БИОХИМИЯ, 2020, том 85, вып. 12, с. 1887–1897

УДК 577.151.63

Влияние мембранного окружения на лиганд-связывающие свойства терминальной оксидазы цитохрома bd-I Escherichia coli

© 2020 В.Б. Борисов

НИИ физико-химической биологии имени А.Н. Белозерского, Московский государственный университет имени М.В. Ломоносова, 119991 Москва, Россия; электронная почта: bor@belozersky.msu.ru

Поступила в редакцию 10.07.2020
После доработки 05.09.2020
Принята к публикации 05.09.2020

DOI: 10.31857/S032097252012012X

КЛЮЧЕВЫЕ СЛОВА: цитохром, терминальная оксидаза, дыхательная цепь, гем, мембранное окружение, связывание лиганда, Escherichia coli.

Аннотация

Цитохром bd-I – терминальная оксидаза дыхательной цепи Escherichia coli. Этот интегральный мембранный белок содержит три редокс-активные простетические группы: гемы b558, b595 и d. Фермент сопрягает перенос электронов от хинола на молекулярный кислород с генерацией протон-движущей силы и выполняет важные физиологические функции. В данной работе исследовали влияние мембранного окружения на способность цитохрома bd-I связывать лиганды. Использовали метод абсорбционной спектроскопии. Найдено, что мембранное окружение модулирует лиганд-связывающие характеристики гемопротеина как в окисленном, так и восстановленном состоянии. Изменения поглощения, наблюдаемые при добавлении экзогенного лиганда, такого как цианид или окись углерода (СО), к солюбилизированному в детергенте ферменту гораздо более обширны и неоднородны, чем в случае мембран. В нативных мембранах цианид и СО взаимодействуют в основном с гемом d. При изолировании фермента появляется добавочный сайт связывания лигандов (гем b558), о чем свидетельствует увеличение изменений поглощения в полосе Соре. Эта дополнительная реакционная способность обнаруживается и при простой обработке мембран детергентом. Выявленный эффект не является тривиальной денатурацией, поскольку встраивание изолированного фермента в азолектиновые липосомы приводит к восстановлению лиганд-связывающих свойств, характерных для интактных мембран.

Финансирование

Работа выполнена при финансовой поддержке Российского научного фонда (грант 19-14-00063).

Благодарности

Автор признателен В.П. Скулачеву за интерес к работе и полезное обсуждение, И.А. Смирновой за помощь на начальной стадии экспериментов и ряд ценных советов, а также Р.Б. Геннису за штамм E. coli GO105/pTK1. Автор также хотел бы выразить свою глубочайшую благодарность А.А. Константинову (скончался 1 мая 2020 г.), который вдохновил автора на выполнение этой работы.

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

Соблюдение этических норм

Настоящая статья не содержит каких-либо исследований с участием людей или использованием животных в качестве объектов исследований.

Дополнительные материалы

Приложение к статье на английском языке опубликовано на сайте журнала «Biochemistry» (Moscow) (http://protein.bio.msu.ru/biokhimiya/) и на сайте издательства Springer (https://link.springer.com/journal/10541), том 85, вып. 12, 2020.

Список литературы

1. Borisov, V. B., Siletsky, S. A., Paiardini, A., Hoogewijs, D., Forte, E., Giuffre, A., and Poole, R. K. (2020) Bacterial oxidases of the cytochrome bd family: Redox enzymes of unique structure, function and utility as drug targets, Antioxid. Redox Signal., doi: 10.1089/ars.2020.8039.

2. Azarkina, N., Borisov, V., and Konstantinov, A. A. (1997) Spontaneous spectral changes of the reduced cytochrome bd, FEBS Lett., 416, 171-174, doi: 10.1016/S0014-5793(97)01196-4.

3. Gavrikova, E. V., Grivennikova, V. G., Borisov, V. B., Cecchini, G., and Vinogradov, A. D. (2009) Assembly of a chimeric respiratory chain from bovine heart submitochondrial particles and cytochrome bd terminal oxidase of Escherichia coli, FEBS Lett., 583, 1287-1291, doi: 10.1016/j.febslet.2009.03.022.

4. Borisov, V. B., Gennis, R. B., Hemp, J., and Verkhovsky, M. I. (2011) The cytochrome bd respiratory oxygen reductases, Biochim. Biophys. Acta, 1807, 1398-1413, doi: 10.1016/j.bbabio.2011.06.016.

5. Borisov, V. B., and Verkhovsky, M. I. (2015) Oxygen as acceptor, EcoSal Plus, 6, doi: 10.1128/ecosalplus.ESP-0012-2015.

6. Borisov, V. B. (1996) Cytochrome bd: structure and properties, Biochemistry (Moscow), 61, 565-574.

7. Azarkina, N., Siletsky, S., Borisov, V., von Wachenfeldt, C., Hederstedt, L., and Konstantinov, A. A. (1999) A cytochrome bb′-type quinol oxidase in Bacillus subtilis strain 168, J. Biol. Chem., 274, 32810-32817, doi: 10.1074/jbc.274.46.32810.

8. Yang, K., Borisov, V. B., Konstantinov, A. A., and Gennis, R. B. (2008) The fully oxidized form of the cytochrome bd quinol oxidase from E. coli does not participate in the catalytic cycle: direct evidence from rapid kinetics studies, FEBS Lett., 582, 3705-3709, doi: 10.1016/j.febslet.2008.09.038.

9. Forte, E., Borisov, V. B., Vicente, J. B., and Giuffre, A. (2017) Cytochrome bd and gaseous ligands in bacterial physiology, Adv. Microb. Physiol., 71, 171-234, doi: 10.1016/bs.ampbs.2017.05.002.

10. Pereira, M. M., Gomes, C. M., and Teixeira, M. (2002) Plasticity of proton pathways in haem-copper oxygen reductases, FEBS Lett., 522, 14-18, doi: 10.1016/S0014-5793(02)02920-4.

11. Yoshikawa, S., and Shimada, A. (2015) Reaction mechanism of cytochrome c oxidase, Chem. Rev., 115, 1936-1989, doi: 10.1021/cr500266a.

12. Papa, S., Capitanio, G., and Papa, F. (2018) The mechanism of coupling between oxido-reduction and proton translocation in respiratory chain enzymes, Biol. Rev. Camb. Philos. Soc., 93, 322-349, doi: 10.1111/brv.12347.

13. Siletsky, S. A., Borisov, V. B., and Mamedov, M. D. (2017) Photosystem II and terminal respiratory oxidases: molecular machines operating in opposite directions, Front. Biosci. (Landmark Ed.), 22, 1379-1426, doi: 10.2741/4550.

14. Borisov, V. B., and Siletsky, S. A. (2019) Features of organization and mechanism of catalysis of two families of terminal oxidases: heme-copper and bd-type, Biochemistry (Moscow), 84, 1390-1402, doi: 10.1134/S0006297919110130.

15. Borisov, V. B. (2002) Defects in mitochondrial respiratory complexes III and IV, and human pathologies, Mol. Aspects Med., 23, 385-412, doi: 10.1016/s0098-2997(02)00013-4.

16. Borisov, V. B. (2004) Mutations in respiratory chain complexes and human diseases, Ital. J. Biochem., 53, 34-40.

17. Puustinen, A., Finel, M., Haltia, T., Gennis, R. B., and Wikstrom, M. (1991) Properties of the two terminal oxidases of Escherichia coli, Biochemistry, 30, 3936-3942, doi: 10.1021/bi00230a019.

18. Jasaitis, A., Borisov, V. B., Belevich, N. P., Morgan, J. E., Konstantinov, A. A., and Verkhovsky, M. I. (2000) Electrogenic reactions of cytochrome bd, Biochemistry, 39, 13800-13809, doi: 10.1021/bi001165n.

19. Wikstrom, M., Morgan, J. E., and Verkhovsky, M. I. (1997) Proton and electrical charge translocation by cytochrome c-oxidase, Biochim. Biophys. Acta, 1318, 299-306, doi: 10.1016/S0005-2728(96)00152-1.

20. Konstantinov, A. A., Siletsky, S., Mitchell, D., Kaulen, A., and Gennis, R. B. (1997) The roles of the two proton input channels in cytochrome c oxidase from Rhodobacter sphaeroides probed by the effects of site-directed mutations on time-resolved electrogenic intraprotein proton transfer, Proc. Natl. Acad. Sci. USA, 94, 9085-9090, doi: 10.1073/pnas.94.17.9085.

21. Belevich, I., Borisov, V. B., Zhang, J., Yang, K., Konstantinov, A. A., Gennis, R. B., and Verkhovsky, M. I. (2005) Time-resolved electrometric and optical studies on cytochrome bd suggest a mechanism of electron-proton coupling in the di-heme active site, Proc. Natl. Acad. Sci. USA, 102, 3657-3662, doi: 10.1073/pnas.0405683102.

22. Belevich, I., Borisov, V. B., and Verkhovsky, M. I. (2007) Discovery of the true peroxy intermediate in the catalytic cycle of terminal oxidases by real-time measurement, J. Biol. Chem., 282, 28514-28519, doi: 10.1074/jbc.M705562200.

23. Borisov, V. B., Belevich, I., Bloch, D. A., Mogi, T., and Verkhovsky, M. I. (2008) Glutamate 107 in subunit I of cytochrome bd from Escherichia coli is part of a transmembrane intraprotein pathway conducting protons from the cytoplasm to the heme b595/heme d active site, Biochemistry, 47, 7907-7914, doi: 10.1021/bi800435a.

24. Borisov, V. B., Murali, R., Verkhovskaya, M. L., Bloch, D. A., Han, H., Gennis, R. B., and Verkhovsky, M. I. (2011) Aerobic respiratory chain of Escherichia coli is not allowed to work in fully uncoupled mode, Proc. Natl. Acad. Sci. USA, 108, 17320-17324, doi: 10.1073/pnas.1108217108.

25. Cotter, P. A., Chepuri, V., Gennis, R. B., and Gunsalus, R. P. (1990) Cytochrome o (cyoABCDE) and d (cydAB) oxidase gene expression in Escherichia coli is regulated by oxygen, pH, and the fnr gene product, J. Bacteriol., 172, 6333-6338, doi: 10.1128/jb.172.11.6333-6338.1990.

26. Alexeeva, S., Hellingwerf, K. J., and Teixeira de Mattos, M. J. (2003) Requirement of ArcA for redox regulation in Escherichia coli under microaerobic but not anaerobic or aerobic conditions, J. Bacteriol., 185, 204-209, doi: 10.1128/jb.185.1.204-209.2003.

27. Forte, E., Borisov, V. B., Konstantinov, A. A., Brunori, M., Giuffre, A., and Sarti, P. (2007) Cytochrome bd, a key oxidase in bacterial survival and tolerance to nitrosative stress, Ital. J. Biochem., 56, 265-269.

28. Borisov, V. B., Forte, E., Siletsky, S. A., Arese, M., Davletshin, A. I., Sarti, P., and Giuffre, A. (2015) Cytochrome bd protects bacteria against oxidative and nitrosative stress: a potential target for next-generation antimicrobial agents, Biochemistry (Moscow), 80, 565-575, doi: 10.1134/S0006297915050077.

29. Giuffre, A., Borisov, V. B., Mastronicola, D., Sarti, P., and Forte, E. (2012) Cytochrome bd oxidase and nitric oxide: from reaction mechanisms to bacterial physiology, FEBS Lett., 586, 622-629, doi: 10.1016/j.febslet.2011.07.035.

30. Giuffre, A., Borisov, V. B., Arese, M., Sarti, P., and Forte, E. (2014) Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress, Biochim. Biophys. Acta, 1837, 1178-1187, doi: 10.1016/j.bbabio.2014.01.016.

31. Borisov, V. B., Forte, E., Konstantinov, A. A., Poole, R. K., Sarti, P., and Giuffre, A. (2004) Interaction of the bacterial terminal oxidase cytochrome bd with nitric oxide, FEBS Lett., 576, 201-204, doi: 10.1016/j.febslet.2004.09.013.

32. Borisov, V. B., Forte, E., Sarti, P., Brunori, M., Konstantinov, A. A., and Giuffre, A. (2006) Nitric oxide reacts with the ferryl-oxo catalytic intermediate of the CuB-lacking cytochrome bd terminal oxidase, FEBS Lett., 580, 4823-4826, doi: 10.1016/j.febslet.2006.07.072.

33. Borisov, V. B., Forte, E., Sarti, P., Brunori, M., Konstantinov, A. A., and Giuffre, A. (2007) Redox control of fast ligand dissociation from Escherichia coli cytochrome bd, Biochem. Biophys. Res. Commun., 355, 97-102, doi: 10.1016/j.bbrc.2007.01.118.

34. Mason, M. G., Shepherd, M., Nicholls, P., Dobbin, P. S., Dodsworth, K. S., Poole, R. K., and Cooper, C. E. (2009) Cytochrome bd confers nitric oxide resistance to Escherichia coli, Nat. Chem. Biol., 5, 94-96, doi: 10.1038/nchembio.135.

35. Borisov, V. B., Forte, E., Giuffre, A., Konstantinov, A., and Sarti, P. (2009) Reaction of nitric oxide with the oxidized di-heme and heme-copper oxygen-reducing centers of terminal oxidases: different reaction pathways and end-products, J. Inorg. Biochem., 103, 1185-1187, doi: 10.1016/j.jinorgbio.2009.06.002.

36. Borisov, V. B., Forte, E., Siletsky, S. A., Sarti, P., and Giuffre, A. (2015) Cytochrome bd from Escherichia coli catalyzes peroxynitrite decomposition, Biochim. Biophys. Acta, 1847, 182-188, doi: 10.1016/j.bbabio.2014.10.006.

37. Forte, E., Borisov, V. B., Falabella, M., Colaco, H. G., Tinajero-Trejo, M., et al. (2016) The terminal oxidase cytochrome bd promotes sulfide-resistant bacterial respiration and growth, Sci. Rep., 6, 23788, doi: 10.1038/srep23788.

38. Borisov, V., Gennis, R., and Konstantinov, A. A. (1995) Peroxide complex of cytochrome bd: kinetics of generation and stability, Biochem. Mol. Biol. Int., 37, 975-982.

39. Borisov, V. B., Gennis, R. B., and Konstantinov, A. A. (1995) Interaction of cytochrome bd from Escherichia coli with hydrogen peroxide, Biochemistry (Moscow), 60, 231-239.

40. Borisov, V. B., Davletshin, A. I., and Konstantinov, A. A. (2010) Peroxidase activity of cytochrome bd from Escherichia coli, Biochemistry (Moscow), 75, 428-436, doi: 10.1134/S000629791004005X.

41. Borisov, V. B., Forte, E., Davletshin, A., Mastronicola, D., Sarti, P., and Giuffre, A. (2013) Cytochrome bd oxidase from Escherichia coli displays high catalase activity: an additional defense against oxidative stress, FEBS Lett., 587, 2214-2218, doi: 10.1016/j.febslet.2013.05.047.

42. Forte, E., Borisov, V. B., Davletshin, A., Mastronicola, D., Sarti, P., and Giuffre, A. (2013) Cytochrome bd oxidase and hydrogen peroxide resistance in Mycobacterium tuberculosis, MBio, 4, e01006-01013, doi: 10.1128/mBio.01006-13.

43. Al-Attar, S., Yu, Y., Pinkse, M., Hoeser, J., Friedrich, T., Bald, D., and de Vries, S. (2016) Cytochrome bd displays significant quinol peroxidase activity, Sci. Rep., 6, 27631, doi: 10.1038/srep27631.

44. Forte, E., Borisov, V. B., Siletsky, S. A., Petrosino, M., and Giuffre, A. (2019) In the respiratory chain of Escherichia coli cytochromes bd-I and bd-II are more sensitive to carbon monoxide inhibition than cytochrome bo3, Biochim. Biophys. Acta Bioenerg., 1860, 148088, doi: 10.1016/j.bbabio.2019.148088.

45. Safarian, S., Hahn, A., Mills, D. J., Radloff, M., Eisinger, M., et al. (2019) Active site rearrangement and structural divergence in prokaryotic respiratory oxidases, Science, 366, 100-104, doi: 10.1126/science.aay0967.

46. Thesseling, A., Rasmussen, T., Burschel, S., Wohlwend, D., Kagi, J., Muller, R., Bottcher, B., and Friedrich, T. (2019) Homologous bd oxidases share the same architecture but differ in mechanism, Nat. Commun., 10, 5138, doi: 10.1038/s41467-019-13122-4.

47. Miller, M. J., and Gennis, R. B. (1983) The purification and characterization of the cytochrome d terminal oxidase complex of the Escherichia coli aerobic respiratory chain, J. Biol. Chem., 258, 9159-9165.

48. Kita, K., Konishi, K., and Anraku, Y. (1984) Terminal oxidases of Escherichia coli aerobic respiratory chain. II. Purification and properties of cytochrome b558d complex from cells grown with limited oxygen and evidence of branched electron-carrying systems, J. Biol. Chem., 259, 3375-3381.

49. Sakamoto, J., Matsumoto, A., Oobuchi, K., and Sone, N. (1996) Cytochrome bd-type quinol oxidase in a mutant of Bacillus stearothermophilus deficient in caa3-type cytochrome c oxidase, FEMS Microbiol. Lett., 143, 151-158, doi: 10.1016/0378-1097(96)00312-6.

50. Sun, Y. H., de Jong, M. F., den Hartigh, A. B., Roux, C. M., Rolan, H. G., and Tsolis, R. M. (2012) The small protein CydX is required for function of cytochrome bd oxidase in Brucella abortus, Front. Cell. Infect. Microbiol., 2, 47, doi: 10.3389/fcimb.2012.00047.

51. VanOrsdel, C. E., Bhatt, S., Allen, R. J., Brenner, E. P., Hobson, J. J., et al. (2013) The Escherichia coli CydX protein is a member of the CydAB cytochrome bd oxidase complex and is required for cytochrome bd oxidase activity, J. Bacteriol., 195, 3640-3650, doi: 10.1128/JB.00324-13.

52. Hoeser, J., Hong, S., Gehmann, G., Gennis, R. B., and Friedrich, T. (2014) Subunit CydX of Escherichia coli cytochrome bd ubiquinol oxidase is essential for assembly and stability of the di-heme active site, FEBS Lett., 588, 1537-1541, doi: 10.1016/j.febslet.2014.03.036.

53. Chen, H., Luo, Q., Yin, J., Gao, T., and Gao, H. (2015) Evidence for requirement of CydX in function but not assembly of the cytochrome bd oxidase in Shewanella oneidensis, Biochim. Biophys. Acta, 1850, 318-328, doi: 10.1016/j.bbagen.2014.10.005.

54. Hobson, J. J., Gallegos, A. S., Atha, B. W., 3rd, Kelly, J. P., Lein, C. D., VanOrsdel, C. E., Weldon, J. E., and Hemm, M. R. (2018) Investigation of amino acid specificity in the CydX small protein shows sequence plasticity at the functional level, PLoS One, 13, e0198699, doi: 10.1371/journal.pone.0198699.

55. Duc, K. M., Kang, B. G., Lee, C., Park, H. J., Park, Y. M., Joung, Y. H., and Bang, I. S. (2019) The small protein CydX is required for cytochrome bd quinol oxidase stability and function in Salmonella enterica serovar typhimurium: a phenotypic study, J. Bacteriol., doi: 10.1128/JB.00348-19.

56. Arutyunyan, A. M., Sakamoto, J., Inadome, M., Kabashima, Y., and Borisov, V. B. (2012) Optical and magneto-optical activity of cytochrome bd from Geobacillus thermodenitrificans, Biochim. Biophys. Acta, 1817, 2087-2094, doi: 10.1016/j.bbabio.2012.06.009.

57. Goojani, H. G., Konings, J., Hakvoort, H., Hong, S., Gennis, R. B., Sakamoto, J., Lill, H., and Bald, D. (2020) The carboxy-terminal insert in the Q-loop is needed for functionality of Escherichia coli cytochrome bd-I, Biochim. Biophys. Acta, 1861, 148175, doi: 10.1016/j.bbabio.2020.148175.

58. Thesseling, A., Burschel, S., Wohlwend, D., and Friedrich, T. (2020) The long Q-loop of Escherichia coli cytochrome bd oxidase is required for assembly and structural integrity, FEBS Lett., in press, doi: 10.1002/1873-3468.13749.

59. Fang, H., Lin, R.-J., and Gennis, R. B. (1989) Location of heme axial ligands in the cytochrome d terminal oxidase complex of Escherichia coli determined by site-directed mutagenesis, J. Biol. Chem., 264, 8026-8032.

60. Spinner, F., Cheesman, M. R., Thomson, A. J., Kaysser, T., Gennis, R. B., Peng, Q., and Peterson, J. (1995) The haem b558 component of the cytochrome bd quinol oxidase complex from Escherichia coli has histidine-methionine axial ligation, Biochem. J., 308, 641-644, doi: 10.1042/bj3080641.

61. Kaysser, T. M., Ghaim, J. B., Georgiou, C., and Gennis, R. B. (1995) Methionine-393 is an axial ligand of the heme b558 component of the cytochrome bd ubiquinol oxidase from Escherichia coli, Biochemistry, 34, 13491-13501, doi: 10.1021/bi00041a029.

62. Hill, J. J., Alben, J. O., and Gennis, R. B. (1993) Spectroscopic evidence for a heme-heme binuclear center in the cytochrome bd ubiquinol oxidase from Escherichia coli, Proc. Natl. Acad. Sci. USA, 90, 5863-5867.

63. Tsubaki, M., Hori, H., Mogi, T., and Anraku, Y. (1995) Cyanide-binding site of bd-type ubiquinol oxidase from Escherichia coli, J. Biol. Chem., 270, 28565-28569, doi: 10.1074/jbc.270.48.28565.

64. Borisov, V., Arutyunyan, A. M., Osborne, J. P., Gennis, R. B., and Konstantinov, A. A. (1999) Magnetic circular dichroism used to examine the interaction of Escherichia coli cytochrome bd with ligands, Biochemistry, 38, 740-750, doi: 10.1021/bi981908t.

65. Vos, M. H., Borisov, V. B., Liebl, U., Martin, J. L., and Konstantinov, A. A. (2000) Femtosecond resolution of ligand-heme interactions in the high-affinity quinol oxidase bd: A di-heme active site? Proc. Natl. Acad. Sci. USA, 97, 1554-1559, doi: 10.1073/pnas.030528197.

66. Borisov, V. B., Sedelnikova, S. E., Poole, R. K., and Konstantinov, A. A. (2001) Interaction of cytochrome bd with carbon monoxide at low and room temperatures: evidence that only a small fraction of heme b595 reacts with CO, J. Biol. Chem., 276, 22095-22099, doi: 10.1074/jbc.M011542200.

67. Borisov, V. B., Liebl, U., Rappaport, F., Martin, J. L., Zhang, J., Gennis, R. B., Konstantinov, A. A., and Vos, M. H. (2002) Interactions between heme d and heme b595 in quinol oxidase bd from Escherichia coli: a photoselection study using femtosecond spectroscopy, Biochemistry, 41, 1654-1662, doi: 10.1021/bi0158019.

68. Arutyunyan, A. M., Borisov, V. B., Novoderezhkin, V. I., Ghaim, J., Zhang, J., Gennis, R. B., and Konstantinov, A. A. (2008) Strong excitonic interactions in the oxygen-reducing site of bd-type oxidase: the Fe-to-Fe distance between hemes d and b595 is 10 A, Biochemistry, 47, 1752-1759, doi: 10.1021/bi701884g.

69. Borisov, V. B. (2008) Interaction of bd-type quinol oxidase from Escherichia coli and carbon monoxide: heme d binds CO with high affinity, Biochemistry (Moscow), 73, 14-22, doi: 10.1134/S0006297908010021.

70. Bloch, D. A., Borisov, V. B., Mogi, T., and Verkhovsky, M. I. (2009) Heme/heme redox interaction and resolution of individual optical absorption spectra of the hemes in cytochrome bd from Escherichia coli, Biochim. Biophys. Acta, 1787, 1246-1253, doi: 10.1016/j.bbabio.2009.05.003.

71. Rappaport, F., Zhang, J., Vos, M. H., Gennis, R. B., and Borisov, V. B. (2010) Heme-heme and heme-ligand interactions in the di-heme oxygen-reducing site of cytochrome bd from Escherichia coli revealed by nanosecond absorption spectroscopy, Biochim. Biophys. Acta, 1797, 1657-1664, doi:10.1016/j.bbabio.2010.05.010.

72. Borisov, V. B., and Verkhovsky, M. I. (2013) Accommodation of CO in the di-heme active site of cytochrome bd terminal oxidase from Escherichia coli, J. Inorg. Biochem., 118, 65-67, doi: 10.1016/j.jinorgbio.2012.09.016.

73. Siletsky, S. A., Zaspa, A. A., Poole, R. K., and Borisov, V. B. (2014) Microsecond time-resolved absorption spectroscopy used to study CO compounds of cytochrome bd from Escherichia coli, PLoS One, 9, e95617, doi: 10.1371/journal.pone.0095617.

74. Siletsky, S. A., Rappaport, F., Poole, R. K., and Borisov, V. B. (2016) Evidence for fast electron transfer between the high-spin haems in cytochrome bd-I from Escherichia coli, PLoS One, 11, e0155186, doi: 10.1371/journal.pone.0155186.

75. Siletsky, S. A., Dyuba, A. V., Elkina, D. A., Monakhova, M. V., and Borisov, V. B. (2017) Spectral-kinetic analysis of recombination reaction of heme centers of bd-type quinol oxidase from Escherichia coli with carbon monoxide, Biochemistry (Moscow), 82, 1354-1366, doi: 10.1134/S000629791711013X.

76. Belevich, I., Borisov, V. B., Konstantinov, A. A., and Verkhovsky, M. I. (2005) Oxygenated complex of cytochrome bd from Escherichia coli: stability and photolability, FEBS Lett., 579, 4567-4570, doi: 10.1016/j.febslet.2005.07.011.

77. Belevich, I., Borisov, V. B., Bloch, D. A., Konstantinov, A. A., and Verkhovsky, M. I. (2007) Cytochrome bd from Azotobacter vinelandii: evidence for high-affinity oxygen binding, Biochemistry, 46, 11177-11184, doi: 10.1021/bi700862u.

78. Poole, R. K., Kumar, C., Salmon, I., and Chance, B. (1983) The 650 nm chromophore in Escherichia coli is an “Oxy-“ or oxygenated compound, not the oxidized form of cytochrome oxidase d: A hypothesis, J. Gen. Microbiol., 129, 1335-1344, doi: 10.1099/00221287-129-5-1335.

79. Kahlow, M. A., Loehr, T. M., Zuberi, T. M., and Gennis, R. B. (1993) The oxygenated complex of cytochrome d terminal oxidase: direct evidence for Fe-O2 coordination in a chlorin-containing enzyme by Resonance Raman spectroscopy, J. Am. Chem. Soc., 115, 5845-5846, doi: 10.1021/ja00066a071.

80. Borisov, V. B., Smirnova, I. A., Krasnosel’skaya, I. A., and Konstantinov, A. A. (1994) Oxygenated cytochrome bd from Escherichia coli can be converted into the oxidized form by lipophilic electron acceptors, Biochemistry (Moscow), 59, 437-443.

81. Borisov, V. B., Forte, E., Sarti, P., and Giuffre, A. (2011) Catalytic intermediates of cytochrome bd terminal oxidase at steady-state: ferryl and oxy-ferrous species dominate, Biochim. Biophys. Acta, 1807, 503-509, doi: 10.1016/ j.bbabio.2011.02.007

82. Lorence, R. M., Miller, M. J., Borochov, A., Faiman-Weinberg, R., and Gennis, R. B. (1984) Effects of pH and detergent on the kinetic and electrochemical properties of the purified cytochrome d terminal oxidase complex of Escherichia coli, Biochim. Biophys. Acta, 790, 148-153, doi: 10.1016/0167-4838(84)90218-8.

83. Cournia, Z., Allen, T. W., Andricioaei, I., Antonny, B., Baum, D., et al. (2015) Membrane protein structure, function, and dynamics: a perspective from experiments and theory, J. Membr. Biol., 248, 611-640, doi: 10.1007/s00232-015-9802-0.

84. Corradi, V., Sejdiu, B. I., Mesa-Galloso, H., Abdizadeh, H., Noskov, S. Y., Marrink, S. J., and Tieleman, D. P. (2019) Emerging diversity in lipid-protein interactions, Chem. Rev., 119, 5775-5848, doi: 10.1021/acs.chemrev.8b00451.

85. Gu, R. X., and de Groot, B. L. (2020) Lipid-protein interactions modulate the conformational equilibrium of a potassium channel, Nat. Commun., 11, 2162, doi: 10.1038/s41467-020-15741-8.

86. Koshy, C., and Ziegler, C. (2015) Structural insights into functional lipid-protein interactions in secondary transporters, Biochim. Biophys. Acta, 1850, 476-487, doi: 10.1016/j.bbagen.2014.05.010.

87. Andreev, I. M., and Konstantinov, A. A. (1983) Reaction of oxidized cytochrome oxidase with cyanide. Effects of pH, cytochrome c and membrane environment, Bioorg. Khim. (in Russian), 9, 216-227.

88. Miller, M. J., and Gennis, R. B. (1986) Purification and reconstitution of the cytochrome d terminal oxidase complex from Escherichia coli, Methods Enzymol., 126, 87-94, doi: 10.1016/s0076-6879(86)26011-5.

89. Racker, E. (1972) Reconstitution of cytochrome oxidase vesicles and conferral of sensitivity to energy transfer inhibitors, J. Membr. Biol., 10, 221-235, doi: 10.1007/BF01867856.

90. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) Protein measurement with the Folin phenol reagent, J. Biol. Chem., 193, 265-275.

91. Pudek, M. R., and Bragg, P. D. (1974) Inhibition by cyanide of the respiratory chain oxidases of Escherichia coli, Arch. Biochem. Biophys., 164, 682-693, doi: 10.1016/0003-9861(74)90081-2.

92. Kauffman, H. F., and Van Gelder, B. F. (1973) The respiratory chain of Azotobacter vinelandii. II. The effect of cyanide on cytochrome d, Biochim. Biophys. Acta, 314, 276-283, doi: 10.1016/0005-2728(73)90112-6.

93. Koland, J. G., Miller, M. J., and Gennis, R. B. (1984) Potentiometric analysis of the purified cytochrome d terminal oxidase complex from Escherichia coli, Biochemistry, 23, 1051-1056, doi: 10.1021/bi00301a003.

94. Lorence, R. M., Koland, J. G., and Gennis, R. B. (1986) Coulometric and spectroscopic analysis of the purified cytochrome d complex of Escherichia coli: evidence for the identification of “cytochrome a1” as cytochrome b595, Biochemistry, 25, 2314-2321, doi: 10.1021/bi00357a003.

95. George, P., and Tsou, C. L. (1952) Reaction between hydrocyanic acid, cyanide ion and ferricytochrome c, Biochem. J., 50, 440-448, doi: 10.1042/bj0500440.

96. Varhac, R., Tomaskova, N., Fabian, M., and Sedlak, E. (2009) Kinetics of cyanide binding as a probe of local stability/flexibility of cytochrome c, Biophys. Chem., 144, 21-26, doi: 10.1016/j.bpc.2009.06.001.

97. Ben-Gershom, E. (1961) Use of carbon monoxide for detecting denaturation in haemoproteins, Biochem. J., 78, 218-223, doi: 10.1042/bj0780218.

98. George, P., and Schejter, A. (1964) The reactivity of ferrocytochrome c with iron-binding ligands, J. Biol. Chem., 239, 1504-1508.