БИОХИМИЯ, 2020, том 85, вып. 12, с. 1816–1828

УДК 577.217 : 616.98

COVID-19 и окислительный стресс

Обзор

© 2020 Б.В. Черняк 1, Е.Н. Попова 1, А.С. Приходько 1,2, О.А. Гребенчиков 3, Л.А. Зиновкина 2, Р.А. Зиновкин 1,4,5*

НИИ физико-химической биологии имени А.Н. Белозерского, Московский государственный университет имени М.В. Ломоносова, 119991 Москва, Россия; электронная почта: roman.zinovkin@gmail.com

Московский государственный университет имени М.В. Ломоносова, факультет биоинженерии и биоинформатики, 119991 Москва, Россия

НИИ общей реаниматологии имени В.А. Неговского ФНКЦ РР, 107031 Москва, Россия

НИИ митоинженерии, Московский государственный университет имени М.В. Ломоносова, 119991 Москва, Россия

Институт молекулярной медицины, Первый московский государственный медицинский университет имени И.М. Сеченова, 119991 Москва, Россия

Поступила в редакцию 27.07.2020
После доработки 11.08.2020
Принята к публикации 12.08.2020

DOI: 10.31857/S0320972520120064

КЛЮЧЕВЫЕ СЛОВА: окислительный стресс, эндотелий, SARS-CoV-2, COVID-19, цитокиновый шторм, окислительный стресс.

Аннотация

Патогенез новой коронавирусной инфекции COVID-19 является предметом активного изучения во всем мире. COVID-19, вызываемый SARS-CoV-2, представляет собой сложное заболевание, в котором тесно переплетено взаимодействие вируса с клетками-мишенями, действием иммунной системы и системной реакцией организма на эти события. Многие респираторные вирусные инфекции, включая COVID-19, вызывают смерть инфицированных клеток, активацию компонентов врожденного иммунитета и секрецию цитокинов воспаления. Все эти процессы ассоциированы с развитием окислительного стресса, который вносит важный вклад в патогенез вирусных инфекций. В данном обзоре проведен анализ информации об окислительном стрессе при инфекциях, вызываемых SARS-CoV-2 и другими респираторными вирусами. Основное внимание в обзоре уделено участию сосудистого эндотелия в патогенезе COVID-19.

Сноски

* Адресат для корреспонденции.

Финансирование

Работа выполнена при финансовой поддержке грантов Российского фонда фундаментальных исследований (20-04-60452 и 17-00-00088).

Благодарности

Авторы выражают глубокую признательность профессору, академику РАН Владимиру Петровичу Скулачеву, без участия которого данная работа не появилась бы на свет.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических норм

Настоящая статья не содержит описания выполненных автором исследований с участием людей или использованием животных в качестве объектов.

Список литературы

1. Wu, Z., and McGoogan, J. M. (2020) Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese center for disease control and prevention, JAMA, 323, 1239-1242, doi: 10.1001/jama.2020.2648.

2. Wu, C., Chen, X., Cai, Y., Xia, J., Zhou, X., et al. (2020) Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China, JAMA Intern. Med., 180, 934-943, doi: 10.1001/jamainternmed.2020.0994.

3. Varga, Z., Flammer, A. J., Steiger, P., Haberecker, M., Andermatt, R., et al. (2020) Endothelial cell infection and endotheliitis in COVID-19, Lancet, 395, 1417-1418, doi: 10.1016/S0140-6736(20)30937-5.

4. Blanco-Melo, D., Nilsson-Payant, B. E., Liu, W.-C., Uhl, S., Hoagland, D., et al. (2020) Imbalanced host response to SARS-CoV-2 drives development of COVID-19, Cell, 181, 1036-1045.e9, doi: 10.1016/j.cell.2020.04.026.

5. Peterhans, E. (1979) Sendai virus stimulates chemiluminescence in mouse spleen cells, Biochem Biophys. Res. Commun., 91, 383-392, doi: 10.1016/0006-291x(79)90630-2.

6. Khomich, O. A., Kochetkov, S. N., Bartosch, B., and Ivanov, A. V. (2018) Redox biology of respiratory viral infections, Viruses, 10, 392, doi: 10.3390/v10080392.

7. Buffinton, G. D., Christen, S., Peterhans, E., and Stocker, R. (1992) Oxidative stress in lungs of mice infected with influenza A virus, Free Radic Res. Commun., 16, 99-110, doi: 10.3109/10715769209049163.

8. Amatore, D., Sgarbanti, R., Aquilano, K., Baldelli, S., Limongi, D., et al. (2015) Influenza virus replication in lung epithelial cells depends on redox-sensitive pathways activated by NOX4-derived ROS, Cell Microbiol., 17, 131-145, doi: 10.1111/cmi.12343.

9. Hendricks, K., To, E., Vlahos, R., Broughton, B., Peshavariya, H., and Selemidis, S. (2016) Influenza A virus causes vascular endothelial cell oxidative stress via NOX2 oxidase, Eur. Respir. J., 48, doi: 10.1183/13993003.congress-2016.PA3967.

10. Martínez, I., García-Carpizo, V., Guijarro, T., García-Gomez, A., Navarro, D., Aranda, A., and Zambrano, A. (2016) Induction of DNA double-strand breaks and cellular senescence by human respiratory syncytial virus, Virulence, 7, 427-442, doi: 10.1080/21505594.2016.1144001.

11. Biagioli, M. C., Kaul, P., Singh, I., and Turner, R. B. (1999) The role of oxidative stress in rhinovirus induced elaboration of IL-8 by respiratory epithelial cells, Free Radic. Biol. Med., 26, 454-462, doi: 10.1016/s0891-5849(98)00233-0.

12. Lim, J.-Y., Oh, E., Kim, Y., Jung, W.-W., Kim, H.-S., Lee, J., and Sul, D. (2014) Enhanced oxidative damage to DNA, lipids, and proteins and levels of some antioxidant enzymes, cytokines, and heat shock proteins in patients infected with influenza H1N1 virus, Acta Virol., 58, 253-260, doi: 10.4149/av_2014_03_253.

13. Erkekoğlu, P., Aşçi, A., Ceyhan, M., Kizilgün, M., Schweizer, U., et al. (2013) Selenium levels, selenoenzyme activities and oxidant/antioxidant parameters in H1N1-infected children, Turk. J. Pediatr., 55, 271-282.

14. Ng, M. P. E., Lee, J. C. Y., Loke, W. M., Yeo, L. L. L., Quek, A. M. L., et al. (2014) Does influenza A infection increase oxidative damage? Antioxid. Redox Signal., 21, 1025-1031, doi: 10.1089/ars.2014.5907.

15. Nin, N., Sánchez-Rodríguez, C., Ver, L. S., Cardinal, P., Ferruelo, A., et al. (2012) Lung histopathological findings in fatal pandemic influenza A (H1N1), Med. Intensiva, 36, 24-31, doi: 10.1016/j.medin.2011.10.005.

16. Reshi, M. L., Su, Y.-C., and Hong, J.-R. (2014) RNA viruses: ROS-mediated cell death, Int. J. Cell. Biol., 2014, 467452, doi: 10.1155/2014/467452.

17. Finkel, T. (2011) Signal transduction by reactive oxygen species, J. Cell. Biol., 194, 7-15, doi: 10.1083/jcb.201102095.

18. Yang, Y., Bazhin, A. V., Werner, J., and Karakhanova, S. (2013) Reactive oxygen species in the immune system, Int. Rev. Immunol., 32, 249-270, doi: 10.3109/08830185.2012.755176.

19. To, E. E., Broughton, B. R. S., Hendricks, K. S., Vlahos, R., and Selemidis, S. (2014) Influenza A virus and TLR7 activation potentiate NOX2 oxidase-dependent ROS production in macrophages, Free Radic. Res., 48, 940-947, doi: 10.3109/10715762.2014.927579.

20. Kaul, P., Biagioli, M. C., Singh, I., and Turner, R. B. (2000) Rhinovirus-induced oxidative stress and interleukin-8 elaboration involves p47-phox but is independent of attachment to intercellular adhesion molecule-1 and viral replication, J. Infect. Dis., 181, 1885-1890, doi: 10.1086/315504.

21. Fink, K., Duval, A., Martel, A., Soucy-Faulkner, A., and Grandvaux, N. (2008) Dual role of NOX2 in respiratory syncytial virus- and sendai virus-induced activation of NF-kappaB in airway epithelial cells, J. Immunol., 180, 6911-6922, doi: 10.4049/jimmunol.180.10.6911.

22. Ye, S., Lowther, S., and Stambas, J. (2015) Inhibition of reactive oxygen species production ameliorates inflammation induced by influenza A viruses via upregulation of SOCS1 and SOCS3, J. Virol., 89, 2672-2683, doi: 10.1128/JVI.03529-14.

23. Vlahos, R., Stambas, J., Bozinovski, S., Broughton, B. R. S., Drummond, G. R., and Selemidis, S. (2011) Inhibition of Nox2 oxidase activity ameliorates influenza A virus-induced lung inflammation, PLoS Pathog., 7, e1001271, doi: 10.1371/journal.ppat.1001271.

24. Snelgrove, R. J., Edwards, L., Rae, A. J., and Hussell, T. (2006) An absence of reactive oxygen species improves the resolution of lung influenza infection, Eur. J. Immunol., 36, 1364-1373, doi: 10.1002/eji.200635977.

25. Turrens, J. F. (2003) Mitochondrial formation of reactive oxygen species, J. Physiol., 552, 335-344, doi: 10.1113/jphysiol.2003.049478.

26. Vorobjeva, N., Prikhodko, A., Galkin, I., Pletjushkina, O., Zinovkin, R., et al. (2017) Mitochondrial reactive oxygen species are involved in chemoattractant-induced oxidative burst and degranulation of human neutrophils in vitro, Eur. J. Cell. Biol., 96, 254-265, doi: 10.1016/j.ejcb.2017.03.003.

27. Zinovkin, R. A., Romaschenko, V. P., Galkin, I. I., Zakharova, V. V., Pletjushkina, O. Y., Chernyak, B. V., and Popova, E. N. (2014) Role of mitochondrial reactive oxygen species in age-related inflammatory activation of endothelium, Aging, 6, 661-674, doi: 10.18632/aging.100685.

28. Zhou, R., Yazdi, A. S., Menu, P., and Tschopp, J. (2011) A role for mitochondria in NLRP3 inflammasome activation, Nature, 469, 221-225, doi: 10.1038/nature09663.

29. Williamson, E. J., Walker, A. J., Bhaskaran, K., Bacon, S., Bates, C., et al. (2020) OpenSAFELY: factors associated with COVID-19 death in 17 million patients, Nature, doi: 10.1038/s41586-020-2521-4.

30. Skulachev, V. P., Anisimov, V. N., Antonenko, Y. N., Bakeeva, L. E., Chernyak, B. V., et al. (2009) An attempt to prevent senescence: a mitochondrial approach, Biochim. Biophys. Acta, 1787, 437-461, doi: 10.1016/j.bbabio.2008.12.008.

31. Morris, A. A., Zhao, L., Patel, R. S., Jones, D. P., Ahmed, Y., et al. (2012) Differences in systemic oxidative stress based on race and the metabolic syndrome: the morehouse and emory team up to eliminate health disparities (meta-health) study, Metab. Syndr. Relat. Disord., 10, 252-259, doi: 10.1089/met.2011.0117.

32. Kander, M. C., Cui, Y., and Liu, Z. (2017) Gender difference in oxidative stress: a new look at the mechanisms for cardiovascular diseases, J. Cell. Mol. Med., 21, 1024-1032, doi: 10.1111/jcmm.13038.

33. Janicki-Deverts, D., Cohen, S., Matthews, K. A., Gross, M. D., and Jacobs, D. R., Jr. (2009) Socioeconomic status, antioxidant micronutrients, and correlates of oxidative damage: the coronary artery risk development in young adults (CARDIA) study, Psychosom. Med., 71, 541-548, doi: 10.1097/PSY.0b013e31819e7526.

34. King, G. L., and Loeken, M. R. (2004) Hyperglycemia-induced oxidative stress in diabetic complications, Histochem. Cell. Biol., 122, 333-338, doi: 10.1007/s00418-004-0678-9.

35. Delgado-Roche, L., and Mesta, F. (2020) Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection, Arch. Med. Res., 51, 384-387, doi: 10.1016/j.arcmed.2020.04.019.

36. Massaro, G. D., Gail, D. B., and Massaro, D. (1975) Lung oxygen consumption and mitochondria of alveolar epithelial and endothelial cells, J. Appl. Physiol., 38, 588-592, doi:10.1152/jappl.1975.38.4.588.

37. Cloonan, S. M., and Choi, A. M. K. (2016) Mitochondria in lung disease, J. Clin. Invest., 126, 809-820, doi: 10.1172/JCI81113.

38. Park, H. S., Kim, S. R., and Lee, Y. C. (2009) Impact of oxidative stress on lung diseases, Respirology, 14, 27-38, doi: 10.1111/j.1440-1843.2008.01447.x.

39. Mach, W. J., Thimmesch, A. R., Pierce, J. T., and Pierce, J. D. (2011) Consequences of hyperoxia and the toxicity of oxygen in the lung, Nurs. Res. Pract., 2011, 260482, doi: 10.1155/2011/260482.

40. Das, K. C. (2013) Hyperoxia decreases glycolytic capacity, glycolytic reserve and oxidative phosphorylation in MLE-12 cells and inhibits complex I and II function, but not complex IV in isolated mouse lung mitochondria, PLoS One, 8, e73358, doi: 10.1371/journal.pone.0073358.

41. Merad, M., and Martin, J. C. (2020) Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages, Nat. Rev. Immunol., 20, 355-362, doi: 10.1038/s41577-020-0331-4.

42. Mehta, P., McAuley, D. F., Brown, M., Sanchez, E., Tattersall, R. S., Manson, J. J., and HLH Across Speciality Collaboration, UK. (2020) COVID-19: consider cytokine storm syndromes and immunosuppression, Lancet, 395, 1033-1034, doi: 10.1016/S0140-6736(20)30628-0.

43. Zhang, W., Zhao, Y., Zhang, F., Wang, Q., Li, T., et al. (2020) The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): the perspectives of clinical immunologists from China, Clin. Immunol., 214, 108393, doi: 10.1016/j.clim.2020.108393.

44. Chen, G., Wu, D., Guo, W., Cao, Y., Huang, D., et al. (2020) Clinical and immunological features of severe and moderate coronavirus disease 2019, J. Clin. Invest., 130, 2620-2629, doi: 10.1172/JCI137244.

45. Chen, I.-Y., Moriyama, M., Chang, M.-F., and Ichinohe, T. (2019) Severe acute respiratory syndrome coronavirus Viroporin 3a activates the NLRP3 inflammasome, Front. Microbiol., 10, 50, doi: 10.3389/fmicb.2019.00050.

46. Xu, J., Zhao, S., Teng, T., Abdalla, A. E., Zhu, W., Xie, L., Wang, Y., and Guo, X. (2020) Systematic comparison of two animal-to-human transmitted human coronaviruses: SARS-CoV-2 and SARS-CoV, Viruses, 12, doi: 10.3390/v12020244.

47. Hoepel, W., Chen, H.-J., Allahverdiyeva, S., Manz, X., Aman, J., et al. (2020) Anti-SARS-CoV-2 IgG from severely ill COVID-19 patients promotes macrophage hyper-inflammatory responses, bioRxiv, doi: 10.1101/2020.07.13.190140.

48. Codo, A. C., Davanzo, G. G., de Brito Monteiro, L., de Souza, G. F., Muraro, S. P., et al. (2020) Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1α/glycolysis-dependent axis, Cell. Metab., doi: 10.1016/j.cmet.2020.07.007.

49. Teijaro, J. R., Walsh, K. B., Cahalan, S., Fremgen, D. M., Roberts, E., et al. (2011) Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection, Cell, 146, 980-991, doi: 10.1016/j.cell.2011.08.015.

50. Herwig, M. C., Tsokos, M., Hermanns, M. I., Kirkpatrick, C. J., and Müller, A. M. (2013) Vascular endothelial cadherin expression in lung specimens of patients with sepsis-induced acute respiratory distress syndrome and endothelial cell cultures, Pathobiology, 80, 245-251, doi: 10.1159/000347062.

51. Dreymueller, D., Pruessmeyer, J., Groth, E., and Ludwig, A. (2012) The role of ADAM-mediated shedding in vascular biology, Eur. J. Cell. Biol., 91, 472-485, doi: 10.1016/j.ejcb.2011.09.003.

52. Angelini, D. J., Hyun, S.-W., Grigoryev, D. N., Garg, P., Gong, P., et al. (2006) TNF-alpha increases tyrosine phosphorylation of vascular endothelial cadherin and opens the paracellular pathway through fyn activation in human lung endothelia, Am. J. Physiol. Lung Cell. Mol. Physiol., 291, L1232-L1245, doi: 10.1152/ajplung.00109.2006.

53. Marcos-Ramiro, B., García-Weber, D., and Millán, J. (2014) TNF-induced endothelial barrier disruption: beyond actin and Rho, Thromb. Haemost., 112, 1088-1102, doi: 10.1160/TH14-04-0299.

54. Sawant, D. A., Wilson, R. L., Tharakan, B., Stagg, H. W., Hunter, F. A., and Childs, E. W. (2014) Tumor necrosis factor-α-induced microvascular endothelial cell hyperpermeability: role of intrinsic apoptotic signaling, J. Physiol. Biochem., 70, 971-980, doi: 10.1007/s13105-014-0366-8.

55. Sarelius, I. H., and Glading, A. J. (2015) Control of vascular permeability by adhesion molecules, Tissue Barriers, 3, e985954, doi: 10.4161/21688370.2014.985954.

56. Schmidt, E. P., Yang, Y., Janssen, W. J., Gandjeva, A., Perez, M. J., et al. (2012) The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis, Nat. Med., 18, 1217-1223, doi: 10.1038/nm.2843.

57. Parks, W. C., Wilson, C. L., and López-Boado, Y. S. (2004) Matrix metalloproteinases as modulators of inflammation and innate immunity, Nat. Rev. Immunol., 4, 617-629, doi: 10.1038/nri1418.

58. Galkin, I. I., Pletjushkina, O. Y., Zinovkin, R. A., Zakharova, V. V., Chernyak, B. V., and Popova, E. N. (2016) Mitochondria-targeted antioxidant SkQR1 reduces TNF-induced endothelial permeability in vitro, Biochemistry (Moscow), 81, 1188-1197, doi: 10.1134/S0006297916100163.

59. Romaschenko, V. P., Zinovkin, R. A., Galkin, I. I., Zakharova, V. V., Panteleeva, A. A., et al. (2015) Low concentrations of uncouplers of oxidative phosphorylation prevent inflammatory activation of endothelial cells by tumor necrosis factor, Biochemistry (Moscow), 80, 610-619, doi: 10.1134/S0006297915050144.

60. Zakharova, V. V., Pletjushkina, O. Y., Galkin, I. I., Zinovkin, R. A., Chernyak, B. V., et al. (2017) Low concentration of uncouplers of oxidative phosphorylation decreases the TNF-induced endothelial permeability and lethality in mice, Biochim. Biophys. Acta Mol. Basis Dis., 1863, 968-977, doi: 10.1016/j.bbadis.2017.01.024.

61. Mukherjee, T. K., Mukhopadhyay, S., and Hoidal, J. R. (2005) The role of reactive oxygen species in TNFalpha-dependent expression of the receptor for advanced glycation end products in human umbilical vein endothelial cells, Biochim. Biophys. Acta, 1744, 213-223, doi: 10.1016/j.bbamcr.2005.03.007.

62. Min, J.-K., Kim, Y.-M., Kim, S. W., Kwon, M.-C., Kong, Y.-Y., et al. (2005) TNF-related activation-induced cytokine enhances leukocyte adhesiveness: induction of ICAM-1 and VCAM-1 via TNF receptor-associated factor and protein kinase C-dependent NF-kappaB activation in endothelial cells, J. Immunol., 175, 531-540, doi: 10.4049/jimmunol.175.1.531.

63. Spindler, V., Schlegel, N., and Waschke, J. (2010) Role of GTPases in control of microvascular permeability, Cardiovasc. Res., 87, 243-253, doi: 10.1093/cvr/cvq086.

64. Van Wetering, S., van Buul, J. D., Quik, S., Mul, F. P. J., Anthony, E. C., et al. (2002) Reactive oxygen species mediate Rac-induced loss of cell-cell adhesion in primary human endothelial cells, J. Cell Sci., 115, 1837-1846.

65. Galkin, I. I., Pletjushkina, O. Y., Zinovkin, R. A., Zakharova, V. V., Birjukov, I. S., Chernyak, B. V., and Popova, E. N. (2014) Mitochondria-targeted antioxidants prevent TNFα-induced endothelial cell damage, Biochemistry (Moscow), 79, 124-130, doi: 10.1134/S0006297914020059.

66. Rochfort, K. D., Collins, L. E., McLoughlin, A., and Cummins, P. M. (2016) Tumour necrosis factor-α-mediated disruption of cerebrovascular endothelial barrier integrity in vitro involves the production of proinflammatory interleukin-6, J. Neurochem., 136, 564-572, doi: 10.1111/jnc.13408.

67. Pearlstein, D. P., Ali, M. H., Mungai, P. T., Hynes, K. L., Gewertz, B. L., and Schumacker, P. T. (2002) Role of mitochondrial oxidant generation in endothelial cell responses to hypoxia, Arterioscler. Thromb. Vasc. Biol., 22, 566-573, doi: 10.1161/01.atv.0000012262.76205.6a.

68. Lee, Y. W., Lee, W. H., and Kim, P. H. (2010) Oxidative mechanisms of IL-4-induced IL-6 expression in vascular endothelium, Cytokine, 49, 73-79, doi: 10.1016/j.cyto.2009.08.009.

69. Murakami, M., Kamimura, D., and Hirano, T. (2019) Pleiotropy and specificity: insights from the interleukin 6 family of cytokines, Immunity, 50, 812-831, doi: 10.1016/j.immuni.2019.03.027.

70. Rose-John, S. (2012) IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6, Int. J. Biol. Sci., 8, 1237-1247, doi: 10.7150/ijbs.4989.

71. Valle, M. L., Dworshak, J., Sharma, A., Ibrahim, A. S., Al-Shabrawey, M., and Sharma, S. (2019) Inhibition of interleukin-6 trans-signaling prevents inflammation and endothelial barrier disruption in retinal endothelial cells, Exp. Eye Res., 178, 27-36, doi: 10.1016/j.exer.2018.09.009.

72. Ali, M. I., Chen, X., and Didion, S. P. (2015) Hetero-zygous eNOS deficiency is associated with oxidative stress and endothelial dysfunction in diet-induced obesity, Physiol. Rep., 3, doi: 10.14814/phy2.12630.

73. Schrader, L. I., Kinzenbaw, D. A., Johnson, A. W., Faraci, F. M., and Didion, S. P. (2007) IL-6 deficiency protects against angiotensin II induced endothelial dysfunction and hypertrophy, Arterioscler. Thromb. Vasc. Biol., 27, 2576-2581, doi: 10.1161/ATVBAHA.107.153080.

74. Wung, B. S., Ni, C. W., and Wang, D. L. (2005) ICAM-1 induction by TNFalpha and IL-6 is mediated by distinct pathways via Rac in endothelial cells, J. Biomed. Sci., 12, 91-101, doi: 10.1007/s11373-004-8170-z.

75. Kaplanski, G., Marin, V., Montero-Julian, F., Mantovani, A., and Farnarier, C. (2003) IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation, Trends Immunol., 24, 25-29, doi: 10.1016/s1471-4906(02)00013-3.

76. Ali, M. H., Schlidt, S. A., Chandel, N. S., Hynes, K. L., Schumacker, P. T., and Gewertz, B. L. (1999) Endothelial permeability and IL-6 production during hypoxia: role of ROS in signal transduction, Am. J. Physiol., 277, 1057-1065, doi: 10.1152/ajplung.1999.277.5.L1057.

77. Alsaffar, H., Martino, N., Garrett, J. P., and Adam, A. P. (2018) Interleukin-6 promotes a sustained loss of endothelial barrier function via Janus kinase-mediated STAT3 phosphorylation and de novo protein synthesis, Am. J. Physiol. Cell Physiol., 314, C589-C602, doi: 10.1152/ajpcell.00235.2017.

78. Birukova, A. A., Tian, Y., Meliton, A., Leff, A., Wu, T., and Birukov, K. G. (2012) Stimulation of Rho signaling by pathologic mechanical stretch is a “second hit” to Rho-independent lung injury induced by IL-6, Am. J. Physiol. Lung Cell. Mol. Physiol., 302, L965-L975, doi: 10.1152/ajplung.00292.2011.

79. Saura, M., Zaragoza, C., Bao, C., Herranz, B., Rodriguez-Puyol, M., and Lowenstein, C. J. (2006) Stat3 mediates interleukin-6 [correction of interelukin-6] inhibition of human endothelial nitric-oxide synthase expression, J. Biol. Chem., 281, 30057-30062, doi: 10.1074/jbc.M606279200.

80. Hung, M.-J., Cherng, W.-J., Hung, M.-Y., Wu, H.-T., and Pang, J.-H. S. (2010) Interleukin-6 inhibits endothelial nitric oxide synthase activation and increases endothelial nitric oxide synthase binding to stabilized caveolin-1 in human vascular endothelial cells, J. Hypertens., 28, 940-951, doi: 10.1097/HJH.0b013e32833992ef.

81. Cohen, T., Nahari, D., Cerem, L. W., Neufeld, G., and Levi, B. Z. (1996) Interleukin 6 induces the expression of vascular endothelial growth factor, J. Biol. Chem., 271, 736-741, doi: 10.1074/jbc.271.2.736.

82. Alagappan, V. K. T., Willems-Widyastuti, A., Seynhaeve, A. L. B., Garrelds, I. M., ten Hagen, T. L. M., Saxena, P. R., and Sharma, H. S. (2007) Vasoactive peptides upregulate mRNA expression and secretion of vascular endothelial growth factor in human airway smooth muscle cells, Cell Biochem. Biophys., 47, 109-118, doi: 10.1385/cbb:47:1:109.

83. Murohara, T., Horowitz, J. R., Silver, M., Tsurumi, Y., Chen, D., Sullivan, A., and Isner, J. M. (1998) Vascular endothelial growth factor/vascular permeability factor enhances vascular permeability via nitric oxide and prostacyclin, Circulation, 97, 99-107, doi: 10.1161/01.cir.97.1.99.

84. Woodfin, A., Voisin, M.-B., and Nourshargh, S. (2007) PECAM-1: a multi-functional molecule in inflammation and vascular biology, Arterioscler. Thromb. Vasc. Biol., 27, 2514-2523, doi: 10.1161/ATVBAHA.107.151456.

85. Zhang, J., Silva, T., Yarovinsky, T., Manes, T. D., Tavakoli, S., et al. (2010) VEGF blockade inhibits lymphocyte recruitment and ameliorates immune-mediated vascular remodeling, Circ. Res., 107, 408-417, doi: 10.1161/CIRCRESAHA.109.210963.

86. Simmons, S., Erfinanda, L., Bartz, C., and Kuebler, W. M. (2019) Novel mechanisms regulating endothelial barrier function in the pulmonary microcirculation, J. Physiol., 597, 997-1021, doi: 10.1113/JP276245.

87. Ke, Y., Oskolkova, O. V., Sarich, N., Tian, Y., Sitikov, A., et al. (2017) Effects of prostaglandin lipid mediators on agonist-induced lung endothelial permeability and inflammation, Am. J. Physiol. Lung Cell. Mol. Physiol., 313, 710-721, doi: 10.1152/ajplung.00519.2016.

88. Tedgui, A., and Mallat, Z. (2006) Cytokines in atherosclerosis: pathogenic and regulatory pathways, Physiol. Rev., 86, 515-581, doi: 10.1152/physrev.00024.2005.

89. Okajima, K. (2004) Prevention of endothelial cell injury by activated protein C: the molecular mechanism(s) and therapeutic implications, Curr. Vasc. Pharmacol., 2, 125-133, doi:10.2174/1570161043476429.

90. Ackermann, M., Verleden, S. E., Kuehnel, M., Haverich, A., Welte, T., et al. (2020) Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in covid-19, N. Engl. J. Med., doi: 10.1056/NEJMoa2015432.

91. De Spiegelaere, W., Casteleyn, C., Van den Broeck, W., Plendl, J., Bahramsoltani, M., Simoens, P., Djonov, V., and Cornillie, P. (2012) Intussusceptive angiogenesis: a biologically relevant form of angiogenesis, J. Vasc. Res., 49, 390-404, doi: 10.1159/000338278.

92. Armstrong, S. M., Mubareka, S., and Lee, W. L. (2013) The lung microvascular endothelium as a therapeutic target in severe influenza, Antiviral. Res., 99, 113-118, doi: 10.1016/j.antiviral.2013.05.003.

93. Li, X., Molina-Molina, M., Abdul-Hafez, A., Ramirez, J., Serrano-Mollar, A., Xaubet, A., and Uhal, B. D. (2006) Extravascular sources of lung angiotensin peptide synthesis in idiopathic pulmonary fibrosis, Am. J. Physiol. Lung Cell. Mol. Physiol., 291, L887-L895, doi: 10.1152/ajplung.00432.2005.

94. Liu, Y., Yang, Y., Zhang, C., Huang, F., Wang, F., et al. (2020) Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury, Sci. China Life Sci., 63, 364-374, doi: 10.1007/s11427-020-1643-8.

95. Forrester, S. J., Booz, G. W., Sigmund, C. D., Coffman, T. M., Kawai, T., Rizzo, V., Scalia, R., and Eguchi, S. (2018) Angiotensin II signal transduction: an update on mechanisms of physiology and pathophysiology, Physiol. Rev., 98, 1627-1738, doi: 10.1152/physrev.00038.2017.

96. Griendling, K. K., Minieri, C. A., Ollerenshaw, J. D., and Alexander, R. W. (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells, Circ. Res., 74, 1141-1148, doi: 10.1161/01.res.74.6.1141.

97. Nazarewicz, R. R., Dikalova, A. E., Bikineyeva, A., and Dikalov, S. I. (2013) Nox2 as a potential target of mitochondrial superoxide and its role in endothelial oxidative stress, Am. J. Physiol. Heart Circ. Physiol., 305, H1131-H1140, doi: 10.1152/ajpheart.00063.2013.

98. Dikalov, S. I., and Ungvari, Z. (2013) Role of mitochondrial oxidative stress in hypertension, Am. J. Physiol. Heart Circ. Physiol., 305, H1417-H1427, doi: 10.1152/ajpheart.00089.2013.

99. Itani, H. A., Dikalova, A. E., McMaster, W. G., Nazarewicz, R. R., Bikineyeva, A. T., Harrison, D. G., and Dikalov, S. I. (2016) Mitochondrial cyclophilin D in vascular oxidative stress and hypertension, Hypertension, 67, 1218-1227, doi: 10.1161/HYPERTENSIONAHA.115.07085.

100. Bernardi, P., Rasola, A., Forte, M., and Lippe, G. (2015) The mitochondrial permeability transition pore: channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology, Physiol. Rev., 95, 1111-1155, doi: 10.1152/physrev.00001.2015.

101. Wassmann, S., Stumpf, M., Strehlow, K., Schmid, A., Schieffer, B., Böhm, M., and Nickenig, G. (2004) Interleukin-6 induces oxidative stress and endothelial dysfunction by overexpression of the angiotensin II type 1 receptor, Circ. Res., 94, 534-541, doi: 10.1161/01.RES.0000115557.25127.8D.

102. Imai, Y., Kuba, K., Rao, S., Huan, Y., Guo, F., et al. (2005) Angiotensin-converting enzyme 2 protects from severe acute lung failure, Nature, 436, 112-116, doi: 10.1038/nature03712.

103. Kostapanos, M. S., Florentin, M., Elisaf, M. S., and Mikhailidis, D. P. (2013) Hemostatic factors and the metabolic syndrome, Curr. Vasc. Pharmacol., 11, 880-905, doi: 10.2174/15701611113116660171.

104. Labinjoh, C., Newby, D. E., Dawson, P., Johnston, N. R., Ludlam, C. A., Boon, N. A., and Webb, D. J. (2000) Fibrinolytic actions of intra-arterial angiotensin II and bradykinin in vivo in man, Cardiovasc. Res., 47, 707-714, doi: 10.1016/s0008-6363(00)00126-7.

105. Manne, B. K., Denorme, F., Middleton, E. A., Portier, I., Rowley, J. W., et al. (2020) Platelet gene expression and function in COVID-19 patients, Blood, doi: 10.1182/blood.2020007214.

106. Aumiller, V., Balsara, N., Wilhelm, J., Günther, A., and Königshoff, M. (2013) WNT/β-catenin signaling induces IL-1β expression by alveolar epithelial cells in pulmonary fibrosis, Am. J. Respir. Cell. Mol. Biol., 49, 96-104, doi: 10.1165/rcmb.2012-0524OC.

107. Deng, J., Wang, D.-X., Deng, W., Li, C.-Y., and Tong, J. (2012) The effect of endogenous angiotensin II on alveolar fluid clearance in rats with acute lung injury, Can. Respir. J., 19, 311-318, doi: 10.1155/2012/951025.

108. Buckley, S. T., Medina, C., and Ehrhardt, C. (2010) Differential susceptibility to epithelial-mesenchymal transition (EMT) of alveolar, bronchial and intestinal epithelial cells in vitro and the effect of angiotensin II receptor inhibition, Cell Tissue Res., 342, 39-51, doi: 10.1007/s00441-010-1029-x.

109. Wang, R., Zagariya, A., Ibarra-Sunga, O., Gidea, C., Ang, E., et al. (1999) Angiotensin II induces apoptosis in human and rat alveolar epithelial cells, Am. J. Physiol., 276, 885-889, doi: 10.1152/ajplung.1999.276.5.L885.

110. Sriram, K., and Insel, P. A. (2020) A hypothesis for pathobiology and treatment of COVID-19: the centrality of ACE1/ACE2 imbalance, Br. J. Pharmacol., doi: 10.1111/bph.15082.

111. Reynolds, H. R., Adhikari, S., Pulgarin, C., Troxel, A. B., Iturrate, E., et al. (2020) Renin-angiotensin-aldosterone system inhibitors and Rrsk of Covid-19, N. Engl. J. Med., 382, 2441-2448, doi: 10.1056/NEJMoa2008975.

112. Monteil, V., Kwon, H., Prado, P., Hagelkrüys, A., Wimmer, R. A., et al. (2020) Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2, Cell, 181, 905-913.e7, doi: 10.1016/j.cell.2020.04.004.

113. Hamming, I., Timens, W., Bulthuis, M. L. C., Lely, A. T., Navis, G. J., and van Goor, H. (2004) Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis, J. Pathol., 203, 631-637, doi: 10.1002/path.1570.

114. Huang, R.-T., Wu, D., Meliton, A., Oh, M.-J., Krause, M., et al. (2017) Experimental lung injury reduces Krüppel-like factor 2 to increase endothelial permeability via regulation of RAPGEF3-Rac1 signaling, Am. J. Respir. Crit. Care Med., 195, 639-651, doi: 10.1164/rccm.201604-0668OC.

115. Jha, P., and Das, H. (2017) KLF2 in regulation of NF-κB-mediated immune cell function and inflammation, Int. J. Mol. Sci., 18, doi: 10.3390/ijms18112383.

116. Fledderus, J. O., Boon, R. A., Volger, O. L., Hurttila, H., Ylä-Herttuala, S., et al. (2008) KLF2 primes the antioxidant transcription factor Nrf2 for activation in endothelial cells, Arterioscler. Thromb. Vasc. Biol., 28, 1339-1346, doi: 10.1161/ATVBAHA.108.165811.

117. Ibrahim, H., Perl, A., Smith, D., Lewis, T., Kon, Z., et al. (2020) Therapeutic blockade of inflammation in severe COVID-19 infection with intravenous n-acetylcysteine, Clin. Immunol., 108544, doi: 10.1016/j.clim.2020.108544.

118. Assimakopoulos, S. F., and Marangos, M. (2020) N-acetyl-cysteine may prevent COVID-19-associated cytokine storm and acute respiratory distress syndrome, Med. Hypotheses, 140, 109778, doi: 10.1016/j.mehy.2020.109778.

119. Poe, F. L., and Corn, J. (2020) N-Acetylcysteine: A potential therapeutic agent for SARS-CoV-2, Med. Hypotheses, 143, 109862, doi: 10.1016/j.mehy.2020.109862.

120. To, E. E., Erlich, J. R., Liong, F., Luong, R., Liong, S., et al. (2020) Mitochondrial reactive oxygen species contribute to pathological inflammation during influenza A virus infection in mice, Antioxid. Redox Signal., 32, 929-942, doi:10.1089/ars.2019.7727.

121. Winn, R. K., and Harlan, J. M. (2005) The role of endothelial cell apoptosis in inflammatory and immune diseases, J. Thromb. Haemost., 3, 1815-1824, doi: 10.1111/j.1538-7836.2005.01378.x.

122. Wang, C., Luo, Z., Carter, G., Wellstein, A., Jose, P. A., et al. (2018) NRF2 prevents hypertension, increased ADMA, microvascular oxidative stress, and dysfunction in mice with two weeks of ANG II infusion, Am. J. Physiol. Regul. Integr. Comp. Physiol., 314, R399-R406, doi: 10.1152/ajpregu.00122.2017.

123. Lopes, R. A., Neves, K. B., Tostes, R. C., Montezano, A. C., and Touyz, R. M. (2015) Downregulation of nuclear factor erythroid 2-related factor and associated antioxidant genes contributes to redox-sensitive vascular dysfunction in hypertension, Hypertension, 66, 1240-1250, doi: 10.1161/HYPERTENSIONAHA.115.06163.

124. Zinovkin, R. A., and Grebenchikov, O. A. (2020) Transcription factor Nrf2 as a potential therapeutic target for prevention of cytokine storm in COVID-19 patients, Biochemistry (Moscow), 85, 978-983, doi: 10.1134/S0006297920070111.