БИОХИМИЯ, 2020, том 85, вып. 12, с. 1873–1886

УДК 576.311.347; 616-002.17

Воспаление и окислительный стресс как мишени для терапии ишемического повреждения почек

Обзор

© 2020 Н.В. Андрианова 1,2, Д.Б. Зоров 1,3*, Е.Ю. Плотников 1,3,4*

НИИ физико-химической биологии имени А.Н. Белозерского, Московский государственный университет имени М.В. Ломоносова, 119991 Москва, Россия; электронная почта: plotnikov@belozersky.msu.ru; zorov@belozersky.msu.ru

Факультет биоинженерии и биоинформатики, Московский государственный университет имени М.В. Ломоносова, 119991 Москва, Россия

Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова, 117997 Москва, Россия

Институт молекулярной медицины, Первый московский государственный медицинский университет имени И.М. Сеченова, 119991 Москва, Россия

Поступила в редакцию 07.07.2020
После доработки 23.07.2020
Принята к публикации 29.07.2020

DOI: 10.31857/S0320972520120118

КЛЮЧЕВЫЕ СЛОВА: ишемия/реперфузия, нефропротекция, SkQ, глюкокортикоиды, циклооксигеназа-2, активные формы кислорода.

Аннотация

Воспаление и окислительный стресс являются основными патологическими процессами, сопровождающими ишемическое повреждение почек и других органов. В связи с этим именно они выбираются в качестве мишени для терапии острого почечного повреждения (ОПП) во множестве экспериментальных и клинических исследований. Важно отметить, что поскольку два этих механизма тесно взаимосвязаны в процессе развития ОПП, вещества, направленные на подавление одного из процессов, зачастую воздействуют и на другой. В обзоре рассмотрены несколько групп перспективных нефропротекторов, обладающих одновременно противовоспалительным и антиоксидантным действием. Например, многие антиоксиданты, такие как витамины, полифенольные соединения и митохондриально-адресованные антиоксиданты, не только снижают выработку активных форм кислорода в клетке, но и модулируют активность клеток иммунной системы. С другой стороны, иммуносупрессоры и нестероидные противовоспалительные вещества, воздействующие прежде всего на воспаление, в ряде случаев меняют и выраженность окислительного стресса. Отдельную группу представляют гормоны, в частности, эстрогены и мелатонин, которые также значительно снижают тяжесть почечного повреждения через воздействие на указанные механизмы. Проведенный анализ показывает, что препараты, обладающие сочетанным противовоспалительным и антиоксидантным действием, наиболее перспективны для лечения острого ишемического повреждения почек.

Сноски

* Адресат для корреспонденции.

Финансирование

Работа выполнена при финансовой поддержке Российского научного фонда (грант 18-15-00058) в части исследования окислительного стресса, гормонов и иммуносупрессоров и Российского фонда фундаментальных исследований (грант 19-34-90023) в части анализа воспаления.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических норм

Настоящая статья не содержит описания каких-либо исследований с участием людей или животных в качестве объектов.

Список литературы

1. Ronco, C., Bellomo, R., and Kellum, J. A. (2019) Acute kidney injury, Lancet, 394, 1949-1964, doi: 10.1016/S0140-6736(19)32563-2.

2. Yang, Y., Song, M., Liu, Y., Liu, H., Sun, L., Peng, Y., Liu, F., Venkatachalam, M. A., and Dong, Z. (2016) Renoprotective approaches and strategies in acute kidney injury, Pharmacol. Ther., 163, 58-73, doi: 10.1016/j.pharmthera.2016.03.015.

3. Bonventre, J. V., and Yang, L. (2011) Cellular pathophysiology of ischemic acute kidney injury, J. Clin. Invest., 121, 4210-4221, doi: 10.1172/JCI45161.

4. Rovcanin, B., Medic, B., Kocic, G., Cebovic, T., Ristic, M., and Prostran, M. (2016) Molecular dissection of renal ischemia-reperfusion: oxidative stress and cellular events, Curr. Med. Chem., 23, 1965-1980, doi: 10.2174/0929867323666160112122858.

5. Zuk, A., and Bonventre, J. V. (2016) Acute kidney injury, Annu. Rev. Med., 67, 293-307, doi: 10.1146/annurev-med-050214-013407.

6. Soares, R. O. S., Losada, D. M., Jordani, M. C., Évora, P., and Castro-E-Silva, O. (2019) Ischemia/reperfusion injury revisited: an overview of the latest pharmacological strategies, Int. J. Mol. Sci., 20, 1-45, doi: 10.3390/ijms20205034.

7. Belavgeni, A., Meyer, C., Stumpf, J., Hugo, C., and Linkermann, A. (2020) Ferroptosis and necroptosis in the kidney, Cell Chem. Biol., 27, 448-462, doi: 10.1016/j.chembiol.2020.03.016.

8. Jankauskas, S. S., Pevzner, I. B., Andrianova, N. V., Zorova, L. D., Popkov, V. A., Silachev, D. N., Kolosova, N. G., Plotnikov, E. Y., and Zorov, D. B. (2017) The age-associated loss of ischemic preconditioning in the kidney is accompanied by mitochondrial dysfunction, increased protein acetylation and decreased autophagy, Sci. Rep., 7, 1-9, doi: 10.1038/srep44430.

9. van den Akker, E. K., Manintveld, O. C., Hesselink, D. A., de Bruin, R., Ijzermans, J., and Dor, F. J. (2013) Protection against renal ischemia-reperfusion injury by ischemic postconditioning, Transplant. J., 95, 1299-1305, doi: 10.1097/TP.0b013e318281b934.

10. Andrianova, N. V, Jankauskas, S. S., Zorova, L. D., Pevzner, I. B., Popkov, V. A., et al. (2018) Mechanisms of age-dependent loss of dietary restriction protective effects in acute kidney injury, Cells, 7, 1-18, doi: 10.3390/cells7100178.

11. Brezis, M., Rosen, S., Silva, P., and Epstein, F. H. (1984) Renal ischemia: a new perspective, Kidney Int., 26, 375-383, doi: 10.1038/ki.1984.185.

12. Lieberthal, W., and Levine, J. S. (1996) Mechanisms of apoptosis and its potential role in renal tubular epithelial cell injury, Am. J. Physiol., 271, 477-488, doi: 10.1152/ajprenal.1996.271.3.f477.

13. Chouchani, E. T., Pell, V. R., James, A. M., Work, L. M., Saeb-Parsy, K., Frezza, C., Krieg, T., and Murphy, M. P. (2016) A unifying mechanism for mitochondrial superoxide production during ischemia-reperfusion injury, Cell Metab., 23, 254-263, doi: 10.1016/j.cmet.2015.12.009.

14. Plotnikov, E. Y., Kazachenko, A. V., Vyssokikh, M. Y., Vasileva, A. K., Tcvirkun, D. V., Isaev, N. K., Kirpatovsky, V. I., and Zorov, D. B. (2007) The role of mitochondria in oxidative and nitrosative stress during ischemia/reperfusion in the rat kidney, Kidney Int., 72, 1493-502, doi: 10.1038/sj.ki.5002568.

15. Zheng, L., Gao, W., Hu, C., Yang, C., and Rong, R. (2019) Immune cells in ischemic acute kidney injury, Curr. Protein Pept. Sci., 20, 770-776, doi: 10.2174/1389203720666190507102529.

16. Awad, A. S., Rouse, M., Huang, L., Vergis, A. L., Reutershan, J., et al. (2009) Compartmentalization of neutrophils in the kidney and lung following acute ischemic kidney injury, Kidney Int., 75, 689-698, doi: 10.1038/ki.2008.648.

17. Bolisetty, S., and Agarwal, A. (2009) Neutrophils in acute kidney injury: not neutral any more, Kidney Int., 75, 674-676, doi: 10.1038/ki.2008.689.

18. Jang, H. R., and Rabb, H. (2009) The innate immune response in ischemic acute kidney injury, Clin. Immunol., 130, 41-50, doi: 10.1038/nrneph.2014.180.

19. Day, Y. J., Huang, L., Ye, H., Linden, J., and Okusa, M. D. (2005) Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: role of macrophages, Am. J. Physiol. Ren. Physiol., 288, 722-731, doi: 10.1152/ajprenal.00378.2004.

20. Rabb, H., Daniels, F., O’Donnell, M., Haq, M., Saba, S. R., Keane, W., and Tang, W. W. (2000) Pathophysiological role of T lymphocytes in renal ischemia-reperfusion injury in mice, Am. J. Physiol. Renal. Physiol., 279, 525-531, doi: 10.1152/ajprenal.2000.279.3.F525.

21. Burne, M. J., Daniels, F., El Ghandour, A., Mauiyyedi, S., Colvin, R. B., O’Donnell, M. P., and Rabb, H. (2001) Identification of the CD4+ T cell as a major pathogenic factor in ischemic acute renal failure, J. Clin. Invest., 108, 1283-1290, doi: 10.1172/JCI12080.

22. Austen, W. G., Zhang, M., Chan, R., Friend, D., Hechtman, H. B., Carroll, M. C., and Moore, F. D. (2004) Murine hindlimb reperfusion injury can be initiated by a self-reactive monoclonal IgM, Surgery, 136, 401-406, doi: 10.1016/j.surg.2004.05.016.

23. Linfert, D., Chowdhry, T., and Rabb, H. (2009) Lymphocytes and ischemia-reperfusion injury, Transplant. Rev. (Orlando), 23, 1-10, doi: 10.1016/j.trre.2008.08.003.

24. Rabb, H., Griffin, M. D., McKay, Di. B., Swaminathan, S., Pickkers, P., Rosner, M. H., Kellum, J. A., and Ronco, C. (2016) Inflammation in AKI: current understanding, key questions, and knowledge gaps, J. Am. Soc. Nephrol., 27, 371-379, doi: 10.1681/ASN.2015030261.

25. Mulay, S. R., Holderied, A., Kumar, S. V., and Anders, H.-J. (2016) Targeting nflammation in so-called acute kidney injury, Semin. Nephrol., 36, 17-30, doi: 10.1016/j.semnephrol.2016.01.006.

26. Amir Aslani, B., and Ghobadi, S. (2016) Studies on oxidants and antioxidants with a brief glance at their relevance to the immune system, Life Sci., 146, 163-173, doi: 10.1016/j.lfs.2016.01.014.

27. Carr, A., and Maggini, S. (2017) Vitamin C and immune function, Nutrients, 9, 1-25, doi: 10.3390/nu9111211.

28. Korkmaz, A., and Kolankaya, D. (2009) The protective effects of ascorbic acid against renal ischemia-reperfusion injury in male rats, Ren. Fail., 31, 36-43, doi: 10.1080/08860220802546271.

29. Norio, K., Wikström, M., Salmela, K., Kyllönen, L., and Lindgren, L. (2003) Ascorbic acid against reperfusion injury in human renal transplantation, Transpl. Int., 16, 578-583, doi: 10.1007/s00147-003-0588-0.

30. Levine, M., Padayatty, S. J., and Espey, M. G. (2011) Vitamin C: a concentration-function approach yields pharmacology and therapeutic discoveries, Adv. Nutr., 2, 7888, doi: 10.3945/an.110.000109.

31. Salehipour, M., Monabbati, A., Salahi, H., Nikeghbalian, S., Bahador, A., et al. (2010) Protective effect of parenteral vitamin E on ischemia-reperfusion injury of rabbit kidney, Urology, 75, 858-861, doi: 10.1016/j.urology.2009.04.062.

32. Yamamoto, S., Hagiwara, S., Hidaka, S., Shingu, C., Goto, K., Kashima, K., and Noguchi, T. (2011) The antioxidant EPC-K1 attenuates renal ischemia-reperfusion injury in a rat model, Am. J. Nephrol., 33, 485-490, doi: 10.1159/000327820.

33. Koga, H., Hagiwara, S., Mei, H., Hiraoka, N., Kusaka, J., Goto, K., Kashima, K., and Noguchi, T. (2012) The vitamin E derivative, ESeroS-GS, attenuates renal ischemia-reperfusion injury in rat, J. Surg. Res., 176, 220-225, doi: 10.1016/j.jss.2011.07.039.

34. Rabl, H., Khoschsorur, G., Colombo, T., Petritsch, P., Rauchenwald, M., et al. (1993) A multivitamin infusion prevents lipid peroxidation and improves transplantation performance, Kidney Int., 43, 912-917, doi: 10.1038/ki.1993.128.

35. Takaoka, M., Ohkita, M., Kobayashi, Y., Yuba, M., and Matsumura, Y. (2002) Protective effect of α-lipoic acid against ischaemic acute renal failure in rats, Clin. Exp. Pharmacol. Physiol., 29, 189-194, doi: 10.1046/j.1440-1681.2002.03624.x.

36. Şehirli, Ö., Şener, E., Çetinel, Ş., Yüksel, M., Gedik, N., and Şener, G. (2008) α-lipoic acid protects against renal ischaemia-reperfusion injury in rats, Clin. Exp. Pharmacol. Physiol., 35, 249-255, doi: 10.1111/j.1440-1681.2007.04810.x.

37. Safa, J., Ardalan, M. R., Rezazadehsaatlou, M., Mesgari, M., Mahdavi, R., and Jadid, M. P. (2014) Effects of alpha lipoic acid supplementation on serum levels of IL-8 and TNF-α in patient with ESRD undergoing hemodialysis, Int. Urol. Nephrol., 46, 1633-1638, doi: 10.1007/s11255-014-0688-z.

38. Teichert, J., Tuemmers, T., Achenbach, H., Preiss, C., Hermann, R., Ruus, P., and Preiss, R. (2005) Pharmacokinetics of alpha-lipoic acid in subjects with severe kidney damage and end-stage renal disease, J. Clin. Pharmacol., 45, 313-328, doi: 10.1177/0091270004270792.

39. Koga, H., Hagiwara, S., Kusaka, J., Goto, K., Uchino, T., Shingu, C., Kai, S., and Noguchi, T. (2012) New α-lipoic acid derivative, DHL-HisZn, ameliorates renal ischemia-reperfusion injury in rats, J. Surg. Res., 174, 352-358, doi: 10.1016/j.jss.2011.01.011.

40. Hussain, T., Tan, B., Yin, Y., Blachier, F., Tossou, M., and Rahu, N. (2016) Oxidative stress and inflammation: what polyphenols can do for us?, Oxid. Med. Cell. Longev., 2016, 1-9, doi: 10.1155/2016/7432797.

41. Yahfoufi, N., Alsadi, N., Jambi, M., and Matar, C. (2018) The immunomodulatory and anti-inflammatory role of polyphenols, Nutrients, 10, 1-23, doi: 10.3390/nu10111618.

42. Awad, A. S., and El-Sharif, A. A. (2011) Curcumin immune-mediated and anti-apoptotic mechanisms protect against renal ischemia/reperfusion and distant organ induced injuries, Int. Immunopharmacol., 11, 992-996, doi: 10.1016/j.intimp.2011.02.015.

43. Trujillo, J., Chirino, Y. I., Molina-Jijón, E., Andérica-Romero, A. C., Tapia, E., and Pedraza-Chaverrí, J. (2013) Renoprotective effect of the antioxidant curcumin: recent findings, Redox Biol., 1, 448-456, doi: 10.1016/j.redox.2013.09.003.

44. Najafi, H., Ashtiyani, S., Sayedzadeh, S., Yarijani, Z., and Fakhri, S. (2015) Therapeutic effects of curcumin on the functional disturbances and oxidative stress induced by renal ischemia/reperfusion in rats, Avicenna J. Phytomedicine, 5, 576-586.

45. Hongtao, C., Youling, F., Fang, H., Huihua, P., Jiying, Z., and Jun, Z. (2018) Curcumin alleviates ischemia reperfusion-induced late kidney fibrosis through the APPL1/Akt signaling pathway, J. Cell. Physiol., 233, 8588-8596, doi: 10.1002/jcp.26536.

46. Moreillon, J. J., Bowden, R. G., Deike, E., Griggs, J., Wilson, R., Shelmadine, B., Cooke, M., and Beaujean, A. (2013) The use of an anti-inflammatory supplement in patients with chronic kidney disease, J. Complement. Integr. Med., 10, 143-152, doi: 10.1515/jcim-2012-0011.

47. Kahraman, A., Erkasap, N., Serteser, M., and Köken, T. (2003) Protective effect of quercetin on renal ischemia/ reperfusion injury in rats, J. Nephrol., 16, 219-224.

48. Shoskes, D. A. (1998) Effect of bioflavonoids quercetin and curcumin on ischemic renal injury: a new class of renoprotective agents, Transplantation, 66, 147-152, doi: 10.1097/00007890-199807270-00001.

49. Shoskes, D., Lapierre, C., Cruz-Corerra, M., Muruve, N., Rosario, R., Fromkin, B., Braun, M., and Copley, J. (2005) Beneficial effects of the bioflavonoids curcumin and quercetin on early function in cadaveric renal transplantation: a randomized placebo controlled trial, Transplantation, 80, 1556-1559, doi: 10.1097/01.tp.0000183290.64309.21.

50. Giovannini, L., Migliori, M., Longoni, B. M., Das, D. K., Bertelli, A. A. E., Panichi, V., Filippi, C., and Bertelli, A. (2001) Resveratrol, a polyphenol found in wine, reduces ischemia reperfusion injury in rat kidneys, J. Cardiovasc. Pharmacol., 37, 262-270, doi: 10.1097/00005344-200103000-00004.

51. Bienholz, A., Pang, R. M., Guberina, H., Rauen, U., Witzke, O., Wilde, B., Petrat, F., Feldkamp, T., and Kribben, A. (2017) Resveratrol does not protect from ischemia-induced acute kidney injury in an in vivo rat model, Kidney Blood Press. Res., 42, 1090-1103, doi: 10.1159/000485606.

52. Korkmaz, A., and Kolankaya, D. (2016) Inhibiting inducible nitric oxide synthase with rutin reduces renal ischemia/reperfusion injury, Can. J. Surg., 56, 6-14, doi: 10.1503/cjs.004811.

53. Kezic, A., Spasojevic, I., Lezaic, V., and Bajcetic, M. (2016) Mitochondria-targeted antioxidants: future perspectives in kidney ischemia reperfusion injury, Oxid. Med. Cell. Longev., 2016, 1-12, doi: 10.1155/2016/2950503.

54. Plotnikov, E. Y., Chupyrkina, A. A., Jankauskas, S. S., Pevzner, I. B., Silachev, D. N., Skulachev, V. P., and Zorov, D. B. (2011) Mechanisms of nephroprotective effect of mitochondria-targeted antioxidants under rhabdomyolysis and ischemia/reperfusion, Biochim. Biophys. Acta Mol. Basis Dis., 1812, 77-86, doi: 10.1016/j.bbadis.2010.09.008.

55. Jankauskas, S. S., Andrianova, N. V., Alieva, I. B., Prusov, A. N., Matsievsky, D. et al. (2016) Dysfunction of kidney endothelium after ischemia/reperfusion and its prevention by mitochondria-targeted antioxidant, Biochemistry (Moscow), 81, 1538-1548, doi: 10.1134/S0006297916120154.

56. Bakeeva, L. E., Barskov, I. V., Egorov, M. V., Isaev, N. K., Kapelko, V. I., et al. (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 2. Treatment of some ROS- and age-related diseases (heart arrhythmia, heart infarctions, kidney ischemia, and stroke), Biochemistry (Moscow), 73, 1288-1299, doi: 10.1134/S000629790812002X.

57. Dare, A. J., Bolton, E. A., Pettigrew, G. J., Bradley, J. A., Saeb-Parsy, K., and Murphy, M. P. (2015) Protection against renal ischemia-reperfusion injury in vivo by the mitochondria targeted antioxidant MitoQ, Redox Biol., 5, 163-168, doi: 10.1016/j.redox.2015.04.008.

58. Mitchell, T., Rotaru, D., Saba, H., Smith, R. A. J., Murphy, M. P., and MacMillan-Crow, L. A. (2011) The mitochondria-targeted antioxidant mitoquinone protects against cold storage injury of renal tubular cells and rat kidneys, J. Pharmacol. Exp. Ther., 336, 682-692, doi: 10.1124/jpet.110.176743.

59. Szeto, H. H., Liu, S., Soong, Y., Wu, D., Darrah, S. F., et al. (2011) Mitochondria-targeted peptide accelerates ATP recovery and reduces ischemic kidney injury, J. Am. Soc. Nephrol., 22, 1041-1052, doi: 10.1681/ASN.2010080808.

60. Liu, D., Jin, F., Shu, G., Xu, X., Qi, J., et al. (2019) Enhanced efficiency of mitochondria-targeted peptide SS-31 for acute kidney injury by pH-responsive and AKI-kidney targeted nanopolyplexes, Biomaterials, 211, 57-67, doi: 10.1016/j.biomaterials.2019.04.034.

61. Liu, Y., Wang, Y., Ding, W., and Wang, Y. (2018) Mito-TEMPO alleviates renal fibrosis by reducing inflammation, mitochondrial dysfunction, and endoplasmic reticulum stress, Oxid. Med. Cell. Longev., 2018, 1-13, doi: 10.1155/2018/5828120.

62. Sheu, S. S., Nauduri, D., and Anders, M. W. (2006) Targeting antioxidants to mitochondria: a new therapeutic direction, Biochim. Biophys. Acta Mol. Basis Dis., 1762, 256-265, doi: 10.1016/j.bbadis.2005.10.007.

63. Bolisetty, S., Traylor, A., Zarjou, A., Johnson, M. S., Benavides, G. A., et al. (2013) Mitochondria-targeted heme oxygenase-1 decreases oxidative stress in renal epithelial cells, Am. J. Physiol. Ren. Physiol., 305, doi: 10.1152/ajprenal.00160.2013.

64. Mitchell, T., Chacko, B. K., and Darley-Usmar, V. (2012) Controlling radicals in the powerhouse: development of mitoSOD, Chem. Biol., 19, 1217-1218, doi: 10.1016/j.chembiol.2012.10.004.

65. Salom, M. G., Ramírez, P., Carbonell, L. F., López Conesa, E., Cartagena, J., et al. (1998) Protective effect of N-acetyl-L-cysteine on the renal failure induced by inferior vena cava occlusion, Transplantation, 65, 1315-1321, doi: 10.1097/00007890-199805270-00006.

66. Small, D. M., Sanchez, W. Y., Roy, S. F., Morais, C., Brooks, H. L., et al. (2018) N-acetyl-cysteine increases cellular dysfunction in progressive chronic kidney damage after acute kidney injury by dampening endogenous antioxidant responses, Am. J. Physiol. Ren. Physiol., 314, 956-968, doi: 10.1152/ajprenal.00057.2017.

67. Sahin, G., Yalcin, A. U., and Akcar, N. (2007) Effect of N-acetylcysteine on endothelial dysfunction in dialysis patients, Blood Purif., 25, 309-315, doi: 10.1159/000106103.

68. Orban, J. C., Quintard, H., Cassuto, E., Jambou, P., Samat-Long, C., and Ichai, C. (2015) Effect of N-acetylcysteine pretreatment of deceased organ donors on renal allograft function: a randomized controlled trial, Transplantation, 99, 746-753, doi: 10.1097/TP.0000000000000395.

69. Moghaddas, A., and Dashti-Khavidaki, S. (2018) L-carnitine and potential protective effects against ischemia-reperfusion injury in noncardiac organs: from experimental data to potential clinical applications, J. Diet. Suppl., 15, 740-756, doi: 10.1080/19390211.2017.1359221.

70. Görür, S., Bağdatoğlu, Ö. T., and Polat, G. (2005) Protective effect of L-carnitine on renal ischaemia-reperfusion injury in the rat, Cell Biochem. Funct., 23, 151-155, doi: 10.1002/cbf.1159.

71. Mister, M., Noris, M., Szymczuk, J., Azzollini, N., Aiello, S., et al. (2002) Propionyl-L-carnitine prevents renal function deterioration due to ischemia/reperfusion, Kidney Int., 61, 1064-1078, doi: 10.1046/j.1523-1755.2002.00212.x.

72. Jafari, A., Khatami, M. R., Dashti-Khavidaki, S., Lessan-Pezeshki, M., Abdollahi, A., and Moghaddas, A. (2017) Protective effects of L-carnitine against delayed graft function in kidney transplant recipients: a pilot, randomized, double-blinded, placebo-controlled clinical trial, J. Ren. Nutr., 27, 113-126, doi: 10.1053/j.jrn.2016.11.002.

73. Doi, K., Suzuki, Y., Nakao, A., Fujita, T., and Noiri, E. (2004) Radical scavenger edaravone developed for clinical use ameliorates ischemia/reperfusion injury in rat kidney, Kidney Int., 65, 1714-1723, doi: 10.1111/j.1523-1755.2004.00567.x.

74. Kamouchi, M., Sakai, H., Kiyohara, Y., Minematsu, K., Hayashi, K., and Kitazono, T. (2013) Acute kidney injury and edaravone in acute ischemic stroke: the fukuoka stroke registry, J. Stroke Cerebrovasc. Dis., 22, 470-476, doi: 10.1016/j.jstrokecerebrovasdis.2013.05.018.

75. Kizilgun, M., Poyrazoglu, Y., Oztas, Y., Yaman, H., Cakir, E., et al. (2011) Beneficial effects of N-acetylcysteine and ebselen on renal ischemia/reperfusion injury, Ren. Fail., 33, 512-517, doi: 10.3109/0886022X.2011.574767.

76. Stoyanovsky, D. A., Jiang, J., Murphy, M. P., Epperly, M., Zhang, X., et al. (2014) Design and synthesis of a mitochondria-targeted mimic of glutathione peroxidase, mitoebselen-2, as a radiation mitigator, ACS Med. Chem. Lett., 5, 1304-1307, doi: 10.1021/ml5003635.

77. Allison, T. L. (2016) Immunosuppressive therapy in transplantation, Nurs. Clin. North Am., 51, 107-120, doi: 10.1016/j.cnur.2015.10.008.

78. Zaza, G., Leventhal, J., Signorini, L., Gambaro, G., and Cravedi, P. (2019) Effects of antirejection drugs on inate immune cells after kidney transplantation, Front. Immunol., 10, 1-10, doi: 10.3389/fimmu.2019.02978

79. Höcherl, K., Dreher, F., Vitzthum, H., Köhler, J., and Kurtz, A. (2002) Cyclosporine a suppresses cyclooxygenase-2 expression in the rat kidney, J. Am. Soc. Nephrol., 13, 2427-2436, doi: 10.1097/01.ASN.0000031702.86799.B9.

80. Lemoine, S., Pillot, B., Rognant, N., Augeul, L., Rayberin, M., et al. (2015) Postconditioning with cyclosporine a reduces early renal dysfunction by inhibiting mitochondrial permeability transition, Transplantation, 99, 717-723, doi: 10.1097/TP.0000000000000530.

81. Wu, Q., Wang, X., Nepovimova, E., Wang, Y., Yang, H., and Kuca, K. (2018) Mechanism of cyclosporine A nephrotoxicity: oxidative stress, autophagy, and signalings, Food Chem. Toxicol., 118, 889-907, doi: 10.1016/j.fct.2018.06.054.

82. Wu, Q., and Kuca, K. (2018) Metabolic fathway of cyclosporine A and its correlation with nephrotoxicity, Curr. Drug Metab., 20, 84-90, doi: 10.2174/1389200219666181031113505.

83. Van Thiel, D. H., Sakr, M., Zetti, G., and Mcclain, C. (1992) FK 506 reduces the injury experienced following renal ischemia and reperfusion, Ren. Fail., 14, 285-288, doi: 10.3109/08860229209106630.

84. Yang, C. W., Lee, S. H., Lim, S. W., Jung, J. Y., Kim, W. Y., et al. (2002) Cyclosporine or FK506 decrease mature epidermal growth factor protein expression and renal tubular regeneration in rat kidneys with ischemia/reperfusion injury, Nephron, 92, 914-921, doi: 10.1159/000065435.

85. Hošková, L., Málek, I., Kopkan, L., and Kautzner, J. (2017) Pathophysiological mechanisms of calcineurin inhibitor-induced nephrotoxicity and arterial hypertension, Physiol. Res., 66, 167-180, doi: 10.33549/physiolres.933332.

86. Dias, P. H., Oliveira, G. A., Dias, F. G., Gomes, R., Filho, R., and de Fraga, R. (2015) Effects of immunosuppression with tacrolimus and mycophenolate mofetil on renal histology and function in single kidney rats submitted to ischemia and reperfusion, Acta Cir. Bras., 30, 127-133, doi: 10.1590/S0102-86502015002000007.

87. Sehgal, S. N. (2003) Sirolimus: Its discovery, biological properties, and mechanism of action, Transplant. Proc., 35, 7-14, doi: 10.1016/s0041-1345(03)00211-2.

88. Esposito, C., Grosjean, F., Torreggiani, M., Esposito, V., Mangione, F., et al. (2011) Sirolimus prevents short-term renal changes induced by ischemia-reperfusion injury in rats, Am. J. Nephrol., 33, 239-249, doi: 10.1159/000324577.

89. Lieberthal, W., Fuhro, R., Andry, C. C., Rennke, H., Abernathy, V. E., et al. (2001) Rapamycin impairs recovery from acute renal failure: role of cell-cycle arrest and apoptosis of tubular cells, Am. J. Physiol. Renal Physiol., 281, 693-706, doi: 10.1152/ajprenal.2001.281.4.F693.

90. Domínguez, J., Lira, F., Giacaman, A., and Mendez, G. (2011) Short-term immunossupressive treatment of the donor does not prevent ischemia-reperfusion kidney damage in the rat, Transplant Proc., 43, 3315-3318, doi: 10.1016/j.transproceed.2011.09.093.

91. Andrianova, N. V., Zorova, L. D., Babenko, V. A., Pevzner, I. B., Popkov, V. A., et al. (2019) Rapamycin is not protective against ischemic and cisplatin-induced kidney injury, Biochemistry (Moscow), 84, 1502-1512, doi: 10.1134/S0006297919120095.

92. Vandewalle, J., Luypaert, A., De Bosscher, K., and Libert, C. (2018) Therapeutic mechanisms of glucocorticoids, Trends Endocrinol. Metab., 29, 42-54, doi: 10.1016/j.tem.2017.10.010.

93. Barnes, P. J. (1998) Anti-inflammatory actions of glucocorticoids: molecular mechanisms, Clin. Sci., 94, 557-572, doi: 10.1042/cs0940557.

94. Yang, N., Zhang, W., and Shi, X. M. (2008) Glucocorticoid-induced leucine zipper (GILZ) mediates glucocorticoid action and inhibits inflammatory cytokine-induced COX-2 expression, J. Cell. Biochem., 103, 1760-1771, doi: 10.1002/jcb.21562.

95. Cain, D. W., and Cidlowski, J. A. (2017) Immune regulation by glucocorticoids, Nat. Rev. Immunol., 17, 233-247, doi: 10.1038/nri.2017.1.

96. Song, I. H., and Buttgereit, F. (2006) Non-genomic glucocorticoid effects to provide the basis for new drug developments, Mol. Cell. Endocrinol., 246, 142-146, doi: 10.1016/j.mce.2005.11.012.

97. Gerö, D., and Szabo, C. (2016) Glucocorticoids suppress mitochondrial oxidant production via upregulation of uncoupling protein 2 in hyperglycemic endothelial cells, PLoS One, 11, 1-26, doi: 10.1371/journal.pone.0154813.

98. Starkov, A. A. (1997) “Mild” uncoupling of mitochondria, Biosci. Rep., 17, 273-279, doi: 10.1023/a:1027380527769.

99. Arvier, M., Lagoutte, L., Johnson, G., Dumas, J. F., Sion, B., et al. (2007) Adenine nucleotide translocator promotes oxidative phosphorylation and mild uncoupling in mitochondria after dexamethasone treatment, Am. J. Physiol. Endocrinol. Metab., 293, 1320-1324, doi: 10.1152/ajpendo.00138.2007.

100. Kumar, S., Allen, D. A., Kieswich, J. E., Patel, N. S. A., Harwood, S., et al. (2009) Dexamethasone ameliorates renal ischemia-reperfusion injury, J. Am. Soc. Nephrol., 20, 2412-2425, doi: 10.1681/ASN.2008080868.

101. Baker, R. C., Armstrong, M. A., Young, I. S., McClean, E., O’Rourke, D., et al. (2006) Methylprednisolone increases urinary nitrate concentrations and reduces subclinical renal injury during infrarenal aortic ischemia reperfusion, Ann. Surg., 244, 821-826, doi: 10.1097/01.sla.0000225094.59283.b4.

102. Moonen, L., Geryl, H., D’Haese, P. C., and Vervaet, B. A. (2018) Short-term dexamethasone treatment transiently, but not permanently, attenuates fibrosis after acute-to-chronic kidney injury, BMC Nephrol., 19, 1-12, doi: 10.1186/s12882-018-1151-7.

103. Kainz, A., Wilflingseder, J., Mitterbauer, C., Haller, M., Burghuber, C., et al. (2010) Steroid pretreatment of organ donors to prevent postischemic renal allograft failure: a randomized, controlled trial, Ann. Intern. Med., 153, 222-230, doi: 10.7326/0003-4819-153-4-201008170-00003.

104. Ricciotti, E., and Fitzgerald, G. A. (2011) Prostaglandins and inflammation, Arterioscler. Thromb. Vasc. Biol., 31, 986-1000, doi: 10.1161/ATVBAHA.110.207449.

105. Warner, T. D., and Mitchell, J. A. (2004) Cyclooxygenases: new forms, new inhibitors, and lessons from the clinic, FASEB J., 18, 790-804, doi: 10.1096/fj.03-0645rev.

106. Nørregaard, R., Kwon, T.-H., and Frøkiær, J. (2015) Physiology and pathophysiology of cyclooxygenase-2 and prostaglandin E2 in the kidney, Kidney Res. Clin. Pract., 34, 194-200, doi: 10.1016/j.krcp.2015.10.004.

107. Ungprasert, P., Cheungpasitporn, W., Crowson, C. S., and Matteson, E. L. (2015) Individual non-steroidal anti-inflammatory drugs and risk of acute kidney injury: a systematic review and meta-analysis of observational studies, Eur. J. Intern. Med., 26, 285-291, doi: 10.1016/j.ejim.2015.03.008.

108. McMurray, R. W., and Hardy, K. J. (2002) Cox-2 inhibitors: today and tomorrow, Am. J. Med. Sci., 323, 181-189, doi: 10.1097/00000441-200204000-00003.

109. Senbel, A. M., AbdelMoneim, L., and Omar, A. G. (2014) Celecoxib modulates nitric oxide and reactive oxygen species in kidney ischemia/reperfusion injury and rat aorta model of hypoxia/reoxygenation, Vasc. Pharmacol., 62, 24-31, doi: 10.1016/j.vph.2014.04.004.

110. Suleyman, Z., Sener, E., Kurt, N., Comez, M., and Yapanoglu, T. (2015) The effect of nimesulide on oxidative damage inflicted by ischemia-reperfusion on the rat renal tissue, Ren. Fail., 37, 323-331, doi: 10.3109/0886022X.2014.985996.

111. Bonventre, J. V. (2007) Pathophysiology of acute kidney injury: roles of potential inhibitors of inflammation, Acute Kidney Injury, 156, 39-46, doi: 10.1159/000102069.

112. Tasdemir, C., Tasdemir, S., Vardi, N., Ates, B., Parlakpinar, H., et al. (2012) Protective effect of infliximab on ischemia/reperfusion-induced damage in rat kidney, Ren. Fail., 34, 1144-1149, doi: 10.3109/0886022X.2012.717490.

113. Neri, F., Puviani, L., Tsivian, M., Prezzi, D., Pacilé, V., et al. (2007) Protective effect of an inhibitor of interleukin-8 (meraxin) from ischemia and reperfusion injury in a rat model of kidney transplantation, Transplant. Proc., 39, 1771-1772, doi: 10.1016/j.transproceed.2007.05.018.

114. Kelly, K. J., Williams, W. W., Colvin, R. B., and Bonventre, J. V. (1994) Antibody to intercellular adhesion molecule 1 protects the kidney against ischemic injury, Proc. Natl. Acad. Sci. USA, 91, 812-816, doi: 10.1073/pnas.91.2.812.

115. Singbartl, K., and Klaus, L. (2000) Protection from ischemia-reperfusion induced severe acute renal failure by blocking E-selectin, Crit. Care Med., 28, 2507-2514, doi: 10.1097/00003246-200007000-00053.

116. Sood, P., and Hariharan, S. (2018) Anti-CD20 blocker rituximab in kidney transplantation, Transplantation, 102, 44-58, doi: 10.1097/TP.0000000000001849.

117. Kim, H. J., Park, S. J., Koo, S., Cha, H. J., Lee, J. S., Kwon, B., and Cho, H. R. (2014) Inhibition of kidney ischemia-reperfusion injury through local infusion of a TLR2 blocker, J. Immunol. Methods, 407, 146-150, doi: 10.1016/j.jim.2014.03.014.

118. Dong, J., Pratt, J. R., Smith, R. A., Dodd, I., and Sacks, S. H. (1999) Strategies for targeting complement inhibitors in ischaemia/reperfusion injury, Mol. Immunol., 36, 957-963, doi: 10.1016/s0161-5890(99)00118-2.

119. Zilberman-Itskovich, S., Abu-Hamad, R., Stark, M., and Efrati, S. (2019) Effect of anti-C5 antibody on recuperation from ischemia/reperfusion-induced acute kidney injury, Ren. Fail., 41, 967-975, doi: 10.1080/0886022X.2019.1677248.

120. Danobeitia, J. S., Ziemelis, M., Ma, X., Zitur, L. J., Zens, T., et al. (2017) Complement inhibition attenuates acute kidney injury after ischemia-reperfusion and limits progression to renal fibrosis in mice, PLoS One, 12, 1-20, doi: 10.1371/journal.pone.0183701.

121. Kaabak, M., Babenko, N., Shapiro, R., Zokoyev, A., Dymova, O., and Kim, E. (2018) A prospective randomized, controlled trial of eculizumab to prevent ischemia-reperfusion injury in pediatric kidney transplantation, Pediatr. Transplant., 22, 1-8, doi: 10.1111/petr.13129.

122. Hutchens, M. P., Dunlap, J., Hurn, P. D., and Jarnberg, P. O. (2008) Renal ischemia: does sex matter? Anesth. Analg., 107, 239-249, doi: 10.1213/ane.0b013e318178ca42.

123. Hutchens, M. P., Fujiyoshi, T., Komers, R., Herson, P. S., and Anderson, S. (2012) Estrogen protects renal endothelial barrier function from ischemia-reperfusion in vitro and in vivo, Am. J. Physiol. Ren. Physiol., 303, 377-385, doi: 10.1152/ajprenal.00354.2011.

124. Popkov, V. A., Andrianova, N. V., Manskikh, V. N., Silachev, D. N., Pevzner, I. B., et al. (2018) Pregnancy protects the kidney from acute ischemic injury, Sci. Rep., 8, 14534, 1-11, doi: 10.1038/s41598-018-32801-8.

125. Wu, C. C., Chang, C. Y., Chang, S. T., and Chen, S. H. (2016) 17β-estradiol accelerated renal tubule regeneration in male rats after ischemia/reperfusion-induced acute kidney injury, Shock, 46, 158-163, doi: 10.1097/SHK.0000000000000586.

126. Park, K. M., Kim, J. I., Ahn, Y., Bonventre, A. J., and Bonventre, J. V. (2004) Testosterone is responsible for enhanced susceptibility of males to ischemic renal injury, J. Biol. Chem., 279, 52282-52292, doi: 10.1074/jbc.M407629200.

127. Kovats, S. (2012) Estrogen receptors regulate an inflammatory pathway of dendritic cell differentiation: mechanisms and implications for immunity, Horm. Behav., 62, 254-262, doi: 10.1016/j.yhbeh.2012.04.011.

128. Straub, R. H. (2007) The complex role of estrogens in inflammation, Endocr. Rev., 28, 521-574, doi: 10.1210/er.2007-0001.

129. Trigunaite, A., Dimo, J., and Jørgensen, T. N. (2015) Suppressive effects of androgens on the immune system, Cell. Immunol., 294, 87-94, doi: 10.1016/j.cellimm.2015.02.004.

130. Kozlov, A. V., Duvigneau, J., Hyatt, T. C., Raju, R., Behling, T., et al. (2010) Effect of estrogen on mitochondrial function and intracellular stress markers in rat liver and kidney following trauma-hemorrhagic shock and prolonged hypotension, Mol. Med., 16, 254-261, doi: 10.2119/molmed.2009.00184.

131. Nilsson, S., Mäkelä, S., Treuter, E., Tujague, M., Thomsen, J., et al. (2001) Mechanisms of estrogen action, Physiol. Rev., 81, 1535-1565, doi: 10.1152/physrev.2001.81.4.1535.

132. Ostadal, B., Drahota, Z., Houstek, J., Milerova, M., Ostadalova, I., Hlavackova, M., and Kolar, F. (2019) Developmental and sex differences in cardiac tolerance to ischemia–reperfusion injury: the role of mitochondria, Can. J. Physiol. Pharmacol., 97, 808-814, doi: 10.1139/cjpp-2019-0060.

133. Klinge, C. M. (2017) Estrogens regulate life and death in mitochondria, J. Bioenerg. Biomembr., 49, 307-324, doi: 10.1007/s10863-017-9704-1.

134. Reiter, R. J., Mayo, J. C., Tan, D. X., Sainz, R. M., Alatorre-Jimenez, M., and Qin, L. (2016) Melatonin as an antioxidant: under promises but over delivers, J. Pineal Res., 61, 253-278, doi: 10.1111/jpi.12360.

135. Reiter, R. J., Rosales-Corral, S., Tan, D. X., Jou, M. J., Galano, A., and Xu, B. (2017) Melatonin as a mitochondria-targeted antioxidant: one of evolution’s best ideas, Cell. Mol. Life Sci., 74, 3863-3881, doi: 10.1007/s00018-017-2609-7.

136. Kurcer, Z., Oguz, E., Ozbilge, H., Baba, F., Aksoy, N., et al. (2007) Melatonin protects from ischemia/reperfusion-induced renal injury in rats: this effect is not mediated by proinflammatory cytokines, J. Pineal Res., 43, 172-178, doi: 10.1111/j.1600-079X.2007.00459.x.

137. Aktoz, T., Aydogdu, N., Alagol, B., Yalcin, O., Huseyinova, G., and Atakan, I. H. (2007) The protective effects of melatonin and vitamin E against renal ischemia-reperfusion injury in rats, Ren. Fail., 29, 535-542, doi: 10.1080/08860220701391738.

138. Panah, F., Ghorbanihaghjo, A., Argani, H., Haiaty, S., Rashtchizadeh, N., et al. (2019) The effect of oral melatonin on renal ischemia–reperfusion injury in transplant patients: a double-blind, randomized controlled trial, Transpl. Immunol., 57, 1-7, doi: 10.1016/j.trim.2019.101241.