БИОХИМИЯ, 2020, том 85, вып. 11, с. 1615–1632

УДК 577.29

Новые возможности в борьбе с патогенными микроорганизмами

Обзор

© 2020 И.Г. Шемякин 1, В.В. Фирстова 1*, Н.К. Фурсова 1, И.В. Абаев 1, С.Ю. Филиппович 2, С.Г. Игнатов 1, И.А. Дятлов 1

Государственный научный центр прикладной микробиологии и биотехнологии, 142279 Оболенск, Моcковcкая обл., Россия; электронная почта: firstova@obolensk.org

Институт биохимии имени А.Н. Баха, Федеральный исследовательский центр «Фундаментальные основы биотехнологии» РАН, 119071 Москва, Россия

Поступила в редакцию 12.07.2020
После доработки 14.09.2020
Принята к публикации 14.09.2020

DOI: 10.31857/S0320972520110081

КЛЮЧЕВЫЕ СЛОВА: RNA-содержащие антибиотики, CRISPR-Cas система бактерий, гибридные антибиотики, эндолизины, наноповерхности.

Аннотация

В обзоре приводятся разнообразные подходы в борьбе с возбудителями инфекционных заболеваний. Новым инструментом достижения элиминации только специфичных видов бактерий с сохранением остальной части микробиоты могут служить видоспеци­фические программируемые RNA-содержащие антибиотики, которые открывают возможность создания нового поколения персонали­зированных терапевтических препаратов, основанных на редактировании микробиома. Рассмотрены возможности геномного редактирования на основе CRISPR-Cas патогенных бактерий. Расширяющиеся знания о молекулярных механизмах врожденных иммунных реакций активно пытаются использовать для индукции противо­микробного иммунитета. Однако к очевидным рискам применения адъювантов, направленных на активацию компонентов иммунной системы хозяина, относятся возможное развитие аутоиммунного состояния с последующим повреждением органов. Поэтому необходимо иметь чёткое представление о механизмах действия специфических соединений и сигнальных молекул, используемых в качестве компонентов гибридного антибиотика. Рассмотрены эффективные противомикробные препараты – эндолизины бактерио­фагов для элими­нации устойчивых к антибиоти­кам бактерий, метаболически неактивных персисторов и биоплёнок. Представлены новые подходы в материаловедении при конструкции имплантатов с антибактериальными свойствами для преодоления проблемы постоперационных инфекций. Разнообразные наномоди­фикации поверхности имплантатов призваны уменьшить бактериальную обсемененность поверхности. Описаны бактерицидная и фунгицидная активности наномодификаций поверхности серебром, гибридных наномате­риалов на основе бор-нитрида, нановолокон и наногальва­нических процессов на поверхности с оценкой иммуномоду­лирующей активности.

Сноски

* Адресат для корреспонденции.

Финансирование

Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации (Соглашение от 31 октября 2019 г. № 075-15-2019-1671). Работа С.Г. Игнатова выполнена в рамках отраслевой программы Роспотребнадзора. Работа С.Ю. Филиппович выполнена в рамках госзадания 0104-2019-0024 для ФИЦ биотехнологии РАН.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Соблюдение этических норм

Настоящая статья не содержит описания исследований с участием людей или использованием животных в качестве объектов.

Список литературы

1. Cascales, E., Buchanan, S. K., Duché, D., Kleanthous, C., Lloubès, R., Postle, K., Riley, M., Slatin, S., and Cavardet, D. (2007) Colicin biology, Microbiol. Mol. Biol. Rev., 71, 158-229, doi: 10.1128/MMBR.00036-06.

2. Spaulding, C. N., Klein, R. D., Ruer, S., Kau, A. L., Schreiber, H. L., Cusumano, Z. T., Dodson, K. W., Pinkner, J. S., Fremont, D. H., Janetka, J. W., Remaut, H., Gordon, J. I., and Hultgren, S. J. (2017) Selective depletion of uropathogenic E. coli from the gut by a FimH antagonist, Nature, 546, 528-532, doi: 10.1038/nature22972.

3. Cattoir, V., and Felden, B. (2019) Future antibacterial strategies: from basic concepts to clinical challenges, J. Infect. Dis., 220, 350-360, doi: 10.1093/infdis/jiz134.

4. Hesse, S., and Adhya, S. (2019) Phage therapy in the twenty-first century: facing the decline of the antibiotic era; is it finally time for the age of the phage? Annu. Rev. Microbiol., 73, 155-174, doi: 10.1146/annurev-micro-090817-062535.

5. Hör, J., Matera, G., Vogel, J., Gottesman, S., Storz, G. (2020) Trans-acting small RNAs and their effects on gene expression in Escherichia coli and Salmonella enterica, EcoSal. Plus, 9, doi: 10.1128/ecosalplus.ESP-0030-2019.

6. Gorski, S. A., Vogel, J., and Doudna, J. A. (2017) RNA-based recognition and targeting: sowing the seeds of specificity, Nat. Rev. Mol. Cell Biol., 18, 215-228, doi: 10.1038/nrm.2016.174.

7. Goltermann, L., Yavari, N., Zhang, M., Ghosal, A., and Nielsen, P. E. (2019) PNA length restriction of antibacterial activity of peptide-PNA conjugates in Escherichia coli through effects of the inner membrane, Front. Microbiol., 10, 1032, doi: 10.3389/fmicb.2019.01032.

8. Nuss, A. M., Beckstette, M., Pimenova, M., Schmühl, C., Opitz, W., Pisano, F., Heroven, A. K., and Dersch, P. (2017) Tissue dual RNA-seq allows fast discovery of infection-specific functions and riboregulators shaping host-pathogen transcriptomes, Proc. Natl. Acad. Sci. USA, 114, E791-E800, doi: 10.1073/pnas.1613405114.

9. Melamed, S., Adams, P. P., Zhang, A., Zhang, H., and Storz, G. (2020) RNA-RNA interactomes of ProQ and Hfq reveal overlapping and competing roles, Mol. Cell, 77, 411-425.e7, doi: 10.1016/j.molcel.2019.10.022.

10. Xue, X. Y., Mao, X. G., Zhou, Y., Chen, Z., Hu, Y., Hou, Z., Li, M.-K., Meng, J.-R., and Luo, X.-X. (2018) Advances in the delivery of antisense oligonucleotides for combating bacterial infectious diseases, Nanomedicine, 14, 745-758, doi: 10.1016/j.nano.2017.12.026.

11. Jayaraman, K., McParland, K., Miller, P., and Ts’o, P.O. (1981) Selective inhibition of Escherichia coli protein synthesis and growth by nonionic oligonucleotides complementary to the 3′ end of 16S rRNA, Proc. Natl. Acad. Sci. USA, 78, 1537-1541, doi: 10.1073/pnas.78.3.1537.

12. Sender, R., Fuchs, S., and Milo, R. (2016) Revised estimates for the number of human and bacteria cells in the body, PLoS Biol., 14, e1002533, doi: 10.1371/journal.pbio.1002533.

13. Daly, S. M., Sturge, C. R., Marshall-Batty, K. R., Felder-Scott, C. F., Jain, R., Geller, B. L., and Greenberg, D. E. (2018) Antisense inhibitors retain activity in pulmonary models of Burkholderia infection, ACS Infect. Dis., 4, 806-814, doi: 10.1021/acsinfecdis.7b00235.

14. Hoekzema, M., Romilly, C., Holmqvist, E., and Wagner, E. G. H. (2019) Hfq-dependent mRNA unfolding promotes sRNA-based inhibition of translation, EMBO J., 38, e101199, doi: 10.15252/embj.2018101199.

15. Kannaiah, S., Livny, J., and Amster-Choder, O. (2019) Spatiotemporal organization of the E. coli transcriptome: translation independence and engagement in regulation, Mol. Cell, 76, 574-589.e7, doi: 10.1016/j.molcel.2019.08.013.

16. Barkowsky, G., Lemster, A. L., Pappesch, R., Jacob, A., Krüger, S., Schröder, A., Kreikemeyer, B., and Patenge, N. (2019) Influence of different cell-penetrating peptides on the antimicrobial efficiency of PNAs in Streptococcus pyogenes, Mol. Ther. Nucleic Acids, 18, 444-454, doi: 10.1016/j.omtn.2019.09.010.

17. Lee, H. J. (2019) Microbe-host communication by small RNAs in extracellular vesicles: vehicles for transkingdom RNA transportation, Int. J. Mol. Sci., 20, 1487, doi: 10.3390/ijms20061487.

18. Hansen, A. M., Bonke, G., Larsen, C. J., Yavari, N., Nielsen, P. E., and Franzyk, H. (2016) Antibacterial peptide nucleic acid-antimicrobial peptide (PNA-AMP) conjugates: antisense targeting of fatty acid biosynthesis, Bioconjug. Chem., 27, 863-867, doi: 10.1021/acs.bioconjchem.6b00013.

19. Bernheim, A. G., Libis, V. K., Lindner, A. B., and Wintermute, E. H. (2016) Phage-mediated delivery of targeted sRNA constructs to knock down gene expression in E. coli, J. Vis. Exp., 109, 53618, doi: 10.3791/53618.

20. Balaban, N. Q., Helaine, S., Lewis, K., Ackermann, M., Aldridge, B., Andersson, D. I., and Zinkernagel, A. (2019) Definitions and guidelines for research on antibiotic persistence, Nat. Rev. Microbiol., 17, 441–448, doi: 10.1038/s41579-019-0196-3.

21. Koonin, E. V., Makarova, K. S., and Zhang, F. (2017) Diversity, classification and evolution of CRISPR-Cas systems, Curr. Opin. Microbiol., 37, 67-78, doi: 10.1016/j.mib.2017.05.008.

22. Greene, A. C. (2018) CRISPR-based antibacterials: transforming bacterial defense into offense, Trends Biotechnol., 36, 127-130, doi: 10.1016/j.tibtech.2017.10.021.

23. Bikard, D., and Barrangou, R. (2017) Using CRISPR-Cas systems as antimicrobials, Curr. Opin. Microbiol., 37, 155-160, doi: 10.1016/j.mib.2017.08.005.

24. Citorik, R. J., Mimee, M., and Lu, T. K. (2014) Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases, Nat. Biotechnol., 32, 1141-1145, doi: 10.1038/nbt.3011.

25. Yosef, I., Manor, M., Kiro, R., and Qimron, U. (2015) Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria, Proc. Natl. Acad. Sci. USA, 112, 7267-7272, doi: 10.1073/pnas.1500107112.

26. Parmeciano Di Noto, G., Molina, M. C, and Quiroga, C. (2019) Insights into non-coding RNAs as novel antimicrobial drugs, Front. Genet., 10, 57, doi: 10.3389/fgene.2019.00057.

27. Wright, G. D. (2016) Antibiotic adjuvants: rescuing antibiotics from resistance, Trends Microbiol., 24, 862, doi: 10.1016/j.tim.2016.07.008.

28. Tooke, C. L., Hinchliffe, P., Bragginton, E. C., Colenso, C. K., Hirvonen, V. H. A., Takebayashi, Y., and Spencer, J. (2019) β-Lactamases and β-lactamase inhibitors in the 21st century, J. Mol. Biol., 431, 3472-3500, doi: 10.1016/j.jmb.2019.04.002.

29. Papp-Wallace, K. M. (2019) The latest advances in β-lactam/β-lactamase inhibitor combinations for the treatment of gram-negative bacterial infections, Expert. Opin. Pharmacother., 20, 2169-2184, doi: 10.1080/14656566.2019.1660772.

30. Ehmann, D. E., Jahić, C. H., Ross, P. L., Gu, R.-F., Hu, J., Kern, G., Walkup, G. K., and Fisher, S. L. (2012) Avibactam is a covalent, reversible, non-b-lactam b-lactamase inhibitor, Proc. Natl. Acad. Sci. USA, 109, 11663-11668, doi: 10.1073/pnas.1205073109.

31. Zhanel, G. G., Lawrence, C. K., Adam, H., Schweizer, F., Zelenitsky, S., et al. (2018) Imipenem-relebactam and meropenem-vaborbactam: two novel carbapenem-b-lactamase inhibitor combinations, Drugs, 78, 65-98, doi: 10.1007/s40265-017-0851-9.

32. Sully, E. K., Geller, B. L., Li, L., Moody, C. M., Bailey, S. M., et al. (2017) Peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO) restores carbapenem susceptibility to NDM-1-positive pathogens in vitro and in vivo, J. Antimicrob. Chemother., 72, 782-790, doi: 10.1093/jac/dkw476.

33. Mo, Y., Lorenzo, M., Farghaly, S., Kaur, K., and Housman, S. T. (2019) What’s new in the treatment of multidrug-resistant gramnegative infections? Diagn. Microbiol. Infect. Dis., 93, 171-181, doi: 10.1016/j.diagmicrobio.2018.08.007.

34. Tran, H. T., Solnier, J., Pferschy-Wenzig, E. M., Kunert, O., Martin, L., et al. (2020) Antimicrobial and efflux pump inhibitory activity of carvotacetones from Sphaeranthus africanus against mycobacteria, Antibiotics (Basel), 9, 390, doi: 10.3390/antibiotics9070390.

35. Osei Sekyere, J., and Amoako, D. G. (2017) Carbonyl cyanide m-chlorophenylhydrazine (CCCP) reverses resistance to colistin, but not to carbapenems and tigecycline in multidrug-resistant Enterobacteriaceae, Front. Microbiol., 8, 228, doi: 10.3389/fmicb.2017.00228.

36. Negash, K. H., Norris, J. K. S., and Hodgkinson, J. T. (2019) Siderophore-antibiotic conjugate design: new drugs for bad bugs? Molecules, 24, 3314, doi: 10.3390/molecules24183314.

37. Tonziello, G., Caraffa, E., Pinchera, B., Granata, G., and Petrosillo, N. (2019) Present and future of siderophore-based therapeutic and diagnostic approaches in infectious diseases, Infect. Dis. Rep., 11, doi: 10.4081/idr.2019.8208.

38. Nguyen, L. P., Pinto, N. A., Vu, T. N., Lee, H., Cho, Y. L., Byun, J-H., D’Souza, R., and Yong, D. (2020) In vitro activity of a novel siderophore-cephalosporin, GT-1 and serine-type β-lactamase inhibitor, GT-055, against Escherichia coli, Klebsiella pneumonia and Acinetobacter spp. panel strains, Antibiotics (Basel), 9, 267, doi: 10.3390/antibiotics9050267.

39. Turnbull, A. L., and Surette, M. G. (2008) L-Cysteine is required for induced antibiotic resistance in actively swarming Salmonella enterica serovar Typhimurium, Microbiology, 154, 3410-3419, doi: 10.1099/mic.0.2008/020347-0.

40. Huber, A., Hajdu, D., Bratschun-Khan, D., Gáspári, Z., Varbanov, M., Philippot, S., et al. (2018) New antimicrobial potential and structural properties of PAFB: a cationic, cysteine-rich protein from Penicillium chrysogenum Q176, Sci. Rep., 8, 1751, doi: 10.1038/s41598-018-20002-2.

41. Turnbull, A. L., and Surette, M. G. (2010) Cysteine biosynthesis, oxidative stress and antibiotic resistance in Salmonella typhimurium, Res. Microbiol., 161, 643-650, doi: 10.1016/j.resmic.2010.06.004.

42. Chen, H. L., Su, P. Y., Kuo, S. C., Lauderdale, T. Y., and Shih, C. (2018) Adding a C-terminal cysteine (CTC) can enhance the bactericidal activity of three different antimicrobial peptides, Front. Microbiol., 9, 1440, doi: 10.3389/fmicb.2018.01440.

43. Fontes, L. E. S., Martimbianco, A. L. C., Zanin, C., and Riera, R. (2019) N-acetylcysteine as an adjuvant therapy for Helicobacter pylori eradication, Cochrane Database Syst. Rev., 2, CD012357, doi: 10.1002/14651858.CD012357.pub2.

44. Schütz, C., and Empting, M. (2018) Targeting the Pseudo-monas quinolone signal quorum sensing system for the discovery of novel anti-infective pathoblockers, Beilstein J. Org. Chem., 14, 2627-2645, doi: 10.3762/bjoc.14.241.

45. Overhage, J., Campisano, A., Bains, M., Torfs, E. C. W., Rehm, B. H. A., and Hancock, R. E. W. (2008) Human host defense peptide LL-37 prevents bacterial biofilm formation, Infect. Immun., 76, 4176-4182, doi: 10.1128/iai.00318-08.

46. Reffuveille, F., de la Fuente-Núñez, C., Mansour, S., and Hancock, R. E. W. (2014) A broad-spectrum antibiofilm peptide enhances antibiotic action against bacterial biofilms, Antimicrob. Agents Chemother., 58, 5363-5371, doi: 10.1128/aac.03163-14.

47. Brancatisano, F. L., Maisetta, G., Di Luca, M., Esin, S., Bottai, D., Bizzarri, R., Campa, M., and Batoni, G. (2014) Inhibitory effect of the human liver-derived antimicrobial peptide hepcidin 20 on biofilms of polysaccharide intercellular adhesin (PIA)-positive and PIA-negative strains of Staphylococcus epidermidis, Biofouling, 30, 435-446, doi: 10.1080/08927014.2014.888062.

48. Pletzer, D., Coleman, S. R., and Hancock, R. E. (2016) Anti-biofilm peptides as a new weapon in antimicrobial warfare, Curr. Opin. Microbiol., 33, 35-40, doi: 10.1016/j.mib.2016.05.016.

49. Ribes, S., Adam, N., Ebert, S., Regen, T., Bunkowski, S., Hanisch, U.-K., and Nau, R. (2010) The viral TLR3 agonist poly(I:C) stimulates phagocytosis and intracellular killing of Escherichia coli by microglial cells, Neurosci. Lett., 482, 17-20, doi: 10.1016/j.neulet.2010.06.078.

50. Mata-Haro, V., Cekic, C., Martin, M., Chilton, P. M., Casella, C. R., and Mitchell, T. C. (2007) The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4, Science, 316, 1628-1632, doi: 10.1126/science.1138963.

51. Juárez, E., Carranza, C., Hernández-Sánchez, F., León-Contreras, J. C., Hernández-Pando, R., et al. (2012) NOD2 enhances the innate response of alveolar macrophages to Mycobacterium tuberculosis in humans, Eur. J. Immunol., 42, 880-889, doi: 10.1002/eji.201142105.

52. Gorityala, B. K., Guchhait, G., Goswami, S., Fernando, D. M., Kumar, A., Zhanel, G. G., and Schweizer, F. (2016) Hybrid antibiotic overcomes resistance in P. aeruginosa by enhancing outer membrane penetration and reducing efflux, J. Med. Chem., 59, 8441-8455, doi: 10.1021/acs.jmedchem.6b00867.

53. Laselva, O., Stone, T. A., Bear, C. E., and Deber, C. M. (2020) Anti-infectives restore ORKAMBI® rescue of F508del-CFTR function in human bronchial epithelial cells infected with clinical strains of P. aeruginosa, Biomolecules, 10, 334, doi: 10.3390/biom10020334.

54. Malachowa, N., and DeLeo, F. R. (2010) Mobile genetic elements of Staphylococcus aureus, Cell Mol. Life Sci., 67, 3057-3071, doi: 10.1007/s00018-010-0389-4.

55. James, G. A., Swogger, E., Wolcott, R., Pulcini, E., Secor, P., Sestrich, J., Costerton, J. W., and Stewart, P. S. (2008) Biofilms in chronic wounds, Wound Rep. Regen., 16, 37-44, doi: 10.1111/j.1524-475X.2007.00321.x.

56. Leimer, N., Rachmuhl, C., Palheiros Marques, M., Bahlmann, A. S., Furrer, A., et al. (2016) Nonstable Staphylococcus aureus small-colony variants are induced by low pH and sensitized to antimicrobial therapy by phagolysosomal alkalinization, J. Infect. Dis., 213, 305-313, doi: 10.1093/infdis/jiv388.

57. Nelson, D. C., Schmelcher, M., Rodriguez-Rubio, L., Klumpp, J., Pritchard, D. G., Dong, S., and Donovan, D. M. (2012) Endolysins as antimicrobials, Adv. Virus Res., 83, 299-365, doi: 10.1016/B978-0-12-394438-2.00007-4.

58. Nakamura, T., Kitana, J., Fujiki, J., Takase, M., Iyori, K., Simoike, K., and Iwano, H. (2020) Lytic activity of polyvalent staphylococcal bacteriophage PhiSA012 and its endolysin Lys-PhiSA012 against antibiotic-resistant staphylococcal clinical isolates from canine skin infection sites, Front. Med., 7, 234, doi: 10.3389/fmed.2020.00234.

59. Schmelcher, M., Donovan, D. M., and Loessner, M. J. (2012) Bacteriophage endolysins as novel antimicrobials, Future Microbiol., 7, 1147-1171, doi: 10.2217/fmb.12.97.

60. Gerstmans, H., Criel, B., and Briers, Y. (2018) Synthetic biology of modular endolysins, Biotechnol. Adv., 36, 624-640, doi: 10.1016/j.biotechadv.2017.12.009.

61. Schmelcher, M., Tchang, V. S., and Loessner, M. J. (2011) Domain shuffling and module engineering of Listeria phage endolysins for enhanced lytic activity and binding affinity, Microb. Biotechnol., 4, 651-662, doi: 10.1111/j.1751-7915.2011.00263.x.

62. Becker, S. C., Foster-Frey, J., and Donovan, D. M. (2008) The phage K lytic enzyme LysK and lysostaphin act synergistically to kill MRSA, FEMS Microbiol. Lett., 287, 185-191, doi: 10.1111/j.1574-6968.2008.01308.x.

63. Gutierrez, D., Fernandez, L., Martinez, B., Ruas-Madiedo, P., Garcia, P., and Rodriguez, A. (2017) Real-time assessment of Staphylococcus aureus biofilm disruption by phage-derived proteins, Front. Microbiol., 8, 1632, doi: 10.3389/fmicb.2017.01632.

64. Freitas, A. I., Vasconcelos, C., Vilanova, M., and Cerca, N. (2014) Optimization of an automatic counting system for the quantification of Staphylococcus epidermidis cells in biofilms, J. Basic Microbiol., 54, 750-757, doi: 10.1002/jobm.201200603.

65. Melo, L. D. R., Brandão, A., Akturk, E., Santos, S. B., and Azeredo, J. (2018) Characterization of a new Staphylo-coccus aureus kayvirus harboring a lysin active against biofilms, Viruses, 10, 182, doi: 10.3390/v10040182.

66. Gutiérrez, D., Ruas-Madiedo, P., Martinez, B., Rodriguez, A., and Garcia, P. (2014) Effective removal of staphylococcal biofilms by the endolysin LysH5, PLoS One, 9, e107307, doi: 10.1371/journal.pone.0107307.

67. Kaplan, J. B. (2011) Antibiotic-induced biofilm formation, Int. J. Artif. Organs, 34, 737-751, doi: 10.5301/ijao.5000027.

68. Fischetti, V. A. (2008) Bacteriophage lysins as effective antibacterials, Curr. Opin. Microbiol., 11, 393-400, doi: 10.1016/j.mib.2008.09.012.

69. Shen, Y., Barros, M., Vennemann, T., Gallagher, D. T., Yin, Y., et al. (2016) A bacteriophage endolysin that eliminates intracellular streptococci, Elife, 5, e13152, doi: 10.7554/eLife.13152.

70. Röhrig, C., Huemer, M., Lorge, D., Luterbacher, S., Phothaworn, P., et al. (2020) Targeting hidden pathogens: cell-penetrating enzybiotics eradicate intracellular drug-resistant Staphylococcus aureus, mBio, 11, e00209-20, doi: 10.1128/mBio.00209-20.

71. Olsen, N. M. C., Thiran, E., Hasler, T., Vanzieleghem, T., Belibasakis, G. N., Mahillon, J., Loessner, M. J., and Schmelcher, M. (2018) Synergistic removal of static and dynamic Staphylococcus aureus biofilms by combined treatment with a bacteriophage endolysin and a polysaccharide depolymerase, Viruses, 10, 438, doi: 10.3390/v10080438.

72. Hjelm, L. C., Nilvebrant, J., Nygren, P. A., Nilsson, A. S., and Seijsing, J. (2019) Lysis of staphylococcal cells by modular lysin domains linked via a non-covalent barnase-barstar interaction bridge, Front. Microbiol., 10, 558, doi: 10.3389/fmicb.2019.00558.

73. Verbree, C. T., Datwyler, S. M., Meile, S., Eichenseher, F., Donovan, D. M., Loessner, M. J., and Schmelcher, M. (2017) Corrected and republished from: identification of peptidoglycan hydrolase constructs with synergistic staphylolytic activity in cowmilk, Appl. Environ. Microbiol., 84, e02134-17, doi: 10.1128/AEM.02134-17.

74. Thukkaram, M., Cools, P., Nikiforov, A., Rigole, P., Coenye, T., et al. (2020) Antibacterial activity of a porous silver doped TiO2 coating on titanium substrates synthesized by plasma electrolytic oxidation, Appl. Surf. Sci., 500, 144235, doi: 10.1016/j.apsusc.2019.144235.

75. Ponomarev, V. A., Orlov, E. A., Malikov, N. A., Tarasov, Y. V., Sheveyko, A. N., et al. (2020) Ag(Pt) nanoparticles-decorated bioactive yet antibacterial Ca- and P-doped TiO2 coatings produced by plasma electrolytic oxidation and ion implantation, Appl. Surf. Sci., 516, 146068, doi: 10.1016/j.apsusc.2020.146068.

76. Feldman, M. D., Petersen, A. J., Karliner, L. S., and Tice, J. A. (2008) Who is responsible for evaluating the safety and effectiveness of medical devices? The role of independent technology assessment, J. Gen. Intern. Med., 23, 57-63, doi: 10.1007/s11606-007-0275-4.

77. McIntyre, W. F., and Healey, J. S. (2017) Cardiac implantable electronic device infections: from recognizing risk to prevention, Heart Rhythm., 14, 846-847, doi: 10.1016/j.hrthm.2017.03.027.

78. Andersen, O. Z., Offermanns, V., Sillassen, M., Almtoft, K. P., Andersen, I. H., et al. (2013) Accelerated bone in growth by local delivery of strontium from surface functionalized titanium implants, Biomaterials, 34, 5883-5890, doi: 10.1016/j.biomaterials.2013.04.031.

79. Arciola, C. R., Campoccia, D., and Montanaro, L. (2018) Implant infections: adhesion, biofilm formation and immune evasion, Nat. Rev. Microbiol., 16, 397-409, doi: 10.1038/s41579-018-0019-y.

80. Mukherjee, K., Acharya, K., Biswas, A., and Jana, N. R. (2020) TiO2 nanoparticles co-doped with nitrogen and fluorine as visible light-activated antifungal agents, ACS Appl. Nano Mater., 3, 2016-2025, doi: 10.1021/acsanm.0c00108.

81. Atay, H. Y., and Celik, E. (2017) Investigations of antibacterial activity of chitosan in the olymeric composite coatings, Prog. Org. Coat., 102, 194-200, doi: 10.1016/j.porgcoat.2016.10.013.

82. Sukhorukova, I. V., Sheveyko, A. N., Shvindina, N. V., Zhitnyak, I. Y., Gloushankova, N. A., et al. (2017) Approaches for controlled Ag+ ion release: influence of surface topography, roughness, and bactericide content, ACS Appl. Mater. Interfaces, 9, 4259-4271, doi: 10.1021/acsami.6b15096.

83. Kalmantaeva, O. V., Firstova, V. V., Grishchenko, N. S., Rudnitskaya, T. I., Potapov, V. D., and Ignatov, S. G. (2020) Antibacterial and immunomodulating activity of silver nanoparticles in tuberculosis models on experimental mice, Appl. Biochem. Microbiol., 56, 226-232, doi: 10.1134/S0003683820020088.

84. Weng, Q., Wang, X., Bando, Y., and Golberg, D. (2016) Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications, Chem. Soc. Rev., 45, 3989-4012, doi: 10.1039/C5CS00869G.

85. Emanet, M., Sen, Ö., Taşkin, I. Ç., and Çulha, M. (2019) Synthesis, functionalization, and bioapplications of two-dimensional boron nitride nanomaterials, Front. Bioeng. Biotechnol., 7, 363, doi: 10.3389/fbioe.2019.00363.

86. Han, A., Li, X., Huang, B., Tsoi, J. K.-H., Matinlinna, J. P., Chen, Z., and Deng, D. M. (2016) The effect of titanium implant surface modification on the dynamic process of initial microbial adhesion and biofilm formation, Int. J. Adhes. Adhes., 69, 125-132.

87. Huang, H., Chang, Y., Lai, M., Lin, C., Lai, C., and Shieh, T. (2010) Antibacterial TaN-Ag coatings on titanium dental implants, Surf. Coat. Technol., 205, 1636-1641, doi: 10.1016/j.surfcoat.2010.07.096.

88. Sukhorukova, I. V., Sheveyko, A. N., Kiryukhantsev-Korneev, Ph. V., Anisimova, N. Y., Gloushankova, N. A., Zhitnyak, I. Y., Benesova, J., Amler, E., and Shtansky, V. D. (2015) Two approaches to form antibacterial surface:doping with bactericidal element and drug loading, Appl. Surf. Sci., 330, 339-350, doi: 10.1016/j.apsusc.2014.12.119.

89. Carvalho, I., Henriques, M., Oliveira, J. C., Alves, C. F. A., Piedade, A. P., and Carvalho, S. (2013) Influence of surface features on the adhesion of Staphylococcus epidermidis to Ag-TiCN thin films, Sci. Technol. Adv. Mater., 14, 035009, doi: 10.1088/1468-6996/14/3/035009.

90. Bai, L. (2015) Nanostructured titanium–silver coatings with good antibacterial activity and cytocompatibility fabricated by one-step magnetron sputtering, Appl. Surf. Sci., 355, 32-44, doi: 10.1016/j.apsusc.2015.07.064.

91. Koci, K., Mateju, K., Obalova, L., Krejcikova, S., Lacny, Z., Placha, D., Capek, L., Hospodkova, A., and Solcova, O. (2010) Effect of silver doping on the TiO2 for photocatalytic reduction of CO2, Appl. Catalysis B-Environ., 96, 239-244, doi: 10.1016/j.apcatb.2010.02.030.

92. Cloutier, M., Mantovani, D., and Rosei, F. (2015) Antibacterial coatings: challenges, perspectives, and opportunities, Trends Biotechnol., 33, 637-652, doi: 10.1016/j.tibtech.2015.09.002.

93. Gao, Y., Truong, Y. B., Zhu, Y., and Kyratzis, I. L. (2014) Electrospun antibacterial nanofibers: production, activity, and in vivo applications, J. Appl. Polym. Sci., 131, 9041-9053, doi: 10.1002/app.40797.

94. Monteiro, N., Martins, M., Martins, A., Fonseca, N. A., Moreira, J. N., Reis, R. L., and Neves, N. M. (2015) Antibacterial activity of chitosan nanofiber meshes with liposomes immobilized releasing gentamicin, Acta Biomater., 18, 196-205, doi: 10.1016/j.actbio.2015.02.018.

95. Permyakova, E. S., Polčak, J., Slukin, P. V., Ignatov, S. G., Gloushankova, N. A., Zajičková, L., Shtansky, D. V., and Manakhov, A. (2018) Antibacterial biocompatible PCL nanofibers modified by COOH-anhydride plasma polymers and gentamicin immobilization, Materials & Design, 153, 60-70, doi: 10.1016/j.matdes.2018.05.002.

96. Yaqoob, A. A., Ahmad, H., Parveen, T., Ahmad, A., Oves, M., et al. (2020) Recent advances in metal decorated nanomaterials and their various biological applications: a review, Front. Chem., 8, doi: 10.3389/fchem.2020.00341.

97. Ponomarev, V. A., Sheveyko, A. N., Permyakova, E. S., Lee, J., Voevodin, A. A., et al. (2019) TiCaPCON-supported Pt- and Fe-based nanoparticles and related antibacterial activity, ACS Appl. Mater. Interfaces, 11, 28699-28719, doi: 10.1021/acsami.9b09649.

98. Sardi, J. C. O., Scorzoni, L., Bernardi, T., Fusco-Almeida, A. M., and Giannini, M. J. S. M. (2013) Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options, J. Med. Microbiol., 62, 10-24, doi: 10.1099/jmm.0.045054-0.

99. Sukhorukova, I. V., Sheveyko, A. N., Manakhov, A., Zhitnyak, I. Y., Gloushankova, N. A., et al. (2018) Synergistic and long-lasting antibacterial effect of antibiotic-loaded TiCaPCON-Ag films against pathogenic bacteria and fungi, Mater. Sci. Eng. C, 90, 289-299, doi: 10.1016/j.msec.2018.04.068.

100. Saraeva, I. N., Tolordava, E. R., Nastulyavichus, A. A., Ivanova, A. K., Kudryashov, S. I., et al. (2020) A bacterial misericorde: laser-generated silicon nanorazors with embedded biotoxic nanoparticles combat the formation of durable biofilms, Laser Phys. Lett., 17, doi: 10.1088/1612-202x/ab5fca.