transfer in the respiratory chain of Bacillus subtilis by membrane erergization, J. Bacteriol., 184, 5339-5347.

91. Tochikubo, K. (1971) Changes in terminal respiratory pathways of Bacillus subtilis during germination, outgrowth and vegetative growth, J. Bacteriol., 108, 652-661.

92. Tan, I. S., and Ramamurthi, K. S. (2014) Spore formation in Bacillus subtilis, Environ. Microbiol. Rep., 6, 212-225, doi: 10.1111/1758-2229.12130.

93. Magnusson, K., Hederstedt, L., and Rutberg, L. (1985) Cloning and expression in Escherichia coli of sdhA, the structural gene for cytochrome b558 of the Bacillus subtilis succinate dehydrogenase complex, J. Bacteriol., 162, 1180-1185.

94. Hederstedt, L., Bergman, T., and Jörnvall, H. (1987) Processing of Bacillus subtilis succinate dehydrogenase and cytochrome b-558 polypeptides. Lack of covalently bound flavin in the Bacillus enzyme expressed in Escherichia coli, FEBS Lett., 213, 385-390.

95. Phillips, M. K., Hederstedt, L., Hasnain, S., Rutberg, L., and Guest, J. R. (1987) Nucleotide sequence encoding the flavoprotein and iron-sulfur protein subunits of the Bacillus subtilis PY79 succinate dehydrogenase complex, J. Bacteriol., 169, 864-873.

96. Moosavi, B., Berry, E. A., Zhu, X.-L., and Yang, W.-C. (2019) The assembly of succinate dehydrogenase: a key enzyme in bioenergetics, Cell. Mol. Life Sci., 76, 4023-4042.

97. Sharma, P., Maklashina, E., Cecchini, G., and Iverson, T. M. (2019) Maturation of the respiratory complex II flavoprotein, Curr. Opin. Struct. Biol., 59, 38-46.

98. Brandsch, R., and Hederstedt, L. (1989) Expression and flavinylation of Arthrobacter oxydans 6-hydroxy-D-nicotine oxidase in Bacillus subtilis, J. Gen. Microbiol., 135, 1093-1099.

99. Hederstedt, L. (1983) Succinate dehydrogenase mutants of Bacillus subtilis lacking covalently bound flavin in the flavoprotein subunit, Eur. J. Biochem., 132, 589-593.

100. Maguire, J., Magnusson, K., and Hederstedt, L. (1986) Bacillus subtilis mutant succinate dehydrogenase lacking covalently bound flavin: identification of the primary defect and studies on the iron-sulfur clusters in mutated and wild type enzyme, Biochemistry, 25, 5202-5208.

101. Hederstedt, L., Magnusson, K., and Rutberg, L. (1982) Reconstitution of succinate dehydrogenase in Bacillus subtilis by protoplast fusion, J. Bacteriol., 152, 157-165.

102. Lauraeus, M., Haltia, T., Saraste, M., and Wikstrom, M. (1991) Bacillus subtilis expresses two kinds of haem A-containing terminal oxidases, Eur. J. Biochem., 197, 699-705.

103. Lauraeus, M., Wikström, M., Varotsis, C., Tecklenburg, M. J., and Babcock, G. T. (1992) Optical and resonance raman spectroscopy of the heme groups of the quinol-oxidizing cytochrome aa3 of Bacillus subtilis, Biochemistry, 31, 10054-10060.

104. Von Wachenfeldt, C., de Vries, S., and van der Oost, J. (1994) The CuA site of the caa3-type oxidase of Bacillus subtilisis a mixed-valence binuclear copper centre, FEBS Lett., 340, 109-113.

105. De Vrij, W., van der Burg, B., and Konings, W. N. (1987) Spectral and potentiometric analysis of cytochromes from Bacillus subtilis, Eur. J. Biochem., 166, 589-595.

106. Sone, N., Kutoh, E., and Yanagita, Y. (1989) Cytochrome c-551 from the thermophilic bacterium PS3 grown under air-limited conditions, Biochim. Biophys. Acta, 977, 329-334.

107. Hoch, J. A. (1991) Genetic analysis in Bacillus subtilis, Methods Enzymol., 204, 305-320.

108. Henning, W., Vo, L., Albanese, J., and Hill, B. C. (1995) High-yield purification of cytochrome aa3 and cytochrome caa3 oxidases from Bacillus subtilis plasma membranes, Biochem. J., 309, 279-283.