БИОХИМИЯ, 2020, том 85, вып. 11, с. 1519–1539

УДК 577.151;577.181.5

Ингибиторы β-лактамаз. Новая жизнь β-лактамных антибиотиков

Обзор

© 2020 А.М. Егоров, М.М. Уляшова, М.Ю. Рубцова *

Московский государственный университет имени М.В. Ломоносова, химический факультет, 119991 Москва, Россия; электронная почта: mrubtsova@gmail.com

Поступила в редакцию 09.07.2020
После доработки 14.08.2020
Принята к публикации 15.08.2020

DOI: 10.31857/S0320972520110020

КЛЮЧЕВЫЕ СЛОВА: антибиотикорезистентность бактерий, β-лактамазы, ингибиторы, β-лактамные антибиотики.

Аннотация

β-Лактамные антибиотики составляют около 60% от всех выпускаемых антибиотиков и благодаря своей высокой активности и минимальным побочным эффектам широко используются для лечения различных инфекционных заболеваний человека и животных, включающих тяжелые госпитальные инфекции. Однако глобальное распространение бактерий, резистентных к β-лактамам, привело к их клинической неэффективности. Поиск эффективных способов преодоления устойчивости бактерий к β-лактамным антибиотикам, преимущественным механизмом которой является синтез разнообразных β-лактамаз, разрушающих β-лактамное кольцо антибиотиков, является важнейшей задачей. Данный обзор посвящен анализу специфических ингибиторов сериновых и металло-β-лактамаз и подходов к созданию новых ингибиторов, которые позволят продлить «жизнь» β-лактамов.

Сноски

* Адресат для корреспонденции.

Финансирование

Работа выполнена при финансовой поддержке Российским научнымфондом (грант № 15-14-00014-П, анализ ингибиторов сериновых β-лактамаз) и госзаданием МГУ имени М.В. Ломоносова (AAAA-A16-116052010081-5, анализ ингибиторов металло-β-лактамаз).

Конфликт интересов

Авторы обзора заявляют об отсутствии конфликта интересов.

Соблюдение этических норм

Настоящая статья не содержит описания каких-либо исследований с участием людей или животных в качестве объектов.

Список литературы

1. Smith, P. W., Watkins, K., and Hewlett, A. (2012) Infection control through the ages, Am. J. Infect. Control, 40, 35-42, doi: 10.1016/j.ajic.2011.02.019.

2. Zapun, A., Contreras-Martel, C., and Vernet, T. (2008) Penicillin-binding proteins and β-lactam resistance, FEMS Microbiol. Rev., 32, 361-385, doi: 10.1111/j.1574-6976.2007.00095.x.

3. Bush, K., and Bradford, P. A. (2016) β-Lactams andβ-lactamase inhibitors: an overview, Cold Spring Harb. Perspect. Medici., 6, a025247, doi: 10.1101/cshperspect.a025247.

4. Klein, E. Y., Van Boeckel, T. P., Martinez, E. M., Pant, S., Gandra, S., Levin, S. A., Goossens, H., and Laxminarayan, R. (2018) Global increase and geographic convergence in antibiotic consumption between 2000 and 2015, Proc. Natl. Acad. Sci. USA, 115, E3463-E3470, doi: 10.1073/pnas.1717295115.

5. URL: https://www.who.int/emergencies/ten-threats-to-global-health-in-2019.

6. King, D. T., Sobhanifar, S., and Strynadka, N. C. J. (2017) The Mechanisms of resistance to β-lactam antibiotics, in Handbook of Antimicrobial Resistance A (Berghuis, A., Matlashewski, G., Wainberg, M. A., and Sheppard, D., eds.), Springer New York, pp. 177-201, doi: 10.1007/978-1-4939-0694-9_10.

7. Egorov, A. M., Ulyashova, M. M., and Rubtsova, M. Y. (2018) Bacterial enzymes and antibiotic resistance, Acta Naturae, 10, 33-48.

8. Fishovitz, J., Hermoso, J. A., Chang, M., and Mobashery, S. (2014) Penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus, IUBMB Life, 66, 572-577, doi: 10.1002/iub.1289.

9. Bush, K. (2018) Past and present perspectives on β-lactamases, Antimicrob. Agents Chemother., 62, e01076-18, doi: 10.1128/AAC.01076-18.

10. Rozwandowicz, M., Brouwer, M. S. M., Fischer, J., Wagenaar, J. A., Gonzalez-Zorn, B., Guerra, B.,Mevius, D. J., and Hordijk, J. (2018) Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae, J. Antimicrob. Chemother., 73, 1121-1137, doi: 10.1093/jac/dkx488.

11. Magiorakos, A.-P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., Harbarth, S., Hindler, J. F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D. L., Rice, L. B., Stelling, J., Struelens, M. J., Vatopoulos, A., Weber, J. T., and Monnet, D. L. (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistantbacteria: an international expert proposal for interim standard definitions for acquired resistance, Clin. Microbiol. Infect., 18, 268-281, doi: 10.1111/j.1469-0691.2011.03570.x.

12. Stec, B., Holtz, K. M., Wojciechowski, C. L., and Kantrowitz, E. R. (2005) Structure of the wild-type TEM-1 β-lactamase at 1.55 Å and the mutant enzyme Ser70Ala at 2.1 Å suggest the mode of noncovalent catalysis for the mutant enzyme, Acta Cryst., 61, 1072-1079, doi: 10.1107/S0907444905014356.

13. Egorov, A., Ulyashova, M., and Rubtsova, M. (2020) Impact of key and secondary drug resistance mutations on structure and activity of β-lactamases, in Antibiotic Drug Resistance (Martinez, J. C., and G. Igrejas, G., eds.), Antibiotic Drug Resistance, John Wiley and Sons, Inc., pp. 121-140.

14. Abriata, L. A., Salverda, M. L. M., and Tomatis, P. E. (2012) Sequence-function-stability relationships in proteins from datasets of functionally annotated variants: the case of TEM β-lactamases, FEBS Lett., 586, 3330-3335, doi: 10.1016/j.febslet.2012.07.010.

15. Bush, K. (2013) The ABCD’s of β-lactamase nomenclature, J. Infect. Chemother., 19, 549-559, doi: 10.1007/s10156-013-0640-7.

16. Tooke, C. L., Hinchliffe, P., Bragginton, E. C., Colenso, C. K., Hirvonen, V. H. A., Takebayashi, Y., and Spencer, J. (2019) β-Lactamases and β-lactamase inhibitors in the 21st century, J. Mol. Biol., 431, 3472-3500, doi: 10.1016/j.jmb.2019.04.002.

17. Drawz, S. M., and Bonomo, R. A. (2010) Three decades of β-lactamase inhibitors, Clin. Microbiol. Rev., 23, 160-201, doi: 10.1128/CMR.00037-09.

18. Liakopoulos, A., Mevius, D., and Ceccarelli, D. (2016) A review of SHV extended-spectrum β-lactamases: neglected yet ubiquitous, Front. Microbiol., 7, 1374, doi: 10.3389/fmicb.2016.01374.

19. Arpin, C., Labia, R., Andre, C., Frigo, C., El Harrif, Z., and Quentin, C. (2001) SHV-16, a β-lactamase with a pentapeptide duplication in the omega loop, Antimicrob. Agents Chemother., 45, 2480-2485, doi: 10.1128/AAC.45.9.2480-2485.2001.

20. Shcherbinin, D., Veselovsky, A., Rubtsova, M., Grigorenko, V., and Egorov, A. (2020) The impact of long-distance mutations on the Ω-loop conformation in TEM type β-lactamases, J. Biomol. Struct. Dyn., 38, 2369-2376, doi: 10.1080/07391102.2019.1634642.

21. D’Andrea, M. M., Arena, F., Pallecchi, L., and Rossolini, G. M. (2013) CTX-M-type β-lactamases: a successful story of antibiotic resistance, Int. J. Med. Microbiol., 303, 305-317, doi: 10.1016/j.ijmm.2013.02.008.

22. Bonnet, R. (2004) Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes, Antimicrob. Agents Chemother., 48, 1-14, doi: 10.1128/aac.48.1.1-14.2004.

23. Cantón, R., González-Alba, J. M., and Galán, J. C. (2012) CTX-M enzymes: origin and diffusion, Front. Microbiol., 3, 110, doi: 10.3389/fmicb.2012.00110.

24. Zhao, W. H., and Hu, Z. Q. (2013) Epidemiology and genetics of CTX-M extended-spectrum β-lactamases in gram-negative bacteria, Crit. Rev. Microbiol., 39, 79-101, doi: 10.3109/1040841X.2012.691460.

25. Fursova, N., Pryamchuk, S., Kruglov, A., Abaev, I., Pecherskikh, E., Kartsev, N., Svetoch, E., and Dyatlov, I. (2013) The novel CTX-M-116 β-lactamase gene discovered in Proteus mirabilis is composed of parts of the CTX-M-22 and CTX-M-23 genes, Antimicrob. Agents Chemother., 57, 1552-1555, doi: 10.1128/AAC.01471-12.

26. Palzkill, T. (2013) Metallo-β-lactamase structure and function, Ann. N. Y. Acad. Sci., 1277, 91-104, doi: 10.1111/j.1749-6632.2012.06796.x.

27. Malabanan, M. M., Amyes, T. L., and Richard, J. P. (2010) A role for flexible loops in enzyme catalysis, Curr. Opin. Struct. Biol., 20, 702-710, doi: 10.1016/j.sbi.2010.09.005.

28. Boucher, H. W., Talbot, G. H., Bradley, J. S., Edwards, J. E., Gilbert, D., Rice, L. B., Scheld, M., Spellberg, B., and Bartlett, J. (2009) Bad bugs, no drugs: no ESKAPE! An update from the infectious diseases society of America, Clin. Infect. Dis., 48, 1-12, doi: 10.1086/595011.

29. Reading, C., and Cole, M. (1977) Clavulanic acid: a beta-lactamase inhibiting beta-lactam from Streptomyces clavuligerus, Antimicrob. Agents Chemother., 11, 852-857, doi: 10.1128/AAC.11.5.852.

30. Brown, A. G. (1986) Clavulanic acid, a novel beta-lactamase inhibitor – a case study in drug discovery and development, Drug Des. Deliv., 1, 1-21.

31. English, A. R., Retsema, J. A., Girard, A. E., Lynch, J. E., and Barth, W. E. (1978) CP-45,899, a beta-lactamase inhibitor that extends the antibacterial spectrum of beta-lactams: initial bacteriological characterization, Antimicrob. Agents Chemother., 14, 414-419, doi: 10.1128/AAC.14.3.414.

32. Fisher, J., Belasco, J. G., Charnas, R. L., Khosla, S., and Knowles, J. R. (1980) Beta-lactamase inactivation by mechanism-based reagents, Philos. Trans. R. Soc. Lond. B Biol. Sci., 289, 309-319, doi: 10.1098/rstb.1980.0048.

33. Payne, D. J., Cramp, R., Winstanley, D. J., and Knowles, D. J. C. (1994) Comparative activities of clavulanic acid, sulbactam, and tazobactam against clinically important β-lactamases, Antimicrob. Agents Chemother., 38, 767-772, doi: 10.1128/AAC.38.4.767.

34. Papp-Wallace, K. M., Bethel, C. R., Barnes, M. D., Rutter, J. D., Taracila, M. A., Bajaksouzian, S., Jacobs, M. R., and Bonomo, R. A. (2017) AAI101, a novel β-lactamase inhibitor: microbiological and enzymatic profiling, Open Forum Infect. Dis., 4, S375.

35. Manageiro, V., Ferreira, E., Cougnoux, A., Albuquerque, L., Caniça, M., and Bonnet, R. (2012) Characterization of the inhibitor-resistant SHV β-lactamase SHV-107 in a clinical Klebsiella pneumoniae strain coproducing GES-7 enzyme, Antimicrob. Agents Chemother., 56, 1042-1046, doi: 10.1128/AAC.01444-10.

36. Rodkey, E. A., Drawz, S. M., Sampson, J. M., Bethel, C. R., Bonomo, R. A., and Van Den Akker, F. (2012) Crystal structure of a preacylation complex of the β-lactamase inhibitor sulbactam bound to a sulfenamide bond-containing thiol-β-lactamase, J. Am. Chem. Soc., 134, 16798-16804, doi: 10.1021/ja3073676.

37. Van den Akker, F., and Bonomo, R. A. (2018) Exploring additional dimensions of complexity in inhibitor design for serine β-lactamases: mechanistic and intra- and inter-molecular chemistry approaches, Front. Microbiol., 9, 1-10, doi: 10.3389/fmicb.2018.00622.

38. Grace, M. E., Fu, K. P., Gregory, F. J., and Hung, P. P. (1987) Interaction of clavulanic acid, sulbactam and cephamycin antibiotics with beta-lactamases, Drugs Exp. Clin. Res., 13, 145-148.

39. Docquier, J.-D., and Mangani, S. (2018) An update on β-lactamase inhibitor discovery and development, Drug Resist. Updat., 36, 13-29, doi: 10.1016/j.drup.2017.11.002.

40. Horita, N., Shibata, Y., Watanabe, H., Namkoong, H., and Kaneko, T. (2017) Comparison of antipseudomonal β-lactams for febrile neutropenia empiric therapy: systematic review and network meta-analysis, Clin. Microbiol. Infect., 23, 723-729, doi: 10.1016/j.cmi.2017.03.024.

41. Nimmich, E. B., Bookstaver, P. B., Kohn, J., Justo, J. A., Hammer, K. L., Albrecht, H., and Al-Hasan, M. N. (2017) Development of institutional guidelines for management of gram-negative bloodstream infections: incorporating local evidence, Hosp. Pharm., 52, 691-697, doi: 10.1177/0018578717720506.

42. Zhanel, G. G., Chung, P., Adam, H., Zelenitsky, S., Denisuik, A., Schweizer, F., Lagacé-Wiens, P. R. S., Rubinstein, E., Gin, A. S., Walkty, A., Hoban, D. J., Lynch, J. P., and Karlowsky, J. A. (2014) Ceftolozane/ Tazobactam: a novel cephalosporin/β-lactamase inhibitor combination with activity against multidrug-resistant gram-negative bacilli, Drugs, 74, 31-51, doi: 10.1007/s40265-013-0168-2.

43. Shortridge, D., Duncan, L. R., Pfaller, M. A., and Flamm, R. K. (2019) Activity of ceftolozane-tazobactam and comparators when tested against gram-negative isolates collected from paediatric patients in the USA and Europe between 2012 and 2016 as part of a global surveillance programme, Int. J. Antimicrob. Agents, 53, 637-643, doi: 10.1016/j.ijantimicag.2019.01.015.

44. Walkty, A., Adam, H., Baxter, M., Lagacé-Wiens, P., Karlowsky, J. A., Hoban, D. J., and Zhanel, G. G. (2018) In vitro activity of ceftolozane/tazobactam versus antimicrobial non-susceptible Pseudomonas aeruginosa clinical isolates including MDR and XDR isolates obtained from across Canada as part of the CANWARD study, 2008-16, J. Antimicrob. Chemother., 73, 703-708, doi: 10.1093/jac/dkx468.

45. Tselepis, L., Langley, G. W., Aboklaish, A. F., Widlake, E., Jackson, D. E., Walsh, T. R., Schofield, C. J., Brem, J., and Tyrrell, J. M. (2020) In vitro efficacy of imipenem-relebactam and cefepime-AAI101 against a global collection of ESBL-positive and carbapenemase-producing Enterobac-teriaceae, Int. J. Antimicrob. Agents, 56, 105925, doi: 10.1016/j.ijantimicag.2020.105925.

46. Bulik, C. C., and Nicolau, D. P. (2011) Double-carbapenem therapy for carbapenemase-producing Klebsiella pneumoniae, Antimicrob. Agents Chemother., 55, 3002-3004, doi: 10.1128/AAC.01420-10.

47. De Pascale, G., Martucci, G., Montini, L., Panarello, G., Cutuli, S. L., Di Carlo, D., Di Gravio, V., Di Stefano, R., Capitanio, G., Vallecoccia, M. S., Polidori, P., Spanu, T., Arcadipane, A., and Antonelli, M. (2017) Double carbapenem as a rescue strategy for the treatment of severe carbapenemase-producing Klebsiella pneumoniae infections: a two-center, matched case-control study, Crit. Care, 21, 1-10, doi: 10.1186/s13054-017-1769-z.

48. Coleman, K. (2011) Diazabicyclooctanes (DBOs): a potent new class of non-β-lactam β-lactamase inhibitors, Curr. Opin. Microbiol., 14, 550-555, doi: 10.1016/j.mib.2011.07.026.

49. King, D. T., King, A. M., Lal, S. M., Wright, G. D., and Strynadka, N. C. J. (2016) Molecular mechanism of avibactam-mediated β-lactamase inhibition, ACS Infect. Dis., 1, 175-184, doi: 10.1021/acsinfecdis.5b00007.

50. Lahiri, S. D., Mangani, S., Jahić, H., Benvenuti, M., Durand-Reville, T. F., De Luca, F., Ehmann, D. E., Rossolini, G. M., Alm, R. A., and Docquier, J. D. (2015) Molecular basis of selective inhibition and slow reversibility of avibactam against class D carbapenemases: a structure-guided study of OXA-24 and OXA-48, ACS Chem. Biol., 10, 591-600, doi: 10.1021/cb500703p.

51. Livermore, D. M., Mushtaq, S., Warner, M., Zhang, J., Maharjan, S., Doumith, M., and Woodford, N. (2011) Activities of NXL104 combinations with ceftazidime and aztreonam against carbapenemase-producing Enterobac-teriaceae, Antimicrob. Agents Chemother., 55, 390-394, doi: 10.1128/AAC.00756-10.

52. Levasseur, P., Girard, A. M., Miossec, C., Pace, J., and Coleman, K. (2015) In vitro antibacterial activity of the ceftazidime-avibactam combination against Enterobacte-riaceae, including strains with well-characterized β-lactamases, Antimicrob. Agents Chemother., 59, 1931-1934, doi: 10.1128/AAC.04218-14.

53. Zhanel, G. G., Lawson, C. D., Adam, H., Schweizer, F., Zelenitsky, S., Lagacé-Wiens, P. R. S., Denisuik, A., Rubinstein, E., Gin, A. S., Hoban, D. J., Lynch, J. P., and Karlowsky, J. A. (2013) Ceftazidime-avibactam: a novel cephalosporin/β-lactamase inhibitor combination, Drugs, 73, 159-177, doi: 10.1007/s40265-013-0013-7.

54. Biedenbach, D. J., Kazmierczak, K., Bouchillon, S. K., Sahm, D. F., and Bradford, P. A. (2015) In vitro activity of aztreonam-avibactam against a global collection of gram-negative pathogens from 2012 and 2013, Antimicrob. Agents Chemother., 59, 4239-4248, doi: 10.1128/AAC.00206-15.

55. Livermore, D. M., Warner, M., and Mushtaq, S. (2013) Activity of MK-7655 combined with imipenem against Enterobacteriaceae and Pseudomonas aeruginosa, J. Antimicrob. Chemother., 68, 2286-2290, doi: 10.1093/jac/dkt178.

56. Lapuebla, A., Abdallah, M., Olafisoye, O., Cortes, C., Urban, C., Landman, D., and Quale, J. (2015) Activity of imipenem with relebactam against gram-negative pathogens from New York City, Antimicrob. Agents Chemother., 59, 5029-5031, doi: 10.1128/AAC.00830-15.

57. Morinaka, A., Tsutsumi, Y., Yamada, M., Suzuki, K., Watanabe, T., Abe, T., Furuuchi, T., Inamura, S., Sakamaki, Y., Mitsuhashi, N., Ida, T., and Livermore, D. M. (2015) OP0595, a new diazabicyclooctane: mode of action as a serine β-lactamase inhibitor, antibiotic and β-lactam “enhancer”, J. Antimicrob. Chemother., 70, 2779-2786, doi: 10.1093/jac/dkv166.

58. Livermore, D. M., Mushtaq, S., Warner, M., Vickers, A., and Woodford, N. (2017) In vitro activity of cefepime/zidebactam (WCK 5222) against gram-negative bacteria, J. Antimicrob. Chemother., 72, 1373-1385, doi: 10.1093/jac/dkw593.

59. Durand-Réville, T. F., Guler, S., Comita-Prevoir, J., Chen, B., et al. (2017) ETX2514 is a broad-spectrum β-lactamase inhibitor for the treatment of drug-resistant gram-negative bacteria including Acinetobacter baumannii, Nat. Microbiol., 2, 17104, doi: 10.1038/nmicrobiol.2017.104.

60. Higgins, P. G., Wisplinghoff, H., Stefanik, D., and Seifert, H. (2004) In vitro activities of the β-lactamase inhibitors clavulanic acid, sulbactam, and tazobactam alone or in combination with β-lactams against epidemiologically characterized multidrug-resistant Acinetobacter baumannii strains, Antimicrob. Agents Chemother., 48, 1586-1592, doi: 10.1128/AAC.48.5.1586-1592.2004.

61. Hecker, S. J., Reddy, K. R., Totrov, M., Hirst, G. C., Lomovskaya, O., Griffith, D. C., et al. (2015) Discovery of a cyclic boronic acid β-lactamase inhibitor (RPX7009) with utility vs class A serine carbapenemases, J. Med. Chem., 58, 3682-3692, doi: 10.1021/acs.jmedchem.5b00127.

62. Lomovskaya, O., Sun, D., Rubio-Aparicio, D., Nelson, K., Tsivkovski, R., Griffith, D. C., and Dudley, M. N. (2017) Vaborbactam: spectrum of beta-lactamase inhibition and impact of resistance mechanisms on activity in Enterobacteriaceae, Antimicrob. Agents Chemother., 61, 1-15, doi: 10.1128/AAC.01443-17.

63. Rojas, L. J., Taracila, M. A., Papp-Wallace, K. M., Bethel, C. R., Caselli, E., Romagnoli, C., Winkler, M. L., Spellberg, B., Prati, F., and Bonomo, R. A. (2016) Boronic acid transition state inhibitors active against KPC and other Class A β-lactamases: structure-activity relationships as a guide to inhibitor design, Antimicrob. Agents Chemother., 60, 1751-1759, doi: 10.1128/AAC.02641-15.

64. Brem, J., Cain, R., Cahill, S., McDonough, M. A., Clifton, I. J., Jiménez-Castellanos, J. C., Avison, M. B., Spencer, J., Fishwick, C. W. G., and Schofield, C. J. (2016) Structural basis of metallo-β-lactamase, serine-β-lactamase and penicillin-binding protein inhibition by cyclic boronates, Nat. Commun., 7, 1-8, doi: 10.1038/ncomms12406.

65. Cahill, S. T., Cain, R., Wang, D. Y., Lohans, C. T., Wareham, D. W., Oswin, H. P., Mohammed, J., Spencer, J., Fishwick, C. W. G., McDonough, M. A., Schofield, C. J., and Brema, J. (2017) Cyclic boronates inhibit all classes of β-lactamases, Antimicrob. Agents Chemother., 61, doi: 10.1128/AAC.02260-16.

66. Hamrick, J. C., Docquier, J. D., Uehara, T., Myers, C. L., Six, D. A., et al. (2020) VNRX-5133 (Taniborbactam), a broad-spectrum inhibitor of serine- and metallo-β-lactamases, restores activity of cefepime in enterobacterales and Pseudomonas aeruginosa, Antimicrob. Agents Chemother., 64, doi: 10.1128/AAC.01963-19.

67. Liu, B., Trout, R. E. L., Chu, G. H., Mcgarry, D., Jackson, R. W., et al. (2020) Discovery of taniborbactam (VNRX-5133): a broad-spectrum serine- and metallo-β-lactamase inhibitor for carbapenem-resistant bacterial infections,J. Med. Chem., 63, 2789-2801, doi: 10.1021/acs.jmedchem.9b01518.

68. Tsivkovski, R., Totrov, M., and Lomovskaya, O. (2020) Biochemical characterization of QPX7728, a new ultra-broad-spectrum beta-lactamase inhibitor of serine and metallo-beta-lactamases, Antimicrob. Agents Chemother., 64, e00130-20, doi: 10.1128/aac.00130-20.

69. Cheng, Z., Thomas, C. A., Joyner, A. R., Kimble, R. L., Sturgill, A. M., et al. (2020) MBlinhibitors.com, a website resource offering information and expertise for the continued development of metallo-β-lactamase inhibitors, Biomolecules, 10, doi: 10.3390/biom10030459.

70. Ju, L.-C., Cheng, Z., Fast, W., Bonomo, R. A., and Crowder, M. W. (2018) The continuing challenge of metallo-β-lactamase inhibition: mechanism matters, Trends Pharmacol. Sci., 39, 635-647, doi: 10.1016/j.tips.2018.03.007.

71. Ma, J., McLeod, S., MacCormack, K., Sriram, S., Gao, N., Breeze, A. L., and Hu, J. (2014) Real-time monitoring of New Delhi metallo-β-lactamase activity in living bacterial cells by 1H NMR spectroscopy, Angew. Chem. Int. En Engl., 53, 2130-2133, doi: 10.1002/anie.201308636.

72. Falconer, S. B., Reid-Yu, S. A., King, A. M., Gehrke, S. S., Wang, W., Britten, J. F., Coombes, B. K., Wright, G. D., and Brown, E. D. (2015) Zinc chelation by a small-molecule adjuvant potentiates meropenem activity in vivo against NDM-1-producing Klebsiella pneumoniae, ACS Infect. Dis., 1, 533-543, doi: 10.1021/acsinfecdis.5b00033.

73. King, A. M., Reid-Yu, S. A., Wang, W., King, D. T., De Pascale, G., Strynadka, N. C., Walsh, T. R., Coombes, B. K., and Wright, G. D. (2014) Aspergillomarasmine A overcomes metallo-beta-lactamase antibiotic resistance, Nature, 510, 503-506, doi: 10.1038/nature13445.

74. Bergstrom, A., Katko, A., Adkins, Z., Hill, J., Cheng, Z., et al. (2018) Probing the interaction of aspergillomarasmine A with metallo-β-lactamases NDM-1, VIM-2, and IMP-7, ACS Infect. Dis., 4, 135-145, doi: 10.1021/acsinfecdis.7b00106.

75. Somboro, A. M., Tiwari, D., Bester, L. A., Parboosing, R., Chonco, L., Kruger, H. G., Arvidsson, P. I., Govender, T., Naicker, T., and Essack, S. Y. (2015) NOTA: a potent metallo-β-lactamase inhibitor, J. Antimicrob. Chemother., 70, 1594-1596, doi: 10.1093/jac/dku538.

76. Zhang, E., Wang, M.-M., Huang, S.-C., Xu, S.-M., Cui, D.-Y., Bo, Y.-L., Bai, P.-Y., Hua, Y.-G., Xiao, C.-L., and Qin, S. (2018) NOTA analogue: A first dithiocarbamate inhibitor of metallo-β-lactamases, Bioorg. Med. Chem. Lett., 28, 214-221, doi: 10.1016/j.bmcl.2017.10.074.

77. Abboud, M. I., Kosmopoulou, M., Krismanich, A. P., Johnson, J. W., Hinchliffe, P., Brem, J., Claridge, T. D. W., Spencer, J., Schofield, C. J., and Dmitrienko, G. I. (2018) Cyclobutanone mimics of intermediates in metallo-β-lactamase catalysis, Chemistry, 24, 5734-5737, doi: 10.1002/chem.201705886.

78. Bьttner, D., Kramer, J. S., Klingler, F. M., Wittmann, S. K., Hartmann, M. R., et al. (2018) Challenges in the development of a thiol-based broad-spectrum inhibitor for metallo-β-lactamases, ACS Infect. Dis., 4, 360-372, doi: 10.1021/acsinfecdis.7b00129.

79. Liu, S., Jing, L., Yu, Z.-J., Wu, C., Zheng, Y., Zhang, E., Chen, Q., Yu, Y., Guo, L., Wu, Y., and Li, G.-B. (2018) ((S)-3-Mercapto-2-methylpropanamido)acetic acid derivatives as metallo-β-lactamase inhibitors: synthesis, kinetic and crystallographic studies, Eur. J. Med. Chem., 145, 649-660, doi: 10.1016/j.ejmech.2018.01.032.

80. Klingler, F. M., Wichelhaus, T. A., Frank, D., Cuesta-Bernal, J., El-Delik, J., Mьller, H. F., et al. (2015) Approved drugs containing thiols as inhibitors of metallo-β-lactamases: Strategy to combat multidrug-resistant bacteria, J. Med. Chem., 58, 3626_3630, doi: 10.1021/jm501844d.

81. Brem, J., van Berkel, S. S., Zollman, D., Lee, S. Y., Gileadi, O., McHugh, P. J., Walsh, T. R., McDonough, M. A., and Schofield, C. J. (2016) Structural basis of metallo-β-lactamase inhibition by captopril stereoisomers, Antimicrob. Agents Chemother., 60, 142-150, doi: 10.1128/AAC.01335-15.

82. King, D. T., Worrall, L. J., Gruninger, R., and Strynadka, N. C. J. (2012) New delhi metallo-β-lactamase: structural insights into β-lactam recognition and inhibition, J. Am. Chem. Soc., 134, 11362-11365, doi: 10.1021/ja303579d.

83. Liénard, B. M. R., Garau, G., Horsfall, L., Karsisiotis, A. I., Damblon, C., Lassaux, P., et al. (2008) Structural basis for the broad-spectrum inhibition of metallo-β-lactamases by thiols, Org. Biomol. Chem., 6, 2282-2294, doi: 10.1039/b802311e.

84. Xiang, Y., Chang, Y.-N., Ge, Y., Kang, J.S., Zhang, Y.-L., Liu, X.-L., Oelschlaeger, P., and Yang, K.-W. (2017) Azolyl-thioacetamides as a potent scaffold for the development of metallo-β-lactamase inhibitors, Bioorg. Med. Chem. Lett., 27, 5225-5229, doi: 10.1016/j.bmcl.2017.10.038.

85. Hinchliffe, P., Tanner, C. A., Krismanich, A. P., Labbé, G., Goodfellow, V. J., et al. (2018) Structural and kinetic studies of the potent inhibition of metallo-β-lactamases by 6-phosphonomethylpyridine-2-carboxylates, Biochemistry, 57, 1880-1892, doi: 10.1021/acs.biochem.7b01299.

86. Kurosaki, H., Yamaguchi, Y., Higashi, T., Soga, K., Matsueda, S., Yumoto, H., Misumi, S., Yamagata, Y., Arakawa, Y., and Goto, M. (2005) Irreversible inhibition of metallo-β-lactamase (IMP-1) by 3-(3-mercaptopropionylsulfanyl)-propionic acid pentafluorophenyl ester, Angewandte Chemie, 44, 3861-3864, doi: 10.1002/anie.200500835.

87. Chiou, J., Wan, S., Chan, K. F., So, P. K., He, D., Chan, E. W. C., Chan, T. H., Wong, K. Y., Tao, J., and Chen, S. (2015) Ebselen as a potent covalent inhibitor of New Delhi metallo-β-lactamase (NDM-1), Chem. Commun., 51, 9543-9546, doi: 10.1039/c5cc02594j.

88. Chen, C., Xiang, Y., Yang, K. W., Zhang, Y., Wang, W. M., Su, J. P., Ge, Y., and Liu, Y. (2018) A protein structure-guided covalent scaffold selectively targets the B1 and B2 subclass metallo-β-lactamases, Chem. Commun., 54, 4802-4805, doi: 10.1039/c8cc01067f.

89. Wang, R., Lai, T. P., Gao, P., Zhang, H., Ho, P. L.,Woo, P. C. Y., Ma, G., Kao, R. Y. T., Li, H., and Sun, H. (2018) Bismuth antimicrobial drugs serve as broad-spectrum metallo-β-lactamase inhibitors, Nat. Commun., 9, 1-12, doi: 10.1038/s41467-018-02828-6.

90. Papp-Wallace, K. M., Nguyen, N. Q., Jacobs, M. R., Bethel, C. R., Barnes, M. D., et al. (2018) Strategic approaches to overcome resistance against gram-negative pathogens using β-lactamase inhibitors and β-lactam enhancers: activity of three novel diazabicyclooctanes WCK 5153, Zidebactam (WCK 5107), and WCK 4234, J. Med. Chem., 61, 4067-4086, doi: 10.1021/acs.jmedchem.8b00091.

91. Beshnova, D. A., Carolan, C., Grigorenko, V. G., Rubtsova, M. Y., Gbekor, E., Lewis, J., Lamzin, V. S., and Egorov, A. M. (2019) Scaffold hopping computational approach for searching novel β-lactamase inhibitors, Biomed. Khim., 65, 468-476, doi: 10.18097/pbmc20196506468.

92. Grigorenko, V. G., Andreeva, I. P., Rubtsova, M. Y., Deygen, I. M., Antipin, R. L., et al. (2017) Novel non-β-lactam inhibitor of β-lactamase TEM-171 based on acylated phenoxyaniline, Biochimie, 132, 45-53, doi: 10.1016/j.biochi.2016.10.011.

93. Antipin, R. L., Beshnova, D. A., Petrov, R. A., Shiryaeva, A. S., Andreeva, I. P., et al. (2017) Synthesis, SAR and molecular docking study of novel non-β-lactam inhibitors of TEM type β-lactamase, Bioorg. Med. Chem. Lett., 27, 1588-1592, doi: 10.1016/j.bmcl.2017.02.025.

94. Papaleo, E., Saladino, G., Lambrughi, M., Lindorff-Larsen, K., Gervasio, F. L., and Nussinov, R. (2016) The role of protein loops and linkers in conformational dynamics and allostery, Chem. Rev., 116, 6391-6423, doi: 10.1021/acs.chemrev.5b00623.

95. Egorov, A., Rubtsova, M., Grigorenko, V., Uporov, I., and Veselovsky, A. (2019) The role of the Ω-loop in regulation of the catalytic activity of TEM-type β-lactamases, Biomolecules, 9, doi: 10.3390/biom9120854.

96. Fast, W., and Sutton, L. D. (2013) Metallo-β-lactamase: inhibitors and reporter substrates, Biochim. Biophys. Acta, 1834, 1648-1659, doi: 10.1016/j.bbapap.2013.04.024.

97. Payne, D. J., Hueso-Rodrнguez, J. A., Boyd, H., Concha, N. O., Janson, C. A., et al. (2002) Identification of a series of tricyclic natural products as potent broad-spectrum inhibitors of metallo-β-lactamases, Antimicrob. Agents Chemother., 46, 1880-1886, doi: 10.1128/AAC.46.6.1880-1886.2002.

98. Sohier, J. S., Laurent, C., Chevigné, A., Pardon, E., Srinivasan, V., et al. (2013) Allosteric inhibition of VIM metallo-β-lactamases by a camelid nanobody, Biochem. J., 450, 477-486, doi: 10.1042/BJ20121305.

99. Ouyang, X., Chang, Y. N., Yang, K. W., Wang, W. M., Bai, J. J., et al. (2017) A DNA nanoribbon as a potent inhibitor of metallo-β-lactamases, Chem. Commun., 53, 8878-8881, doi: 10.1039/c7cc04483f.