БИОХИМИЯ, 2020, том 85, вып. 12, с. 1939–1960

УДК 577.3;577.27

От метаболизма к иммунитету: АФК и другие сигналы

Обзор

© 2020 А.Ю. Андреев 1*, Ю.Е. Кушнарева 2, Н.Н. Старкова 3, А.А. Старков 4

The Scripps Research Institute, 10550 La Jolla, CA 92037, USA; E-mail: alex_andreyev@mitoexperts.com

La Jolla Institute for Allergy and Immunology, 9420 La Jolla, CA 92037, USA

State University of New York, Maritime College, New York, NY 10465, USA

Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY 10065, USA

Поступила в редакцию 11.09.2020
После доработки 13.11.2020
Принята к публикации 17.11.2020

DOI: 10.31857/S0320972520120167

КЛЮЧЕВЫЕ СЛОВА: иммунометаболизм, активные формы кислорода, гликолитическое переключение, макрофаги, Т-клетки, биогенез митохондрий.

Аннотация

Функционирование иммунных клеток в значительной степени определяется их метаболизмом. Исследование метаболизма иммунной системы по определению является мультидисциплинарным разделом иммунологии, который интегрирует данные о механизмах передачи энергии и биохимических путях. Одним из наиболее важных понятий в области иммунологии является метаболическое переключение – вызванный активацией переход иммунных клеток к преимущественному использованию специфических катаболических путей для получения энергии. Митохондрии участвуют в этом процессе и способствуют метаболической адаптации через активацию различных механизмов, включая изменения продукции АТР в соответствии с динамически меняющимися метаболическими потребностями, а также служат центрами управления для внутриклеточной передачи сигналов. Последняя функция включает в себя один из наиболее изучаемых митохондриальных процессов – генерацию активных форм кислорода (АФК). Роль митохондриальных АФК в окислительном стрессе хорошо известна, в то время как их участие в иммунном ответе представляет собой активно развивающееся направление. В этом обзоре мы обсуждаем роль сигнальных АФК и иммунометаболизма с точки зрения биоэнергетики. Мы также предлагаем критический взгляд на методологию оценки АФК, описывая современные проблемы в этой области. В заключение, на основе анализа литературных данных, мы полагаем что, в противоположность окислительному стрессу, продукция АФК с целью клеточной регуляции в большей степени контролируется биогенезом митохондрий, чем метаболическим переключением.

Сноски

* Адресат для корреспонденции.

Финансирование

Эта работа была частично поддержана National Institute of Health (P01AG014930/AG/NIA NIH HSS).

Конфликт интересов

Авторы заявляют об отсутствии какого-либо конфликта интересов.

Соблюдение этических норм

Данная статья не содержит описания исследований, проводимых авторами с участием людей или животных моделей.

Список литературы

1. Kushnareva, Y., Murphy, A. N., and Andreyev, A. (2002) Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state, Biochem. J., 368, 545-553, doi: 10.1042/BJ20021121.

2. Andreyev, A. Y., Kushnareva, Y. E., and Starkov, A. A. (2005) Mitochondrial metabolism of reactive oxygen species, Biochemistry (Moscow), 70, 200-214, doi: 10.1007/s10541-005-0102-7.

3. Scialo, F., Fernandez-Ayala, D. J., and Sanz, A. (2017) Role of mitochondrial reverse electron transport in ROS signaling: potential roles in health and disease, Front. Physiol., 8, 428, doi: 10.3389/fphys.2017.00428.

4. Brand, M. D. (2010) The sites and topology of mitochondrial superoxide production, Exp. Gerontol., 45, 466-472, doi: 10.1016/j.exger.2010.01.003.

5. Chouchani, E. T., Pell, V. R., Gaude, E., Aksentijevic, D., Sundier, S. Y., et al. (2014) Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS, Nature, 515, 431-435, doi: 10.1038/nature13909.

6. Niatsetskaya, Z. V., Sosunov, S. A., Matsiukevich, D., Utkina-Sosunova, I. V., Ratner, V. I., Starkov, A. A., and Ten, V. S. (2012) The oxygen free radicals originating from mitochondrial complex I contribute to oxidative brain injury following hypoxia-ischemia in neonatal mice, J. Neurosci., 32, 3235-3244, doi: 10.1523/JNEUROSCI.6303-11.2012.

7. Sahni, P. V., Zhang, J., Sosunov, S., Galkin, A., Niatsetskaya, Z., Starkov, A., Brookes, P. S., and Ten, V. S. (2018) Krebs cycle metabolites and preferential succinate oxidation following neonatal hypoxic-ischemic brain injury in mice, Pediatr. Res., 83, 491-497, doi: 10.1038/pr.2017.277.

8. Boveris, A., and Chance, B. (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen, Biochem. J., 134, 707-716, doi: 10.1042/bj1340707.

9. Boveris, A., Oshino, N., and Chance, B. (1972) The cellular production of hydrogen peroxide, Biochem. J., 128, 617-630, doi: 10.1042/bj1280617.

10. Zorov, D. B., Juhaszova, M., and Sollott, S. J. (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release, Physiol. Rev., 94, 909-950, doi: 10.1152/physrev.00026.2013.

11. Andreyev, A. Y., Kushnareva, Y. E., Murphy, A. N., and Starkov, A. A. (2015) Mitochondrial ROS metabolism: 10 years later, Biochemistry (Moscow), 80, 517-531, doi: 10.1134/S0006297915050028.

12. Starkov, A. A., Fiskum, G., Chinopoulos, C., Lorenzo, B. J., Browne, S. E., Patel, M. S., and Beal, M. F. (2004) Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species, J. Neurosci., 24, 7779-7788, doi: 10.1523/JNEUROSCI.1899-04.2004.

13. Kareyeva, A. V., Grivennikova, V. G., Cecchini, G., and Vinogradov, A. D. (2011) Molecular identification of the enzyme responsible for the mitochondrial NADH-supported ammonium-dependent hydrogen peroxide production, FEBS Lett., 585, 385-389, doi: 10.1016/j.febslet.2010.12.019.

14. Buck, M. D., O’Sullivan, D., and Pearce, E. L. (2015) T cell metabolism drives immunity, J. Exp. Med., 212, 1345-1360, doi: 10.1084/jem.20151159.

15. Almeida, L., Lochner, M., Berod, L., and Sparwasser, T. (2016) Metabolic pathways in T cell activation and lineage differentiation, Semin. Immunol., 28, 514-524, doi: 10.1016/j.smim.2016.10.009.

16. Diskin, C., and Palsson-McDermott, E. M. (2018) Metabolic modulation in macrophage effector function, Front. Immunol., 9, 270, doi: 10.3389/fimmu.2018.00270.

17. O’Neill, L. A., Kishton, R. J., and Rathmell, J. (2016) A guide to immunometabolism for immunologists, Nat. Rev. Immunol., 16, 553-565, doi: 10.1038/nri.2016.70.

18. Ramalho, R., Rao, M., Zhang, C., Agrati, C., Ippolito, G., Wang, F. S., Zumla, A., and Maeurer, M. (2020) Immuno-metabolism: new insights and lessons from antigen-directed cellular immune responses, Semin. Immunopathol., 42, 279-313, doi: 10.1007/s00281-020-00798-w.

19. Escoll, P., and Buchrieser, C. (2018) Metabolic reprogramming of host cells upon bacterial infection: why shift to a Warburg-like metabolism? FEBS J., 285, 2146-2160, doi: 10.1111/febs.14446.

20. Wang, T., Marquardt, C., and Foker, J. (1976) Aerobic glycolysis during lymphocyte proliferation, Nature, 261, 702-705, doi: 10.1038/261702a0.

21. Bennett, W. E., and Cohn, Z. A. (1966) The isolation and selected properties of blood monocytes, J. Exp. Med., 123, 145-160, doi: 10.1084/jem.123.1.145.

22. Gudmundsdottir, H., Wells, A. D., and Turka, L. A. (1999) Dynamics and requirements of T cell clonal expansion in vivo at the single-cell level: effector function is linked to proliferative capacity, J. Immunol., 162, 5212-5223.

23. Delmastro-Greenwood, M. M., and Piganelli, J. D. (2013) Changing the energy of an immune response, Am. J. Clin. Exp. Immunol., 2, 30-54.

24. Vander Heiden, M. G., Cantley, L. C., and Thompson, C. B. (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation, Science, 324, 1029-1033, doi: 10.1126/science.1160809.

25. Hume, D. A., Radik, J. L., Ferber, E., and Weidemann, M. J. (1978) Aerobic glycolysis and lymphocyte transformation, Biochem. J., 174, 703-709, doi: 10.1042/bj1740703.

26. Wang, A., Luan, H. H., and Medzhitov, R. (2019) An evolutionary perspective on immunometabolism, Science, 363, doi: 10.1126/science.aar3932.

27. Chang, C. H., Curtis, J. D., Maggi, L. B., Jr., Faubert, B., Villarino, A. V., et al. (2013) Posttranscriptional control of T cell effector function by aerobic glycolysis, Cell, 153, 1239-1251, doi: 10.1016/j.cell.2013.05.016.

28. Peng, M., Yin, N., Chhangawala, S., Xu, K., Leslie, C. S., and Li, M. O. (2016) Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism, Science, 354, 481-484, doi: 10.1126/science.aaf6284.

29. Zhang, D., Tang, Z., Huang, H., Zhou, G., Cui, C., et al. (2019) Metabolic regulation of gene expression by histone lactylation, Nature, 574, 575-580, doi: 10.1038/s41586-019-1678-1.

30. Phan, A. T., Goldrath, A. W., and Glass, C. K. (2017) Metabolic and epigenetic coordination of T cell and macrophage immunity, Immunity, 46, 714-729, doi: 10.1016/j.immuni.2017.04.016.

31. Millet, P., Vachharajani, V., McPhail, L., Yoza, B., and McCall, C. E. (2016) GAPDH binding to TNF-alpha mRNA contributes to posttranscriptional repression in monocytes: a novel mechanism of communication between inflammation and metabolism, J. Immunol., 196, 2541-2551, doi: 10.4049/jimmunol.1501345.

32. Colell, A., Green, D. R., and Ricci, J. E. (2009) Novel roles for GAPDH in cell death and carcinogenesis, Cell Death Differ., 16, 1573-1581, doi: 10.1038/cdd.2009.137.

33. Nagy, E., and Rigby, W. F. (1995) Glyceraldehyde-3-phosphate dehydrogenase selectively binds AU-rich RNA in the NAD+-binding region (Rossmann fold), J. Biol. Chem., 270, 2755-2763, doi: 10.1074/jbc.270.6.2755.

34. Rodriguez-Pascual, F., Redondo-Horcajo, M., Magan-Marchal, N., Lagares, D., Martinez-Ruiz, A., Kleinert, H., and Lamas, S. (2008) Glyceraldehyde-3-phosphate dehydrogenase regulates endothelin-1 expression by a novel, redox-sensitive mechanism involving mRNA stability, Mol. Cell. Biol., 28, 7139-7155, doi: 10.1128/MCB.01145-08.

35. Liberti, M. V., Dai, Z., Wardell, S. E., Baccile, J. A., Liu, X., et al. (2017) A predictive model for selective targeting of the Warburg effect through GAPDH inhibition with a natural product, Cell Metab., 26, 648-659 e648, doi: 10.1016/j.cmet.2017.08.017.

36. Pathria, G., Scott, D. A., Feng, Y., Sang Lee, J., Fujita, Y., et al. (2018) Targeting the Warburg effect via LDHA inhibition engages ATF4 signaling for cancer cell survival, EMBO J., 37, doi: 10.15252/embj.201899735.

37. Yang, X., Xia, R., Yue, C., Zhai, W., Du, W., et al. (2018) ATF4 regulates CD4+ T cell immune responses through metabolic reprogramming, Cell Rep., 23, 1754-1766, doi: 10.1016/j.celrep.2018.04.032.

38. Dietl, K., Renner, K., Dettmer, K., Timischl, B., Eberhart, K., et al. (2010) Lactic acid and acidification inhibit TNF secretion and glycolysis of human monocytes, J. Immunol., 184, 1200-1209, doi: 10.4049/jimmunol.0902584.

39. Haas, R., Cucchi, D., Smith, J., Pucino, V., Macdougall, C. E., and Mauro, C. (2016) Intermediates of metabolism: from bystanders to signalling molecules, Trends Biochem. Sci., 41, 460-471, doi: 10.1016/j.tibs.2016.02.003.

40. Haas, R., Smith, J., Rocher-Ros, V., Nadkarni, S., Montero-Melendez, T., et al. (2015) Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions, PLoS Biol., 13, e1002202, doi: 10.1371/journal.pbio.1002202.

41. Metallo, C. M., and Vander Heiden, M. G. (2010) Metabolism strikes back: metabolic flux regulates cell signaling, Genes Dev., 24, 2717-2722, doi: 10.1101/gad.2010510.

42. Weinberg, S. E., Sena, L. A., and Chandel, N. S. (2015) Mitochondria in the regulation of innate and adaptive immunity, Immunity, 42, 406-417, doi: 10.1016/j.immuni.2015.02.002.

43. Palmieri, E. M., Spera, I., Menga, A., Infantino, V., Porcelli, V., et al. (2015) Acetylation of human mitochondrial citrate carrier modulates mitochondrial citrate/ malate exchange activity to sustain NADPH production during macrophage activation, Biochim. Biophys. Acta, 1847, 729-738, doi: 10.1016/j.bbabio.2015.04.009.

44. Williams, N. C., and O’Neill, L. A. J. (2018) A role for the Krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflammation, Front. Immunol., 9, 141, doi: 10.3389/fimmu.2018.00141.

45. Loftus, R. M., and Finlay, D. K. (2016) Immunometabolism: cellular metabolism turns immune regulator, J. Biol. Chem., 291, 1-10, doi: 10.1074/jbc.R115.693903.

46. Chinopoulos, C. (2020) Acute sources of mitochondrial NAD+ during respiratory chain dysfunction, Exp. Neurol., 327, 113218, doi: 10.1016/j.expneurol.2020.113218.

47. Hillgartner, F. B., Salati, L. M., and Goodridge, A. G. (1995) Physiological and molecular mechanisms involved in nutritional regulation of fatty acid synthesis, Physiol. Rev., 75, 47-76, doi: 10.1152/physrev.1995.75.1.47.

48. Tannahill, G. M., Curtis, A. M., Adamik, J., Palsson-McDermott, E. M., McGettrick, A. F., et al. (2013) Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha, Nature, 496, 238-242, doi: 10.1038/nature11986.

49. Gill, T., and Levine, A. D. (2013) Mitochondria-derived hydrogen peroxide selectively enhances T cell receptor-initiated signal transduction, J. Biol. Chem., 288, 26246-26255, doi: 10.1074/jbc.M113.476895.

50. Selak, M. A., Armour, S. M., MacKenzie, E. D., Boulahbel, H., Watson, D. G., et al. (2005) Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase, Cancer Cell, 7, 77-85, doi: 10.1016/j.ccr.2004.11.022.

51. Cordes, T., Wallace, M., Michelucci, A., Divakaruni, A. S., Sapcariu, S. C., et al. (2016) Immunoresponsive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels, J. Biol. Chem., 291, 14274-14284, doi: 10.1074/jbc.M115.685792.

52. Lampropoulou, V., Sergushichev, A., Bambouskova, M., Nair, S., Vincent, E. E., et al. (2016) Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation, Cell Metab., 24, 158-166, doi: 10.1016/j.cmet.2016.06.004.

53. O’Neill, L. A. J., and Artyomov, M. N. (2019) Itaconate: the poster child of metabolic reprogramming in macrophage function, Nat. Rev. Immunol., 19, 273-281, doi: 10.1038/s41577-019-0128-5.

54. Michelucci, A., Cordes, T., Ghelfi, J., Pailot, A., Reiling, N., et al. (2013) Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production, Proc. Natl. Acad. Sci. USA, 110, 7820-7825, doi: 10.1073/pnas.1218599110.

55. Dennis, E. A., Deems, R. A., Harkewicz, R., Quehenberger, O., Brown, H. A., et al. (2010) A mouse macrophage lipidome, J. Biol. Chem., 285, 39976-39985, doi: 10.1074/jbc.M110.182915.

56. Salkowski, C. A., Detore, G., McNally, R., van Rooijen, N., and Vogel, S. N. (1997) Regulation of inducible nitric oxide synthase messenger RNA expression and nitric oxide production by lipopolysaccharide in vivo: the roles of macrophages, endogenous IFN-gamma, and TNF receptor-1-mediated signaling, J. Immunol., 158, 905-912.

57. Strelko, C. L., Lu, W., Dufort, F. J., Seyfried, T. N., Chiles, T. C., Rabinowitz, J. D., and Roberts, M. F. (2011) Itaconic acid is a mammalian metabolite induced during macrophage activation, J. Am. Chem. Soc., 133, 16386-16389, doi: 10.1021/ja2070889.

58. Mills, E. L., Ryan, D. G., Prag, H. A., Dikovskaya, D., Menon, D., et al. (2018) Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1, Nature, 556, 113-117, doi: 10.1038/nature25986.

59. Newton, R., Priyadharshini, B., and Turka, L. A. (2016) Immunometabolism of regulatory T cells, Nat. Immunol., 17, 618-625, doi: 10.1038/ni.3466.

60. Lindsten, T., June, C. H., and Thompson, C. B. (1988) Multiple mechanisms regulate c-myc gene expression during normal T cell activation, EMBO J., 7, 2787-2794.

61. Weichhart, T., Hengstschlager, M., and Linke, M. (2015) Regulation of innate immune cell function by mTOR, Nat. Rev. Immunol., 15, 599-614, doi: 10.1038/nri3901.

62. Saravia, J., Raynor, J. L., Chapman, N. M., Lim, S. A., and Chi, H. (2020) Signaling networks in immunometabolism, Cell Res., 30, 328-342, doi: 10.1038/s41422-020-0301-1.

63. Muller, M. R., and Rao, A. (2010) NFAT, immunity and cancer: a transcription factor comes of age, Nat. Rev. Immunol., 10, 645-656, doi: 10.1038/nri2818.

64. Seo, H., Chen, J., Gonzalez-Avalos, E., Samaniego-Castruita, D., Das, A., et al. (2019) TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+ T cell exhaustion, Proc. Natl. Acad. Sci. USA, 116, 12410-12415, doi: 10.1073/pnas.1905675116.

65. Wang, R., Dillon, C. P., Shi, L. Z., Milasta, S., Carter, R., et al. (2011) The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation, Immunity, 35, 871-882, doi: 10.1016/j.immuni.2011.09.021.

66. Afonina, I. S., Zhong, Z., Karin, M., and Beyaert, R. (2017) Limiting inflammation-the negative regulation of NF-kappaB and the NLRP3 inflammasome, Nat. Immunol., 18, 861-869, doi: 10.1038/ni.3772.

67. Zhong, Z., Umemura, A., Sanchez-Lopez, E., Liang, S., Shalapour, S., et al. (2016) NF-kappaB restricts inflammasome activation via elimination of damaged mitochondria, Cell, 164, 896-910, doi: 10.1016/j.cell.2015.12.057.

68. Jones, R. G., and Pearce, E. J. (2017) MenTORing immunity: mTOR signaling in the development and function of tissue-resident immune cells, Immunity, 46, 730-742, doi: 10.1016/j.immuni.2017.04.028.

69. Codo, A. C., Davanzo, G. G., Monteiro, L. B., de Souza, G. F., Muraro, S. P., et al. (2020) Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1alpha/glycolysis-dependent axis, Cell Metab., 32, 437-446 e435, doi: 10.1016/j.cmet.2020.07.007.

70. Mills, E. L., Kelly, B., Logan, A., Costa, A. S. H., Varma, M., et al. (2016) Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages, Cell, 167, 457-470 e413, doi: 10.1016/j.cell.2016.08.064.

71. Van den Bossche, J., Baardman, J., Otto, N. A., van der Velden, S., Neele, A. E., et al. (2016) Mitochondrial dysfunction prevents repolarization of inflammatory macrophages, Cell Rep., 17, 684-696, doi: 10.1016/j.celrep.2016.09.008.

72. Stuehr, D. J., and Nathan, C. F. (1989) Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells, J. Exp. Med., 169, 1543-1555, doi: 10.1084/jem.169.5.1543.

73. Brown, G. C., and Borutaite, V. (1999) Nitric oxide, cytochrome c and mitochondria, Biochem. Soc. Symp., 66, 17-25, doi: 10.1042/bss0660017.

74. Clementi, E., Brown, G. C., Feelisch, M., and Moncada, S. (1998) Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione, Proc. Natl. Acad. Sci. USA, 95, 7631-7636, doi: 10.1073/pnas.95.13.7631.

75. Palmieri, E. M., Gonzalez-Cotto, M., Baseler, W. A., Davies, L. C., Ghesquiere, B., et al. (2020) Nitric oxide orchestrates metabolic rewiring in M1 macrophages by targeting aconitase 2 and pyruvate dehydrogenase, Nat. Commun., 11, 698, doi: 10.1038/s41467-020-14433-7.

76. Mookerjee, S. A., Gerencser, A. A., Nicholls, D. G., and Brand, M. D. (2017) Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements, J. Biol. Chem., 292, 7189-7207, doi: 10.1074/jbc.M116.774471.

77. Nicholls, D. G., Ferguson, S. J. (2001) Bioenergetics 3, Academic Press, San-Diego.

78. Lehninger, A. L. (1976) Biochemistry, 2nd edition, Worth Publishers Inc., New York, N.Y.

79. Divakaruni, A. S., Wallace, M., Buren, C., Martyniuk, K., Andreyev, A. Y., et al. (2017) Inhibition of the mitochondrial pyruvate carrier protects from excitotoxic neuronal death, J. Cell Biol., 216, 1091-1105, doi: 10.1083/jcb.201612067.

80. Wang, A., Huen, S. C., Luan, H. H., Yu, S., Zhang, C., Gallezot, J. D., Booth, C. J., and Medzhitov, R. (2016) Opposing effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation, Cell, 166, 1512-1525.e1512, doi: 10.1016/j.cell.2016.07.026.

81. Wang, A., Pope, S. D., Weinstein, J. S., Yu, S., Zhang, C., Booth, C. J., and Medzhitov, R. (2019) Specific sequences of infectious challenge lead to secondary hemophagocytic lymphohistiocytosis-like disease in mice, Proc. Natl. Acad. Sci. USA, 116, 2200-2209, doi: 10.1073/pnas.1820704116.

82. Vats, D., Mukundan, L., Odegaard, J. I., Zhang, L., Smith, K. L., et al. (2006) Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation, Cell Metab., 4, 13-24, doi: 10.1016/j.cmet.2006.05.011.

83. Huang, S. C., Everts, B., Ivanova, Y., O’Sullivan, D., Nascimento, M., et al. (2014) Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages, Nat. Immunol., 15, 846-855, doi: 10.1038/ni.2956.

84. Divakaruni, A. S., Hsieh, W. Y., Minarrieta, L., Duong, T. N., Kim, K. K. O., et al. (2018) Etomoxir inhibits macrophage polarization by disrupting CoA homeostasis, Cell Metab., 28, 490-503.e497, doi: 10.1016/j.cmet.2018.06.001.

85. Tan, Z., Xie, N., Cui, H., Moellering, D. R., Abraham, E., Thannickal, V. J., and Liu, G. (2015) Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism, J. Immunol., 194, 6082-6089, doi: 10.4049/jimmunol.1402469.

86. Faris, R., Fan, Y. Y., De Angulo, A., Chapkin, R. S., deGraffenried, L. A., and Jolly, C. A. (2014) Mitochondrial glycerol-3-phosphate acyltransferase-1 is essential for murine CD4+ T cell metabolic activation, Biochim. Biophys. Acta, 1842, 1475-1482, doi: 10.1016/j.bbalip.2014.07.009.

87. Loschen, G., Flohe, L., and Chance, B. (1971) Respiratory chain linked H2O2 production in pigeon heart mitochondria, FEBS Lett., 18, 261-264, doi: 10.1016/0014-5793(71)80459-3.

88. Korshunov, S. S., Skulachev, V. P., and Starkov, A. A. (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria, FEBS Lett., 416, 15-18, doi: 10.1016/s0014-5793(97)01159-9.

89. Zhong, Z., Liang, S., Sanchez-Lopez, E., He, F., Shalapour, S., et al. (2018) New mitochondrial DNA synthesis enables NLRP3 inflammasome activation, Nature, 560, 198-203, doi: 10.1038/s41586-018-0372-z.

90. Jazayeri, M., Andreyev, A., Will, Y., Ward, M., Anderson, C. M., and Clevenger, W. (2003) Inducible expression of a dominant negative DNA polymerase-gamma depletes mitochondrial DNA and produces a rho0 phenotype, J. Biol. Chem., 278, 9823-9830, doi: 10.1074/jbc.m211730200.

91. Martinez-Reyes, I., Diebold, L. P., Kong, H., Schieber, M., Huang, H., et al. (2016) TCA cycle and mitochondrial membrane potential are necessary for diverse biological functions, Mol. Cell, 61, 199-209, doi: 10.1016/j.molcel.2015.12.002.

92. Bell, E. L., Klimova, T. A., Eisenbart, J., Moraes, C. T., Murphy, M. P., Budinger, G. R., and Chandel, N. S. (2007) The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production, J. Cell Biol., 177, 1029-1036, doi: 10.1083/jcb.200609074.

93. Son, Y., Kim, S., Chung, H. T., and Pae, H. O. (2013) Reactive oxygen species in the activation of MAP kinases, Methods Enzymol., 528, 27-48, doi: 10.1016/B978-0-12-405881-1.00002-1.

94. Dard, L., Blanchard, W., Hubert, C., Lacombe, D., and Rossignol, R. (2020) Mitochondrial functions and rare diseases, Mol. Aspects Med., 71, 100842, doi: 10.1016/j.mam.2019.100842.

95. Sena, L. A., and Chandel, N. S. (2012) Physiological roles of mitochondrial reactive oxygen species, Mol. Cell, 48, 158-167, doi: 10.1016/j.molcel.2012.09.025.

96. Franchina, D. G., Dostert, C., and Brenner, D. (2018) Reactive oxygen species: involvement in T cell signaling and metabolism, Trends Immunol., 39, 489-502, doi: 10.1016/j.it.2018.01.005.

97. Flohe, L., Brigelius-Flohe, R., Saliou, C., Traber, M. G., and Packer, L. (1997) Redox regulation of NF-kappa B activation, Free Radic. Biol. Med., 22, 1115-1126, doi: 10.1016/s0891-5849(96)00501-1.

98. Liu, T., Zhang, L., Joo, D., and Sun, S. C. (2017) NF-kappaB signaling in inflammation, Signal Transduct. Target. Ther., 2, doi: 10.1038/sigtrans.2017.23.

99. Son, Y., Cheong, Y. K., Kim, N. H., Chung, H. T., Kang, D. G., and Pae, H. O. (2011) Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? J. Signal Transduct., 2011, 792639, doi: 10.1155/2011/792639.

100. Chandel, N. S., Vander Heiden, M. G., Thompson, C. B., and Schumacker, P. T. (2000) Redox regulation of p53 during hypoxia, Oncogene, 19, 3840-3848, doi: 10.1038/sj.onc.1203727.

101. Liu, B., Chen, Y., and St Clair, D. K. (2008) ROS and p53: a versatile partnership, Free Radic. Biol. Med., 44, 1529-1535, doi: 10.1016/j.freeradbiomed.2008.01.011.

102. Nathan, C., and Cunningham-Bussel, A. (2013) Beyond oxidative stress: an immunologist’s guide to reactive oxygen species, Nat. Rev. Immunol., 13, 349-361, doi: 10.1038/nri3423.

103. Zhang, H., Wang, L., and Chu, Y. (2019) Reactive oxygen species: the signal regulator of B cell, Free Radic. Biol. Med., 142, 16-22, doi: 10.1016/j.freeradbiomed.2019.06.004.

104. Sena, L. A., Li, S., Jairaman, A., Prakriya, M., Ezponda, T., et al. (2013) Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling, Immunity, 38, 225-236, doi: 10.1016/j.immuni.2012.10.020.

105. Rashida Gnanaprakasam, J. N., Wu, R., and Wang, R. (2018) Metabolic reprogramming in modulating T cell reactive oxygen species generation and antioxidant capacity, Front. Immunol., 9, 1075, doi: 10.3389/fimmu.2018.01075.

106. Belikov, A. V., Schraven, B., and Simeoni, L. (2015) T cells and reactive oxygen species, J. Biomed. Sci., 22, 85, doi: 10.1186/s12929-015-0194-3.

107. Previte, D. M., O’Connor, E. C., Novak, E. A., Martins, C. P., Mollen, K. P., and Piganelli, J. D. (2017) Reactive oxygen species are required for driving efficient and sustained aerobic glycolysis during CD4+ T cell activation, PLoS One, 12, e0175549, doi: 10.1371/journal.pone.0175549.

108. Reth, M. (2002) Hydrogen peroxide as second messenger in lymphocyte activation, Nat. Immunol., 3, 1129-1134, doi: 10.1038/ni1202-1129.

109. Devadas, S., Zaritskaya, L., Rhee, S. G., Oberley, L., and Williams, M. S. (2002) Discrete generation of superoxide and hydrogen peroxide by T cell receptor stimulation: selective regulation of mitogen-activated protein kinase activation and fas ligand expression, J. Exp. Med., 195, 59-70, doi: 10.1084/jem.20010659.

110. Kaminski, M. M., Sauer, S. W., Klemke, C. D., Suss, D., Okun, J. G., Krammer, P. H., and Gulow, K. (2010) Mitochondrial reactive oxygen species control T cell activation by regulating IL-2 and IL-4 expression: mechanism of ciprofloxacin-mediated immunosuppression, J. Immunol., 184, 4827-4841, doi: 10.4049/jimmunol.0901662.

111. Gong, T., Liu, L., Jiang, W., and Zhou, R. (2020) DAMP-sensing receptors in sterile inflammation and inflammatory diseases, Nat. Rev. Immunol., 20, 95-112, doi: 10.1038/s41577-019-0215-7.

112. Meylan, E., Tschopp, J., and Karin, M. (2006) Intracellular pattern recognition receptors in the host response, Nature, 442, 39-44, doi: 10.1038/nature04946.

113. Zhou, R., Yazdi, A. S., Menu, P., and Tschopp, J. (2011) A role for mitochondria in NLRP3 inflammasome activation, Nature, 469, 221-225, doi: 10.1038/nature09663.

114. Shimada, K., Crother, T. R., Karlin, J., Dagvadorj, J., Chiba, N., et al. (2012) Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis, Immunity, 36, 401-414, doi: 10.1016/j.immuni.2012.01.009.

115. Nakahira, K., Haspel, J. A., Rathinam, V. A., Lee, S. J., Dolinay, T., et al. M. (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome, Nat. Immunol., 12, 222-230, doi: 10.1038/ni.1980.

116. Banoth, B., and Cassel, S. L. (2018) Mitochondria in innate immune signaling, Transl. Res., 202, 52-68, doi: 10.1016/j.trsl.2018.07.014.

117. West, A. P., Khoury-Hanold, W., Staron, M., Tal, M. C., Pineda, C. M., et al. (2015) Mitochondrial DNA stress primes the antiviral innate immune response, Nature, 520, 553-557, doi: 10.1038/nature14156.

118. White, M. J., McArthur, K., Metcalf, D., Lane, R. M., Cambier, J. C., et al. (2014) Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production, Cell, 159, 1549-1562, doi: 10.1016/j.cell.2014.11.036.

119. Rongvaux, A., Jackson, R., Harman, C. C., Li, T., West, A. P., et al. (2014) Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA, Cell, 159, 1563-1577, doi: 10.1016/j.cell.2014.11.037.

120. Liu, X., Kim, C. N., Yang, J., Jemmerson, R., and Wang, X. (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c, Cell, 86, 147-157, doi: 10.1016/s0092-8674(00)80085-9.

121. Kluck, R. M., Bossy-Wetzel, E., Green, D. R., and Newmeyer, D. D. (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis, Science, 275, 1132-1136, doi: 10.1126/science.275.5303.1132.

122. Kushnareva, Y., and Newmeyer, D. D. (2010) Bioenergetics and cell death, Ann. N. Y. Acad. Sci., 1201, 50-57, doi: 10.1111/j.1749-6632.2010.05633.x.

123. Vince, J. E., De Nardo, D., Gao, W., Vince, A. J., Hall, C., et al. (2018) The mitochondrial apoptotic effectors BAX/BAK activate caspase-3 and -7 to trigger NLRP3 inflammasome and caspase-8 driven IL-1beta activation, Cell Rep., 25, 2339-2353.e2334, doi: 10.1016/j.celrep.2018.10.103.

124. Zorov, D. B. (1996) Mitochondrial damage as a source of diseases and aging: a strategy of how to fight these, Biochim. Biophys. Acta, 1275, 10-15, doi: 10.1016/0005-2728(96)00042-4.

125. Patrushev, M., Kasymov, V., Patrusheva, V., Ushakova, T., Gogvadze, V., and Gaziev, A. (2004) Mitochondrial permeability transition triggers the release of mtDNA fragments, Cell. Mol. Life Sci., 61, 3100-3103, doi: 10.1007/s00018-004-4424-1.

126. Yu, C. H., Davidson, S., Harapas, C. R., Hilton, J. B., Mlodzianoski, M. J., et al. (2020) TDP-43 triggers mitochondrial DNA release via mPTP to activate cGAS/STING in ALS, Cell, 183, 636-649 e618, doi: 10.1016/j.cell.2020.09.020.

127. Guo, W., Liu, W., Chen, Z., Gu, Y., Peng, S., et al. (2017) Tyrosine phosphatase SHP2 negatively regulates NLRP3 inflammasome activation via ANT1-dependent mitochondrial homeostasis, Nat. Commun., 8, 2168, doi: 10.1038/s41467-017-02351-0.

128. Kushnareva, Y. E., and Sokolove, P. M. (2000) Prooxidants open both the mitochondrial permeability transition pore and a low-conductance channel in the inner mitochondrial membrane, Arch. Biochem. Biophys., 376, 377-388, doi: 10.1006/abbi.2000.1730.

129. Ichas, F., Jouaville, L. S., and Mazat, J. P. (1997) Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals, Cell, 89, 1145-1153, doi: 10.1016/s0092-8674(00)80301-3.

130. Xu, Y., Shen, J., and Ran, Z. (2020) Emerging views of mitophagy in immunity and autoimmune diseases, Autophagy, 16, 3-17, doi: 10.1080/15548627.2019.1603547.

131. Chandel, N. S., Maltepe, E., Goldwasser, E., Mathieu, C. E., Simon, M. C., and Schumacker, P. T. (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription, Proc. Natl. Acad. Sci. USA, 95, 11715-11720, doi: 10.1073/pnas.95.20.11715.

132. Schofield, C. J., and Ratcliffe, P. J. (2004) Oxygen sensing by HIF hydroxylases, Nat. Rev. Mol. Cell Biol., 5, 343-354, doi: 10.1038/nrm1366.

133. Hirsila, M., Koivunen, P., Gunzler, V., Kivirikko, K. I., and Myllyharju, J. (2003) Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor, J. Biol. Chem., 278, 30772-30780, doi: 10.1074/jbc.M304982200.

134. Bell, E. L., Klimova, T. A., Eisenbart, J., Schumacker, P. T., and Chandel, N. S. (2007) Mitochondrial reactive oxygen species trigger hypoxia-inducible factor-dependent extension of the replicative life span during hypoxia, Mol. Cell. Biol., 27, 5737-5745, doi: 10.1128/MCB.02265-06.

135. Oshino, N., Jamieson, D., and Chance, B. (1975) The properties of hydrogen peroxide production under hyperoxic and hypoxic conditions of perfused rat liver, Biochem. J., 146, 53-65, doi: 10.1042/bj1460053.

136. Hoffman, D. L., Salter, J. D., and Brookes, P. S. (2007) Response of mitochondrial reactive oxygen species generation to steady-state oxygen tension: implications for hypoxic cell signaling, Am. J. Physiol. Heart Circ. Physiol., 292, H101-H108, doi: 10.1152/ajpheart.00699.2006.

137. Stepanova, A., Konrad, C., Manfredi, G., Springett, R., Ten, V., and Galkin, A. (2019) The dependence of brain mitochondria reactive oxygen species production on oxygen level is linear, except when inhibited by antimycin A, J. Neurochem., 148, 731-745, doi: 10.1111/jnc.14654.

138. Panday, A., Sahoo, M. K., Osorio, D., and Batra, S. (2015) NADPH oxidases: an overview from structure to innate immunity-associated pathologies, Cell. Mol. Immunol., 12, 5-23, doi: 10.1038/cmi.2014.89.

139. Brown, D. I., and Griendling, K. K. (2009) Nox proteins in signal transduction, Free Radic. Biol. Med., 47, 1239-1253, doi: 10.1016/j.freeradbiomed.2009.07.023.

140. Cemerski, S., Cantagrel, A., Van Meerwijk, J. P., and Romagnoli, P. (2002) Reactive oxygen species differentially affect T cell receptor-signaling pathways, J. Biol. Chem., 277, 19585-19593, doi: 10.1074/jbc.M111451200.

141. Belikov, A. V., Schraven, B., and Simeoni, L. (2014) TCR-triggered extracellular superoxide production is not required for T-cell activation, Cell Commun. Signal., 12, 50, doi: 10.1186/s12964-014-0050-1.

142. Martinon, F. (2010) Signaling by ROS drives inflammasome activation, Eur. J. Immunol., 40, 616-619, doi: 10.1002/eji.200940168.

143. Aldieri, E., Riganti, C., Polimeni, M., Gazzano, E., Lussiana, C., Campia, I., and Ghigo, D. (2008) Classical inhibitors of NOX NAD(P)H oxidases are not specific, Curr. Drug Metab., 9, 686-696, doi: 10.2174/138920008786049285.

144. Dostert, C., Petrilli, V., Van Bruggen, R., Steele, C., Mossman, B. T., and Tschopp, J. (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica, Science, 320, 674-677, doi: 10.1126/science.1156995.

145. Wong, H. S., Benoit, B., and Brand, M. D. (2019) Mitochondrial and cytosolic sources of hydrogen peroxide in resting C2C12 myoblasts, Free Radic. Biol. Med., 130, 140-150, doi: 10.1016/j.freeradbiomed.2018.10.448.

146. West, A. P., Brodsky, I. E., Rahner, C., Woo, D. K., Erdjument-Bromage, H., et al. (2011) TLR signalling augments macrophage bactericidal activity through mitochondrial ROS, Nature, 472, 476-480, doi: 10.1038/nature09973.

147. Vorobjeva, N., Prikhodko, A., Galkin, I., Pletjushkina, O., Zinovkin, R., Sud’ina, G., Chernyak, B., and Pinegin, B. (2017) Mitochondrial reactive oxygen species are involved in chemoattractant-induced oxidative burst and degranulation of human neutrophils in vitro, Eur. J. Cell Biol., 96, 254-265, doi: 10.1016/j.ejcb.2017.03.003.

148. Dikalov, S. (2011) Cross talk between mitochondria and NADPH oxidases, Free Radic. Biol. Med., 51, 1289-1301, doi: 10.1016/j.freeradbiomed.2011.06.033.

149. Pinegin, B., Vorobjeva, N., Pashenkov, M., and Chernyak, B. (2018) The role of mitochondrial ROS in antibacterial immunity, J. Cell. Physiol., 233, 3745-3754, doi: 10.1002/jcp.26117.

150. Nicholls, D. G. (2012) Fluorescence measurement of mitochondrial membrane potential changes in cultured cells, Methods Mol. Biol., 810, 119-133, doi: 10.1007/978-1-61779-382-0_8.

151. Polster, B. M., Nicholls, D. G., Ge, S. X., and Roelofs, B. A. (2014) Use of potentiometric fluorophores in the measurement of mitochondrial reactive oxygen species, Methods Enzymol., 547, 225-250, doi: 10.1016/B978-0-12-801415-8.00013-8.

152. Roelofs, B. A., Ge, S. X., Studlack, P. E., and Polster, B. M. (2015) Low micromolar concentrations of the superoxide probe MitoSOX uncouple neural mitochondria and inhibit complex IV, Free Radic. Biol. Med., 86, 250-258, doi: 10.1016/j.freeradbiomed.2015.05.032.

153. Zielonka, J., and Kalyanaraman, B. (2010) Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth, Free Radic. Biol. Med., 48, 983-1001, doi: 10.1016/j.freeradbiomed.2010.01.028.

154. Parasassi, T., Brunelli, R., Costa, G., De Spirito, M., Krasnowska, E., Lundeberg, T., Pittaluga, E., and Ursini, F. (2010) Thiol redox transitions in cell signaling: a lesson from N-acetylcysteine, ScientificWorldJournal, 10, 1192-1202, doi: 10.1100/tsw.2010.104.

155. Samuni, Y., Goldstein, S., Dean, O. M., and Berk, M. (2013) The chemistry and biological activities of N-acetylcysteine, Biochim. Biophys. Acta, 1830, 4117-4129, doi: 10.1016/j.bbagen.2013.04.016.

156. Benrahmoune, M., Therond, P., and Abedinzadeh, Z. (2000) The reaction of superoxide radical with N-acetylcysteine, Free Radic. Biol. Med., 29, 775-782, doi: 10.1016/s0891-5849(00)00380-4.

157. Winterbourn, C. C., and Metodiewa, D. (1999) Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide, Free Radic. Biol. Med., 27, 322-328, doi: 10.1016/s0891-5849(99)00051-9.

158. Ezerina, D., Takano, Y., Hanaoka, K., Urano, Y., and Dick, T. P. (2018) N-Acetyl cysteine functions as a fast-acting antioxidant by triggering intracellular H2S and sulfane sulfur production, Cell Chem. Biol., 25, 447-459 e444, doi: 10.1016/j.chembiol.2018.01.011.

159. Kelso, G. F., Porteous, C. M., Coulter, C. V., Hughes, G., Porteous, W. K., Ledgerwood, E. C., Smith, R. A., and Murphy, M. P. (2001) Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties, J. Biol. Chem., 276, 4588-4596, doi: 10.1074/jbc.M009093200.

160. Skulachev, V. P. (2007) A biochemical approach to the problem of aging: “megaproject” on membrane-penetrating ions. The first results and prospects, Biochemistry (Moscow), 72, 1385-1396, doi: 10.1134/s0006297907120139.

161. Skulachev, V. P. (2013) Cationic antioxidants as a powerful tool against mitochondrial oxidative stress, Biochem. Biophys. Res. Commun., 441, 275-279, doi: 10.1016/j.bbrc.2013.10.063.

162. Antonenko, Y. N., Roginsky, V. A., Pashkovskaya, A. A., Rokitskaya, T. I., Kotova, E. A., Zaspa, A. A., Chernyak, B. V., and Skulachev, V. P. (2008) Protective effects of mitochondria-targeted antioxidant SkQ in aqueous and lipid membrane environments, J. Membr. Biol., 222, 141-149, doi: 10.1007/s00232-008-9108-6.

163. Sun, K. A., Li, Y., Meliton, A. Y., Woods, P. S., Kimmig, L. M., Cetin-Atalay, R., Hamanaka, R. B., and Mutlu, G. M. (2020) Endogenous itaconate is not required for particulate matter-induced NRF2 expression or inflammatory response, Elife, 9, doi: 10.7554/eLife.54877.

164. ElAzzouny, M., Tom, C. T., Evans, C. R., Olson, L. L., Tanga, M. J., Gallagher, K. A., Martin, B. R., and Burant, C. F. (2017) Dimethyl itaconate is not metabolized into itaconate intracellularly, J. Biol. Chem., 292, 4766-4769, doi: 10.1074/jbc.C117.775270.