БИОХИМИЯ, 2020, том 85, вып. 11, с. 1676–1689
УДК 577.052.2
Особенности активации гидролитической активности факторов элонгации
Обзор
Петербургский институт ядерной физики им. Б.П. Константинова Национального исследовательского центра «Курчатовский институт», 188300 Гатчина, Ленинградская обл., Россия; электронная почта: konevega_al@pnpi.nrcki.ru
Поступила в редакцию 05.07.2020
После доработки 01.08.2020
Принята к публикации 01.08.2020
DOI: 10.31857/S032097252011010X
КЛЮЧЕВЫЕ СЛОВА: факторы элонгации, трансляция, гидролиз ГТФ, EF-Tu, EF-G, SelB, рибосома.
Аннотация
Трансляционные ГТФазы (трГТФазы), относящиеся к классу G-белков, играют ключевую роль на всех этапах биосинтеза белка на рибосоме. Однонаправленность и цикличность функционирования G-белков обеспечивается возможностью их переключения между активным и неактивным состояниями вследствие гидролиза ГТФ, ускоряемого вспомогательными белками-стимуляторами ГТФазной активности. Несмотря на то что трГТФазы взаимодействуют с рибосомами, находящимися в разных конформационных состояниях, для активации они связываются с одной и той же консервативной областью, которая, в отличие от классических белков-стимуляторов ГТФазной активности, представлена РНК. В результате у всех факторов элонгации образуется практически одинаковая структура активного каталитического центра, предполагающая единый механизм реакции гидролиза ГТФ. Однако нюансы в процессе формирования активированного состояния, а также существенно отличающаяся скорость реакции гидролиза ГТФ указывают на существование особенностей при реализации гидролитической функции разными факторами элонгации. В данной работе представлено современное видение механизмов регулирования ГТФазной активности факторов элонгации EF-Tu, EF-G и SelB и гидролиза ГТФ, основанное на анализе структурных, биохимических и биоинформатических данных.
Сноски
* Адресат для корреспонденции.
Финансирование
Работа выполнена при финансовой поддержке Российского научного фонда (грант № 17-14-01416).
Благодарности
Мы благодарим за плодотворные дискуссии всех сотрудников лаборатории биосинтеза белка ОМРБ НИЦ «КИ» – ПИЯФ.
Конфликт интересов
Авторы заявляют об отсутствии конфликта интересов.
Соблюдение этических норм
Настоящая статья не содержит описания каких-либо исследований с участием людей или животных в качестве объектов.
Список литературы
1. Schmeing, T. M., and Ramakrishnan, V. (2009) What recent ribosome structures have revealed about the mechanism of translation, Nature, 461, 1234-1242, doi: 10.1038/nature08403.
2. Maracci, C., and Rodnina, M. V. (2016) Review: translational GTPases, Biopolymers, 105, 463-475, doi: 10.1002/bip.22832.
3. Atkinson, C. G. (2015) The evolutionary and functional diversity of classical and lesser-known cytoplasmic and organellar translational GTPases across the tree of life, BMC Genomics, 16, 78, doi: 10.1186/s12864-015-1289-7.
4. Bourne, H. R., Sanders, D. A., and McCormick, F. (1991) The GTPase superfamily: conserved structure and molecular mechanism, Nature, 349, 117-127, doi: 10.1038/349117a0.
5. Vetter, I. R., Nowak, C., Nishimoto, T., Kuhlmann, J., and Wittinghofer, A. (1999) Structure of a ran-binding domain complexed with ran bound to a GTP analogue: implications for nuclear transport, Nature, 398, 39-46, doi: 10.1038/17969.
6. Hilgenfeld, R. (1995) Regulatory GTPases, Curr. Opin. Struct. Biol., 5, 810-817, doi: 10.1016/0959-440X(95)80015-8.
7. Scheffzek, K., Ahmadian, M. R., Kabsch, W., Wiesmüller, L., Lautwein, A., Schmitz, F., and Wittinghofer, A. (1997) The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic ras mutants, Science, 277, 333-338, doi: 10.1126/science.277.5324.333.
8. Wittinghofer, A., Scheffzek, K., and Ahmadian, M. R. (1997) The Interaction of ras with GTPase-activating proteins, FEBS Lett., 410, 63-67, doi: 10.1016/S0014-5793(97)00321-9.
9. Vetter, I. R., and Wittinghofer, A. (2001) The guanine nucleotide-binding switch in three dimensions, Science, 294, 1299-1304, doi: 10.1126/science.1062023.
10. Ævarsson, A. (1995) Structure-based sequence alignment of elongation factors Tu and G with related GTPases involved in translation, J. Mol. Evol., 41, 1096-104, doi: 10.1007/BF00173191.
11. Daviter, T., Wieden, H. J., and Rodnina, M. V. (2003) Essential role of histidine 84 in elongation factor Tu for the chemical step of GTP hydrolysis on the ribosome, J. Mol. Biol., 332, 689-699, doi: 10.1016/S0022-2836(03)00947-1.
12. Maracci, C., Peske, F., Dannies, E., Pohl, C., and Rodnina, M. V. (2014) Ribosome-induced tuning of GTP hydrolysis by a translational GTPase, Proc. Natl. Acad. Sci. USA, 111, 14418-14423, doi: 10.1073/pnas.1412676111.
13. Koripella, R. K., Holm, M., Dourado, D., Mandava, C. S., Flores, S., and Sanyal, S. (2015) A conserved histidine in switch-II of EF-G moderates release of inorganic phosphate, Sci. Rep., 5, doi: 10.1038/srep12970.
14. Cunha, C. E., Belardinelli, R., Peske, F., Holtkamp, W., Wintermeyer, W., and Rodnina, M. V. (2013) Dual use of GTP hydrolysis by elongation factor G on the ribosome, Translation, 1, e24315-11, doi: 10.4161/trla.24315.
15. Zeidler, W., Egle, C., Ribeiro, S., Wagner, A., Katunin, V., Kreutzer, R., Rodnina, M., Wintermeyer, W., and Sprinzl, M. (1995) Site-directed mutagenesis of Thermus Thermophilus elongation factor Tu: replacement of His85, Asp81 and Arg300, Eur. J. Biochem., 229, 596-604, doi: 10.1111/j.1432-1033.1995.0596j.x.
16. Scarano, G., Krab, I. M., Bocchini, V., and Parmeggiani, A. (1995) Relevance of histidine-84 in the elongation factor Tu GTPase activity and in poly(Phe) synthesis: its substitution by glutamine and alanine, FEBS Lett., 365, 214-218, doi: 10.1016/0014-5793(95)00469-P.
17. Voorhees, R. M., Schmeing, T. M., Kelley, A. C., and Ramakrishnan, V. (2010) The mechanism for activation of GTP hydrolysis on the ribosome, Science, 330, 835-838, doi: 10.1126/science.1194460.
18. Chen, Y., Feng, S., Kumar, V., Ero, R., and Gao, Y. G. (2013) Structure of EF-G-ribosome complex in a pretranslocation state, Nat. Struct. Mol. Biol., 20, 1077-1084, doi: 10.1038/nsmb.2645.
19. Tourigny, D. S., Fernández, I. S., Kelley, A. C., and Ramakrishnan, V. (2013) Elongation factor G bound to the ribosome in an intermediate state of translocation, Science, 340, 1235490–1235497, doi: 10.1126/science.1235490.
20. Fischer, N., Neumann, P., Bock, L. V., Maracci, C., Wang, Z., Paleskava, A., Konevega, A.L., Schröder, G. F., Grubmüller, H., Ficner, R., Rodnina, M. V., and Stark, H. (2016) The pathway to GTPase activation of elongation factor SelB on the ribosome, Nature, 540, 80-85, doi: 10.1038/nature20560.
21. Loveland, A. B., Demo, G., and Korostelev, A. A. (2020) Cryo-EM of elongating ribosome with EF-Tu•GTP elucidates TRNA proofreading, Nature, 584, 640-645, doi: 10.1038/s41586-020-2447-x.
22. Loveland, A. B., Demo, G., Grigorieff, N., and Korostelev, A. A. (2017) Ensemble Cryo-EM elucidates the mechanism of translation fidelity, Nature, 546, 113-117, doi: 10.1038/nature22397.
23. Fischer, N., Neumann, P., Konevega, A. L., Bock, L. V., Ficner, R., Rodnina, M. V., and Stark, H. (2015) Structure of the E. Coli ribosome-EF-Tu complex at <3 Å resolution by Cs-corrected Cryo-EM, Nature, 520, 567-570, doi: 10.1038/nature14275.
24. Liljas, A., Ehrenberg, M., and Åqvist, J. (2011) Comment on “The mechanism for activation of GTP hydrolysis on the ribosome”, Science, 333, 37, doi: 10.1126/science.1202472.
25. Wallin, G., Kamerlin, S. C. L., and Åqvist, J. (2013) Energetics of activation of GTP hydrolysis on the ribosome, Nat. Commun., 4, 1733, doi: 10.1038/ncomms2741.
26. Li, W., Liu, Z., Koripella, R. K., Langlois, R., Sanyal, S., and Frank, J. (2015) Activation of GTP hydrolysis in MRNA-TRNA translocation by elongation factor G, Sci. Adv., 1, e1500169-7, doi: 10.1126/sciadv.1500169.
27. Mercier, E., Girodat, D., and Wieden, H. J. (2015) A Conserved P-loop anchor limits the structural dynamics that mediate nucleotide dissociation in EF-Tu, Sci. Rep., 5, doi: 10.1038/srep07677.
28. Shi, X., Khade, P. K., Sanbonmatsu, K. Y., and Joseph, S. (2012) Functional role of the sarcin-ricin loop of the 23s RRNA in the elongation cycle of protein synthesis, J. Mol. Biol., 419, 125-138, doi: 10.1016/j.jmb.2012.03.016.
29. Mitkevich, V. A., Shyp, V., Petrushanko, I. Y., Soosaar, A., Atkinson, G. C., Tenson, T., Makarov, A. A., and Hauryliuk, V. (2012) GTPases IF2 and EF-G bind GDP and the SRL RNA in a mutually exclusive manner, Sci. Rep., 2, 843, doi: 10.1038/srep00843.
30. Clementi, N., Chirkova, A., Puffer, B., Micura, R., and Polacek, N. (2010) Atomic mutagenesis reveals A2660 of 23S ribosomal RNA as key to EF-G GTPase activation, Nat. Chem. Biol., 6, 344-351, doi: 10.1038/nchembio.341.
31. Moazed, D., Robertson, J. M., and Noller, H. F. (1988) Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA, Nature, 334, 362-364, doi: 10.1038/334362a0.
32. Stark, H., Rodnina, M. V., Wieden, H. J., Zemlin, F., Wintermeyer, W., and Van Heel, M. (2002) Ribosome interactions of aminoacyl-TRNA and elongation factor Tu in the codon-recognition complex, Nat. Struct. Biol., 9, 849-854, doi: 10.1038/nsb859.
33. Lin, J., Gagnon, M. G., Bulkley, D., and Steitz, T. A. (2015) Conformational changes of elongation factor G on the ribosome during TRNA translocation, Cell, 160, 219-227, doi: 10.1016/j.cell.2014.11.049.
34. Voorhees, R. M., Schmeing, T. M., Kelley, A. C., and Ramakrishnan, V. (2011) Response to comment on “The mechanism for activation of GTP hydrolysis on the ribosome”, Science, 333, 37, doi: 10.1126/science.1202532.
35. Kirby, A. J., and Jencks, W. P. (1965) The reactivity of nucleophilic reagents toward the P-nitrophenyl phosphate dianion, J. Am. Chem. Soc., 87, 3209-3216, doi: 10.1021/ja01092a036.
36. Paleskava, A., Konevega, A. L., and Rodnina, M. V. (2012) Thermodynamics of the GTP-GDP-operated conformational switch of selenocysteine-specific translation factor SelB, J. Biol. Chem., 287, 27906-27912, doi: 10.1074/jbc.M112.366120.
37. Leibundgut, M., Frick, C., Thanbichler, M., Böck, A., and Ban, N. (2005) Selenocysteine TRNA-specific elongation factor SelB is a structural chimaera of elongation and initiation factors, EMBO J., 24, 11-22, doi: 10.1038/sj.emboj.7600505.
38. Klähn, M., Rosta, E., and Warshel, A. (2006) On the mechanism of hydrolysis of phosphate monoesters dianions in solutions and proteins, J. Am. Chem. Soc., 128, 15310-15323, doi: 10.1021/ja065470t.
39. Åqvist, J., Kolmodin, K., Florian, J., and Warshel, A. (1999) Mechanistic alternatives in phosphate monoester hydrolysis: what conclusions can be drawn from available experimental data? Chem. Biol., 6, 71-80, doi: 10.1016/S1074-5521(99)89003-6.
40. Berchtold, H., Reshetnikova, L., Reiser, C. O. A., Schirmer, N. K., Sprinzl, M., and Hilgenfeld, R. (1993) Crystal structure of active elongation factor Tu reveals major domain rearrangements, Nature, 365, 126-132, doi: 10.1038/365126a0.
41. Nissen, P., Kjeldgaard, M., Thirup, S., Polekhina, G., Reshetnikova, L., Clark, B. F. C., and Nyborg, J. (1995) Crystal structure of the ternary complex of Phe-TRNAPhe, EF-Tu, and a GTP analog, Science, 270, 1464-1472, doi: 10.1126/science.270.5241.1464.
42. Fislage, M., Zhang, J., Brown, Z. P., Mandava, C. S., Sanyal, S., Ehrenberg, M., and Frank, J. (2018) Cryo-EM shows stages of initial codon selection on the ribosome by Aa-TRNA in ternary complex with GTP and the GTPase-deficient EF-TuH84A, Nucleic Acids Res., 46, 5861-5874, doi: 10.1093/nar/gky346.
43. Rodnina, M. V., Fricke, R., Kuhn, L., and Wintermeyer, W. (1995) Codon-dependent conformational change of elongation factor Tu preceding GTP hydrolysis on the ribosome, EMBO J., 14, 2613-2619, doi: 10.1002/j.1460-2075.1995.tb07259.x.
44. Pape, T., Wintermeyer, W., and Rodnina, M. V. (1998) Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-TRNA to the A site of the E. Coli ribosome, EMBO J., 17, 7490-7497, doi: 10.1093/emboj/17.24.7490.
45. Yang, H., Perrier, J., and Whitford, P. C. (2018) Disorder guides domain rearrangement in elongation factor Tu, Proteins, 86, 1037-1046, doi: 10.1002/prot.25575.
46. Abel, K., Yoder, M. D., Hilgenfeld, R., and Jurnak, F. (1996) An α to β conformational switch in EF-Tu, Structure, 4, 1153-1159, doi: 10.1016/S0969-2126(96)00123-2.
47. Gromadski, K. B., Wieden, H. J., and Rodnina, M. V. (2002) Kinetic mechanism of elongation factor Ts-catalyzed nucleotide exchange in elongation factor Tu, Biochemistry, 41, 162-169, doi: 10.1021/bi015712w.
48. AEvarsson, A., Brazhnikov, E., Garber, M., Zheltonosova, J., Chirgadze, Y., Al-Karadaghi, S., Svensson, L. A., and Liljas, A. (1994) Three-dimensional structure of the ribosomal translocase: elongation factor G from Thermus Thermophilus, EMBO J., 13, 3669-3677, doi: 10.1002/j.1460-2075.1994.tb06676.x.
49. Janosi, L., Hara, H., Zhang, S., and Kaji, A. (1996) Ribosome recycling by ribosome recycling factor (RRF) – an important but overlooked step of protein biosynthesis, Adv. Biophys., 32, 121-201, doi: 10.1016/0065-227X(96)84743-5.
50. Margus, T., Remm, M., and Tenson, T. (2011) A computational study of elongation factor G (EFG) duplicated genes: diverged nature underlying the innovation on the same structural template, PLoS One, 6, e22789, doi: 10.1371/journal.pone.0022789.
51. Rodnina, M. V., Savelsbergh, A., Katunin, V. I., and Wintermeyer, W. (1997) Hydrolysis of GTP by elongation factor G drives TRNA movement on the ribosome, Nature, 385, 37-41, doi: 10.1038/385037a0.
52. Wilden, B., Savelsbergh, A., Rodnina, M. V., and Wintermeyer, W. (2006) Role and timing of GTP binding and hydrolysis during EF-G-dependent TRNA translocation on the ribosome, Proc. Natl. Acad. Sci. USA, 103, 13670-13675, doi: 10.1073/pnas.0606099103.
53. Kromayer, M., Wilting, R., Tormay, P., and Böck, A. (1996) Domain structure of the prokaryotic selenocysteine-specific elongation factor SelB, J. Mol. Biol., 262, 413-420, doi: 10.1006/jmbi.1996.0525.
54. Thanbichler, M., Böck, A., and Goody, R. S. (2000) Kinetics of the interaction of translation factor SelB from Escherichia Coli with guanosine nucleotides and selenocysteine insertion sequence RNA, J. Biol. Chem., 275, 20458-20466, doi: 10.1074/jbc.M002496200.
55. Paleskava, A., Konevega, A. L., and Rodnina, M. V. (2010) Thermodynamic and kinetic framework of selenocysteyl-TRNASec recognition by elongation factor SelB, J. Biol. Chem., 285, 3014-3020, doi: 10.1074/jbc.M109.081380.
56. Kjeldgaard, M., Nissen, P., Thirup, S., and Nyborg, J. (1993) The Crystal structure of elongation factor EF-Tu from Thermus Aquaticus in the GTP conformation, Structure, 1, 35-50, doi: 10.1016/0969-2126(93)90007-4.
57. Hilgenfeld, R. (2000) Insights into the GTPase mechanism of EF-Tu from structural studies, in: The Ribosome: Structure, Function, Antibiotics, and Cellular Interactions, (Garrett, R., ed.), Washington, DC, pp. 347-357.
58. Hansson, S., Singh, R., Gudkov, A. T., Liljas, A., and Logan, D. T. (2005) Crystal structure of a mutant elongation factor G trapped with a GTP analogue, FEBS Lett., 579, 4492-4497, doi: 10.1016/j.febslet.2005.07.016.
59. Itoh, Y., Sekine, S. I., and Yokoyama, S. (2015) Crystal structure of the full-length bacterial selenocysteine-specific elongation factor SelB, Nucleic Acids Res., 43, 9028-9038, doi: 10.1093/nar/gkv833.
60. Czworkowski, J., Wang, J., Steitz, T. A., and Moore, P. B. (1994) The crystal structure of elongation factor G complexed with GDP, at 2.7 Å resolution, EMBO J., 13, 3661-3668, doi: 10.1002/j.1460-2075.1994.tb06675.x.
61. Hansson, S., Singh, R., Gudkov, A. T., Liljas, A., and Logan, D. T. (2005) Structural insights into fusidic acid resistance and sensitivity in EF-G, J. Mol. Biol., 348, 939-949, doi: 10.1016/j.jmb.2005.02.066.
62. Fasano, O., De Vendittis, E., and Parmeggiani, A. (1982) Hydrolysis of GTP by elongation factor Tu can be induced by monovalent cations in the absence of other effectors, J. Biol. Chem., 257, 3145-3150.
63. Kuhle, B., and Ficner, R. (2014) A monovalent cation acts as structural and catalytic cofactor in translational GTP ases, EMBO J., 33, 2547-2563, doi: 10.15252/embj.201488517.
64. Gao, Y. G., Selmer, M., Dunham, C. M., Weixlbaumer, A., Kelley, A. C., and Ramakrishnan, V. (2009) The structure of the ribosome with elongation factor G trapped in the posttranslocational state, Science, 326, 694-699, doi: 10.1126/science.1179709.
65. LaRiviere, F. J., Wolfson, A. D., and Uhlenbeck, O. C. (2001) Uniform binding of aminoacyl-TRNAs to elongation factor Tu by thermodynamic compensation, Science, 294, 165-168, doi: 10.1126/science.1064242.
66. Mittelstaet, J., Konevega, A. L., and Rodnina, M. V. (2011) Distortion of TRNA upon near-cognate codon recognition on the ribosome, J. Biol. Chem., 286, 8158-8164, doi: 10.1074/jbc.M110.210021.
67. Valle, M., Sengupta, J., Swami, N. K., Grassucci, R. A., Burkhardt, N., Nierhaus, K. H., Agrawal, R. K., and Frank, J. (2002) Cryo-EM reveals an active role for aminoacyl-TRNA in the accommodation process, EMBO J., 21, 3557-3567, doi: 10.1093/emboj/cdf326.
68. Schmeing, M. T., Voorhees, R. M., Kelley, A. C., Gao, Y. G., Murphy IV, F. V., Weir, J.R., and Ramakrishnan, V. (2009) The crystal structure of the ribosome bound to EF-Tu and aminoacyl-TRNA, Science, 326, 688-694, doi: 10.1126/science.1179700.
69. Vetter, I. R., and Wittinghofer, A. (1999) Nucleoside triphosphate-binding proteins: different scaffolds to achieve phosphoryl transfer, Q. Rev. Biophys., 32, 1-56, doi: 10.1017/S0033583599003480.
70. Kötting, C., Blessenohl, M., Suveyzdis, Y., Goody, R. S., Wittinghofer, A., and Gerwert, K. (2006) A phosphoryl transfer intermediate in the GTPase reaction of Ras in complex with its GTPase-activating protein, Proc. Natl. Acad. Sci. USA, 103, 13911-13916, doi: 10.1073/pnas.0604128103.
71. Pasqualato, S., and Cherfils, J. (2005) Crystallographic evidence for substrate-assisted GTP hydrolysis by a small GTP binding protein, Structure, 13, 533-540, doi: 10.1016/j.str.2005.01.014.
72. Schweins, T., Geyer, M., Scheffzek, K., Warshel, A., Kalbitzer, H. R., and Wittinghofer, A. (1995) Substrate-assisted catalysis as a mechanism for Gtp hydrolysis of P21ras and other GTP-binding proteins, Nat. Struct. Biol., 2, 36-44, doi: 10.1038/nsb0195-36.
73. Kothe, U., and Rodnina, M. V. (2006) Delayed release of inorganic phosphate from elongation factor Tu following GTP hydrolysis on the ribosome, Biochemistry, 45, 12767-12774, doi: 10.1021/bi061192z.
74. Savelsbergh, A., Mohr, D., Kothe, U., Wintermeyer, W., and Rodnina, M. V. (2005) Control of phosphate release from elongation factor G by ribosomal protein L7/12, EMBO J., 24, 4316-4323, doi: 10.1038/sj.emboj.7600884.
75. Zhou, J., Lancaster, L., Donohue, J. P., and Noller, H. F. (2013) Crystal structures of EF-G – ribosome complexes trapped in intermediate states of translocation, Science, 340, 1236086, doi: 10.1126/science.1236086.
76. Koch, M., Flür, S., Kreutz, C., Ennifar, E., Micura, R., and Polacek, N. (2015) Role of a ribosomal RNA phosphate oxygen during the EF-G-triggered GTP hydrolysis, Proc. Natl. Acad. Sci. USA, 112, E2561-E2568, doi: 10.1073/pnas.1505231112.
77. Sondek, J., Lambright, D. G., Noel, J. P., Hamm, H. E., and Sigler, P. B. (1994) GTPase mechanism of Gproteins from the 1.7-Å crystal structure of transducin α-GGDP-AIF-4, Nature, 372, 276-279, doi: 10.1038/372276a0.
78. Adamczyk, A. J., and Warshel, A. (2011) Converting structural information into an allosteric-energy-based picture for elongation factor Tu activation by the ribosome, Proc. Natl. Acad. Sci. USA, 108, 9827-9832, doi: 10.1073/pnas.1105714108.
79. Prasad, B. R., Plotnikov, N. V., Lameira, J., and Warshel, A. (2013) Quantitative exploration of the molecular origin of the activation of GTPase, Proc. Natl. Acad. Sci. USA, 110, 20509-20514, doi: 10.1073/pnas.1319854110.
80. Doudna, J. A., and Lorsch, J. R. (2005) Ribozyme catalysis: not different, just worse, Nat. Struct. Mol. Biol., 12, 395-402, doi: 10.1038/nsmb932.