БИОХИМИЯ, 2020, том 85, вып. 9, с. 1213–1239

УДК 577.112.7

Амилоидные и амилоидоподобные агрегаты: многообразие и кризис термина*

Обзор

© 2020 А.Б. Матиив 1, Н.П. Трубицина 1, А.Г. Матвеенко 1, Ю.А. Барбитов 1,2, Г.А. Журавлева 1,3, С.А. Бондарев 1,3**

Санкт-Петербургский государственный университет, биологический факультет, кафедра генетики и биотехнологии, 199034 Санкт-Петербург, Россия; электронная почта: stanislavspbgu@gmail.com, s.bondarev@spbu.ru

Институт биоинформатики, 197342 Санкт-Петербург, Россия

Санкт-Петербургский государственный университет, биологический факультет, научная лаборатория биологии амилоидов, 199034 Санкт-Петербург, Россия

Поступила в редакцию 16.07.2020
После доработки 05.08.2020
Принята к публикации 05.08.2020

DOI: 10.31857/S0320972520090043

КЛЮЧЕВЫЕ СЛОВА: амилоиды, амилоидоподобные агрегаты, кросс-β структура, прионы.

Аннотация

Активное накопление данных о новых амилоидах, которое сейчас происходит, размывает границы термина «амилоид». В настоящий момент он чаще всего используется для обозначения агрегатов с кросс-β структурой. При этом для ряда амилоидов показаны и другие необычные свойства, среди которых высокая устойчивость к действию детергентов и протеаз, взаимодействие со специфическими красителями, а также способность индуцировать переход некоторых белков из растворимой формы в агрегированную. Эти же черты обнаруживают и у агрегатов, лишенных кросс-β структуры, которые принято называть амилоидоподобными и объединять в одну группу, хотя их разнообразие очень велико. Мы собрали и систематизировали информацию о свойствах более двухсот известных амилоидов и амилоидоподобных белков, уделяя особое внимание наиболее противоречивым примерам. В частности, ряд белков в составе немембранных органелл формирует агрегаты с кросс-β структурой, морфологически неотличимые от других амилоидов, но полностью растворяющиеся в присутствии детергентов. Такие парадоксы демонстрируют необходимость уточнения существующего определения термина «амилоид». С другой стороны, демонстрация разнообразия структур амилоидоподобных агрегатов показывает актуальность создания их классификации.

Сноски

* Статья на английском языке опубликована в режиме Open Access (открытого доступа) на сайте издательства Springer (https://link.springer.com/journal/10541), том 85, вып. 9, 2020.

** Адресат для корреспонденции.

Финансирование

Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований в рамках научного проекта № 19-14-50590.

Благодарности

Авторы благодарят профессора, д.б.н. А.П. Галкина (СПбГУ и ИОГен РАН) за критическое прочтение рукописи.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических норм

Настоящая статья не содержит описания каких-либо исследований с участием людей или животных в качестве объектов.

Дополнительные материалы

Приложение к статье на английском языке опубликовано на сайте журнала «Biochemistry» (Moscow) (http://protein.bio.msu.ru/biokhimiya/) и на сайте издательства Springer (https://link.springer.com/journal/10541), том 85, вып. 9, 2020.

Список литературы

1. Kyle, R. A. (2001) Amyloidosis: a convoluted story, Br. J. Haematol., 114, 529-538.

2. Tanskanen, M. (2013) “Amyloid” – historical aspects, in Amyloidosis (Feng, D., ed.), IntechOpen, pp. 3-24. 3. Yakupova, E. I., Bobyleva, L. G., Vikhlyantsev, I. M., and Bobylev, A. G. (2019) Congo red and amyloids: history and relationship, Biosci. Rep., 39, BSR20181415.

4. Iadanza, M. G., Jackson, M. P., Hewitt, E. W., Ranson, N. A., and Radford, S. E. (2018) A new era for understanding amyloid structures and disease, Nat. Rev. Mol. Cell Biol., 19, 755-773.

5. Kushnirov, V. V, Dergalev, A. A., and Alexandrov, A. I. (2020) Proteinase K resistant cores of prions and amyloids, Prion, 14, 11-19.

6. Kushnirov, V. V., Alexandrov, I. M., Mitkevich, O. V., Shkundina, I. S., and Ter-Avanesyan, M. D. (2006) Purification and analysis of prion and amyloid aggregates, Methods, 39, 50-55.

7. Dear, A. J., Michaels, T. C. T., Meisl, G., Klenerman, D., Wu, S., Perrett, S., Linse, S., Dobson, C. M., and Knowles, T. P. J. (2020) Kinetic diversity of amyloid oligomers, Proc. Natl. Acad. Sci. USA, 117, 12087-12094.

8. Prusiner, S. B. (1987) Prions and neurodegenerative diseases, N. Engl. J. Med., 317, 1571-1581.

9. Wickner, R. (1994) [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae, Science, 264, 566-569.

10. Osherovich, L. Z., and Weissman, J. S. (2001) Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast [PSI+] prion, Cell, 106, 183-194.

11. Alberti, S., Halfmann, R., King, O., Kapila, A., and Lindquist, S. (2009) A systematic survey identifies prions and illuminates sequence features of prionogenic proteins, Cell, 137, 146-158.

12. Chandramowlishwaran, P., Sun, M., Casey, K. L., Romanyuk, A. V., Grizel, A. V., Sopova, J. V., Rubel, A. A., Nussbaum-Krammer, C., Vorberg, I. M., and Chernoff, Y. O. (2018) Mammalian amyloidogenic proteins promote prion nucleation in yeast, J. Biol. Chem., 293, 3436-3450.

13. Sivanathan, V., and Hochschild, A. (2013) A bacterial export system for generating extracellular amyloid aggregates, Nat. Protoc., 8, 1381-1390.

14. Nizhnikov, A. A., Antonets, K. S., and Inge-Vechtomov, S. G. (2015) Amyloids: from pathogenesis to function, Biochemistry (Moscow), 80, 1127-1144.

15. Benson, M. D., Buxbaum, J. N., Eisenberg, D. S., Merlini, G., Saraiva, M. J. M., Sekijima, Y., Sipe, J. D., and Westermark, P. (2018) Amyloid nomenclature 2018: recommendations by the International Society of Amyloidosis (ISA) nomenclature committee, Amyloid, 25, 215-219.

16. Sergeeva, A. V., and Galkin, A. P. (2020) Functional amyloids of eukaryotes: criteria, classification, and biological significance, Curr. Genet., doi: 10.1007/s00294-020-01079-7.

17. Galkin, A. P., Velizhanina, M. E., Sopova, Y. V., Shenfeld, A. A., and Zadorsky, S. P. (2018) Prions and non-infectious amyloids of mammals – similarities and differences, Biochemistry (Moscow), 83, 1184-1195.

18. Baxa, U. (2008) Structural basis of infectious and non-infectious amyloids, Curr. Alzheimer Res., 5, 308-318.

19. Shewmaker, F., McGlinchey, R. P., and Wickner, R. B. (2011) Structural insights into functional and pathological amyloid, J. Biol. Chem., 286, 16533-16540.

20. Chiti, F., and Dobson, C. M. (2009) Amyloid formation by globular proteins under native conditions, Nat. Chem. Biol., 5, 15-22.

21. Khurana, R., Uversky, V. N., Nielsen, L., and Fink, A. L. (2001) Is Congo red an amyloid-specific dye? J. Biol. Chem., 276, 22715-22721.

22. Westermark, G. T., Johnson, K. H., and Westermark, P. (1999) Staining methods for identification of amyloid in tissue, Methods Enzymol., 309, 3-25.

23. Tayeb-Fligelman, E., Tabachnikov, O., Moshe, A., Goldshmidt-Tran, O., Sawaya, M. R., Coquelle, N., Colletier, J.-P., and Landau, M. (2017) The cytotoxic Staphylococcus aureus PSMα3 reveals a cross-α amyloid-like fibril, Science, 355, 831-833.

24. Brundin, P., Melki, R., and Kopito, R. (2010) Prion-like transmission of protein aggregates in neurodegenerative diseases, Nat. Rev. Mol. Cell Biol., 11, 301-307.

25. Chiti, F., and Dobson, C. M. (2017) Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade, Annu. Rev. Biochem., 86, 27-68.

26. Knowles, T. P. J., Vendruscolo, M., and Dobson, C. M. (2014) The amyloid state and its association with protein misfolding diseases, Nat. Rev. Mol. Cell Biol., 15, 384-396.

27. Pepys, M. B. (2006) Amyloidosis, Annu. Rev. Med., 57, 223-241.

28. Chiti, F., and Dobson, C. M. (2006) Protein misfolding, functional amyloid, and human disease, Annu. Rev. Biochem., 75, 333-366.

29. Andersson, K., Olofsson, A., Nielsen, E. H., Svehag, S.-E., and Lundgren, E. (2002) Only amyloidogenic intermediates of transthyretin induce apoptosis, Biochem. Biophys. Res. Commun., 294, 309-314.

30. Hartley, D. M., Walsh, D. M., Ye, C. P., Diehl, T., Vasquez, S., Vassilev, P. M., Teplow, D. B., and Selkoe, D. J. (1999) Protofibrillar intermediates of amyloid β-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons, J. Neurosci., 19, 8876-8884.

31. Shi, J., Guan, J., Jiang, B., Brenner, D. A., del Monte, F., Ward, J. E., Connors, L. H., Sawyer, D. B., Semigran, M. J., Macgillivray, T. E., Seldin, D. C., Falk, R., and Liao, R. (2010) Amyloidogenic light chains induce cardiomyocyte contractile dysfunction and apoptosis via a non-canonical p38 MAPK pathway, Proc. Natl. Acad. Sci., 107, 4188-4193.

32. Simoneau, S., Rezaei, H., Salès, N., KaiserSchulz, G., LefebvreRoque, M., Vidal, C., Fournier, J.-G., Comte, J., Wopfner, F., Grosclaude, J., Schätzl, H., and Lasmézas, C. I. (2007) In vitro and in vivo neurotoxicity of prion protein oligomers, PLoS Pathog., 3, e125.

33. Campioni, S., Mannini, B., Zampagni, M., Pensalfini, A., Parrini, C., Evangelisti, E., Relini, A., Stefani, M., Dobson, C. M., Cecchi, C., and Chiti, F. (2010) A causative link between the structure of aberrant protein oligomers and their toxicity, Nat. Chem. Biol., 6, 140-147.

34. Milani, P., Merlini, G., and Palladini, G. (2018) Light chain amyloidosis, Infect. Dis., 10, e2018022.

35. Merlini, G., Dispenzieri, A., Sanchorawala, V., Schönland, S. O., Palladini, G., Hawkins, P. N., and Gertz, M. A. (2018) Systemic immunoglobulin light chain amyloidosis, Nat. Rev. Dis. Prim., 4, 38.

36. Nasr, S. H., Said, S. M., Valeri, A. M., Sethi, S., Fidler, M. E., Cornell, L. D., Gertz, M. A., Dispenzieri, A., Buadi, F. K., Vrana, J. A., Theis, J. D., Dogan, A., and Leung, N. (2013) The diagnosis and characteristics of renal heavy-chain and heavy/light-chain amyloidosis and their comparison with renal light-chain amyloidosis, Kidney Int., 83, 463-470.

37. Ando, Y., Coelho, T., Berk, J. L., Cruz, M. W., Ericzon, B.-G., Ikeda, S., Lewis, W. D., Obici, L., Planté-Bordeneuve, V., Rapezzi, C., Said, G., and Salvi, F. (2013) Guideline of transthyretin-related hereditary amyloidosis for clinicians, Orphanet J. Rare Dis., 8, 31.

38. Lu, J., Yu, Y., Zhu, I., Cheng, Y., and Sun, P. D. (2014) Structural mechanism of serum amyloid A-mediated inflammatory amyloidosis, Proc. Natl. Acad. Sci., 111, 5189-5194.

39. Morris, A. D., Smith, R. N., and Stone, J. R. (2019) The pathology and changing epidemiology of dialysis-related cardiac beta-2 microglobulin amyloidosis, Cardiovasc. Pathol., 42, 30-35.

40. Eriksson, M., Schönland, S., Yumlu, S., Hegenbart, U., von Hutten, H., Gioeva, Z., Lohse, P., Büttner, J., Schmidt, H., and Röcken, C. (2009) Hereditary apolipoprotein AI-associated amyloidosis in surgical pathology specimens, J. Mol. Diagnostics, 11, 257-262.

41. Gerasimova, E. M., Fedotov, S. A., Kachkin, D. V., Vashukova, E. S., Glotov, A. S., Chernoff, Y. O., and Rubel, A. A. (2019) Protein misfolding during pregnancy: new approaches to preeclampsia diagnostics, Int. J. Mol. Sci., 20, 6183.

42. Srinivasan, R., Jones, E. M., Liu, K., Ghiso, J., Marchant, R. E., and Zagorski, M. G. (2003) pH-dependent amyloid and protofibril formation by the ABri peptide of familial British dementia, J. Mol. Biol., 333, 1003-1023.

43. Ghiso, J. A., Holton, J., Miravalle, L., Calero, M., Lashley, T., Vidal, R., Houlden, H., Wood, N., Neubert, T. A., Rostagno, A., Plant, G., Révész, T., and Frangione, B. (2001) Systemic amyloid deposits in familial British dementia, J. Biol. Chem., 276, 43909-43914.

44. Srinivasan, R., Marchant, R. E., and Zagorski, M. G. (2004) ABri peptide associated with familial British dementia forms annular and ring-like protofibrillar structures, Amyloid, 11, 10-13.

45. Coomaraswamy, J., Kilger, E., Wölfing, H., Schäfer, C., Kaeser, S. A., Wegenast-Braun, B. M., Hefendehl, J. K., Wolburg, H., Mazzella, M., Ghiso, J., Goedert, M., Akiyama, H., Garcia-Sierra, F., Wolfer, D. P., Mathews, P. M., and Jucker, M. (2010) Modeling familial Danish dementia in mice supports the concept of the amyloid hypothesis of Alzheimer’s disease, Proc. Natl. Acad. Sci. USA, 107, 7969-7974.

46. Vidal, R., Revesz, T., Rostagno, A., Kim, E., Holton, J. L., Bek, T., Bojsen-Moller, M., Braendgaard, H., Plant, G., Ghiso, J., and Frangione, B. (2000) A decamer duplication in the 3′ region of the BRI gene originates an amyloid peptide that is associated with dementia in a Danish kindred, Proc. Natl. Acad. Sci. USA, 97, 4920-4925.

47. Davies, H. A., Wilkinson, M. C., Gibson, R. P., and Middleton, D. A. (2014) Expression and purification of the aortic amyloid polypeptide medin, Protein Expr. Purif., 98, 32-37.

48. Khurana, R., Agarwal, A., Bajpai, V. K., Verma, N., Sharma, A. K., Gupta, R. P., and Madhusudan, K. P. (2004) Unraveling the amyloid associated with human medullary thyroid carcinoma, Endocrinology, 145, 5465-5470.

49. Pedrote, M. M., Motta, M. F., Ferretti, G. D. S., Norberto, D. R., Spohr, T. C. L. S., Lima, F. R. S., Gratton, E., Silva, J. L., and de Oliveira, G. A. P. (2020) Oncogenic gain of function in glioblastoma is linked to mutant p53 amyloid oligomers, iScience, 23, 100820.

50. Levine, S. N., Ishaq, S., Nanda, A., Wilson, J. D., and Gonzalez-Toledo, E. (2013) Occurrence of extensive spherical amyloid deposits in a prolactin-secreting pituitary macroadenoma: a radiologic-pathologic correlation, Ann. Diagn. Pathol., 17, 361-366.

51. Chuang, E., Hori, A. M., Hesketh, C. D., and Shorter, J. (2018) Amyloid assembly and disassembly, J. Cell Sci., 131, jcs189928.

52. Millucci, L., Ghezzi, L., Bernardini, G., Braconi, D., Tanganelli, P., and Santucci, A. (2012) Prevalence of isolated atrial amyloidosis in young patients affected by congestive heart failure, Sci. World J., 2012, 1-8.

53. Linke, R. P., Joswig, R., Murphy, C. L., Wang, S., Zhou, H., Gross, U., Rocken, C., Westermark, P., Weiss, D. T., and Solomon, A. (2005) Senile seminal vesicle amyloid is derived from semenogelin I, J. Lab. Clin. Med., 145, 187-193.

54. Yanamandra, K., Alexeyev, O., Zamotin, V., Srivastava, V., Shchukarev, A., Brorsson, A.-C., Tartaglia, G. G., Vogl, T., Kayed, R., Wingsle, G., Olsson, J., Dobson, C. M., Bergh, A., Elgh, F., and Morozova-Roche, L. A. (2009) Amyloid formation by the pro-inflammatory S100A8/A9 proteins in the ageing prostate, PLoS One, 4, e5562.

55. Caubet, C., Bousset, L., Clemmensen, O., Sourigues, Y., Bygum, A., Chavanas, S., Coudane, F., Hsu, C., Betz, R. C., Melki, R., Simon, M., and Serre, G. (2010) A new amyloidosis caused by fibrillar aggregates of mutated corneodesmosin, FASEB J., 24, 3416-3426.

56. Miura, Y., Harumiya, S., Ono, K., Fujimoto, E., Akiyama, M., Fujii, N., Kawano, H., Wachi, H., and Tajima, S. (2013) Galectin-7 and actin are components of amyloid deposit of localized cutaneous amyloidosis, Exp. Dermatol., 22, 36-40.

57. Inoue, K., Takahashi, M., Hamamoto, Y., Muto, M., and Ishihara, T. (2000) An immunohistochemical study of cytokeratins in skin-limited amyloidosis, Amyloid, 7, 259-265.

58. Ozawa, D., Kaji, Y., Yagi, H., Sakurai, K., Kawakami, T., Naiki, H., and Goto, Y. (2011) Destruction of amyloid fibrils of keratoepithelin peptides by laser irradiation coupled with amyloid-specific thioflavin T, J. Biol. Chem., 286, 10856-10863.

59. Ando, Y., Nakamura, M., Kai, H., Katsuragi, S., Terazaki, H., Nozawa, T., Okuda, T., Misumi, S., Matsunaga, N., Hata, K., Tajiri, T., Shoji, S., Yamashita, T., Haraoka, K., Obayashi, K., Matsumoto, K., Ando, M., and Uchino, M. (2002) A novel localized amyloidosis associated with lactoferrin in the cornea, Lab. Invest., 82, 757-766.

60. Gupta, Y., Singla, G., and Singla, R. (2015) Insulin-derived amyloidosis, Indian J. Endocrinol. Metab., 19, 174.

61. D’Souza, A., Theis, J. D., Vrana, J. A., and Dogan, A. (2014) Pharmaceutical amyloidosis associated with subcutaneous insulin and enfuvirtide administration, Amyloid, 21, 71-75.

62. Chen, G., Xu, T., Yan, Y., Zhou, Y., Jiang, Y., Melcher, K., and Xu, H. E. (2017) Amyloid beta: structure, biology and structure-based therapeutic development, Acta Pharmacol. Sin., 38, 1205-1235.

63. Murphy, M. P., and LeVine, H. (2010) Alzheimer′s disease and the amyloid-β peptide, J. Alzheimer’s Dis., 19, 311-323.

64. Qiang, W., Yau, W.-M., Lu, J.-X., Collinge, J., and Tycko, R. (2017) Structural variation in amyloid-β fibrils from Alzheimer’s disease clinical subtypes, Nature, 541, 217-221.

65. Giasson, B. I., Lee, V. M.-Y., and Trojanowski, J. Q. (2003) Interactions of amyloidogenic proteins, Neuromolecular Med., 4, 49-58.

66. Lim, S., Haque, M. M., Kim, D., Kim, D. J., and Kim, Y. K. (2014) Cell-based models to investigate Tau aggregation, Comput. Struct. Biotechnol. J., 12, 7-13.

67. Kim, W. S., Kågedal, K., and Halliday, G. M. (2014) Alpha-synuclein biology in Lewy body diseases, Alzheimer’s Res. Ther., 6, 73.

68. Goedert, M., Jakes, R., and Spillantini, M. G. (2017) The synucleinopathies: twenty years on, J. Parkinson’s Dis., 7, S51-S69.

69. Mead, S., and Reilly, M. M. (2015) A new prion disease: relationship with central and peripheral amyloidoses, Nat. Rev. Neurol., 11, 90-97.

70. Pansarasa, O., Bordoni, M., Diamanti, L., Sproviero, D., Gagliardi, S., and Cereda, C. (2018) SOD1 in amyotrophic lateral sclerosis: “ambivalent” behavior connected to the disease, Int. J. Mol. Sci., 19, 1345.

71. Dragoš, A., Kovács, Á. T., and Claessen, D. (2017) The role of functional amyloids in multicellular growth and development of gram-positive bacteria, Biomolecules, 7, 60.

72. Valsecchi, I., Dupres, V., Stephen-Victor, E., Guijarro, J. I., Gibbons, J., Beau, R., Bayry, J., Coppee, J.-Y., Lafont, F., Latgé, J.-P., and Beauvais, A. (2017) Role of hydrophobins in Aspergillus fumigatus, J. Fungi, 4, 2.

73. Pham, C. L. L., Rey, A., Lo, V., Soulès, M., Ren, Q., Meisl, G., Knowles, T. P. J., Kwan, A. H., and Sunde, M. (2016) Self-assembly of MPG1, a hydrophobin protein from the rice blast fungus that forms functional amyloid coatings, occurs by a surface-driven mechanism, Sci. Rep., 6, 25288.

74. Lo, V. C., Ren, Q., Pham, C. L. L., Morris, V. K., Kwan, A. H., and Sunde, M. (2014) Fungal hydrophobin proteins produce self-assembling protein films with diverse structure and chemical stability, Nanomater., 4, 827-843.

75. Morris, V. K., Ren, Q., Macindoe, I., Kwan, A. H., Byrne, N., and Sunde, M. (2011) Recruitment of class I hydrophobins to the air:water interface initiates a multi-step process of functional amyloid formation, J. Biol. Chem., 286, 15955-15963.

76. Rauceo, J. M., Gaur, N. K., Lee, K.-G., Edwards, J. E., Klotz, S. A., and Lipke, P. N. (2004) Global cell surface conformational shift mediated by a Candida albicans adhesin, Infect. Immun., 72, 4948-4955.

77. Otoo, H. N., Lee, K. G., Qiu, W., and Lipke, P. N. (2008) Candida albicans Als adhesins have conserved amyloid-forming sequences, Eukaryot. Cell, 7, 776-782.

78. Dueholm, M. S., Albertsen, M., Otzen, D., and Nielsen, P. H. (2012) Curli functional amyloid systems are phylogenetically widespread and display large diversity in operon and protein structure, PLoS One, 7, e51274.

79. Blanco, L. P., Evans, M. L., Smith, D. R., Badtke, M. P., and Chapman, M. R. (2012) Diversity, biogenesis and function of microbial amyloids, Trends Microbiol., 20, 66-73.

80. Taglialegna, A., Navarro, S., Ventura, S., Garnett, J. A., Matthews, S., Penades, J. R., Lasa, I., and Valle, J. (2016) Staphylococcal Bap proteins build amyloid scaffold biofilm matrices in response to environmental signals, PLoS Pathog., 12, e1005711.

81. Alteri, C. J., Xicohténcatl-Cortes, J., Hess, S., Caballero-Olin, G., Girón, J. A., and Friedman, R. L. (2007) Mycobacterium tuberculosis produces pili during human infection, Proc. Natl. Acad. Sci. USA, 104, 5145-5150.

82. Besingi, R. N., Wenderska, I. B., Senadheera, D. B., Cvitkovitch, D. G., Long, J. R., Wen, Z. T., and Brady, L. J. (2017) Functional amyloids in Streptococcus mutans, their use as targets of biofilm inhibition and initial characterization of SMU_63c, Microbiology, 163, 488-501.

83. Collinson, S. K., Emödy, L., Müller, K. H., Trust, T. J., and Kay, W. W. (1991) Purification and characterization of thin, aggregative fimbriae from Salmonella enteritidis, J. Bacteriol., 173, 4773-4781.

84. Doran, J. L., Collinson, S. K., Burian, J., Sarlós, G., Todd, E. C., Munro, C. K., Kay, C. M., Banser, P. A., Peterkin, P. I., and Kay, W. W. (1993) DNA-based diagnostic tests for Salmonella species targeting agfA, the structural gene for thin, aggregative fimbriae, J. Clin. Microbiol., 31, 2263-2273.

85. Wang, Y., Jiang, J., Gao, Y., Sun, Y., Dai, J., Wu, Y., Qu, D., Ma, G., and Fang, X. (2018) Staphylococcus epidermidis small basic protein (Sbp) forms amyloid fibrils, consistent with its function as a scaffolding protein in biofilms, J. Biol. Chem., 293, 14296-14311.

86. Ling, S., Li, C., Adamcik, J., Shao, Z., Chen, X., and Mezzenga, R. (2014) Modulating materials by orthogonally oriented β-strands: composites of amyloid and silk fibroin fibrils, Adv. Mater., 26, 4569-4574.

87. Humenik, M., Smith, A. M., Arndt, S., and Scheibel, T. (2015) Ion and seed dependent fibril assembly of a spidroin core domain, J. Struct. Biol., 191, 130-138.

88. Berthelot, K., Lecomte, S., Estevez, Y., Coulary-Salin, B., and Peruch, F. (2014) Homologous Hevea brasiliensis REF (Hevb1) and SRPP (Hevb3) present different auto-assembling, Biochim. Biophys. Acta, 1844, 473-485.

89. Berthelot, K., Lecomte, S., Estevez, Y., Coulary-Salin, B., Bentaleb, A., Cullin, C., Deffieux, A., and Peruch, F. (2012) Rubber elongation factor (REF), a major allergen component in Hevea brasiliensis latex has amyloid properties, PLoS One, 7, e48065.

90. Li, J., McQuade, T., Siemer, A. B., Napetschnig, J., Moriwaki, K., Hsiao, Y.-S., Damko, E., Moquin, D., Walz, T., McDermott, A., Chan, F. K.-M., and Wu, H. (2012) The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis, Cell, 150, 339-350.

91. Wu, X.-N., Yang, Z.-H., Wang, X.-K., Zhang, Y., Wan, H., Song, Y., Chen, X., Shao, J., and Han, J. (2014) Distinct roles of RIP1-RIP3 hetero- and RIP3-RIP3 homo-interaction in mediating necroptosis, Cell Death Differ., 21, 1709-1720.

92. Kajava, A. V, Klopffleisch, K., Chen, S., and Hofmann, K. (2014) Evolutionary link between metazoan RHIM motif and prion-forming domain of fungal heterokaryon incompatibility factor HET-s/HET-s, Sci. Rep., 4, 7436.

93. Liebman, S. W., and Chernoff, Y. O. (2012) Prions in yeast, Genetics, 191, 1041-1072.

94. Seuring, C., Greenwald, J., Wasmer, C., Wepf, R., Saupe, S. J., Meier, B. H., and Riek, R. (2012) The mechanism of toxicity in HET-S/HET-s prion incompatibility, PLoS Biol., 10, e1001451.

95. Loquet, A., and Saupe, S. J. (2017) Diversity of amyloid motifs in NLR signaling in fungi, Biomolecules, 7, 38.

96. Daskalov, A., Habenstein, B., Sabaté, R., Berbon, M., Martinez, D., Chaignepain, S., Coulary-Salin, B., Hofmann, K., Loquet, A., and Saupe, S. J. (2016) Identification of a novel cell death-inducing domain reveals that fungal amyloid-controlled programmed cell death is related to necroptosis, Proc. Natl. Acad. Sci. USA, 113, 2720-2725.

97. Kleino, A., Ramia, N. F., Bozkurt, G., Shen, Y., Nailwal, H., Huang, J., Napetschnig, J., Gangloff, M., Chan, F. K.-M., Wu, H., Li, J., and Silverman, N. (2017) Peptidoglycan-sensing receptors trigger the formation of functional amyloids of the adaptor protein Imd to initiate Drosophila NF-κB signaling, Immunity, 47, 635-647.e6.

98. Gonçalves, A. P., Heller, J., Daskalov, A., Videira, A., and Glass, N. L. (2017) Regulated forms of cell death in fungi, Front. Microbiol., 8, 1837.

99. Hafner-Bratkovič, I. (2017) Prions, prionoid complexes and amyloids: the bad, the good and something in between, Swiss Med. Wkly., 147, w14424.

100. Mojsoska, B., and Jenssen, H. (2015) Peptides and peptidomimetics for antimicrobial drug design, Pharmaceuti-cals (Basel)., 8, 366-415.

101. Lyu, Y., Fitriyanti, M., and Narsimhan, G. (2019) Nucle-ation and growth of pores in 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/cholesterol bilayer by antimicrobial peptides melittin, its mutants and cecropin P1, Colloids Surf. B Biointerfaces, 173, 121-127.

102. Gazit, E., Miller, I. R., Biggin, P. C., Sansom, M. S., and Shai, Y. (1996) Structure and orientation of the mammalian antibacterial peptide cecropin P1 within phospholipid membranes, J. Mol. Biol., 258, 860-870.

103. Sood, R., Domanov, Y., Pietiäinen, M., Kontinen, V. P., and Kinnunen, P. K. J. (2008) Binding of LL-37 to model biomembranes: insight into target vs host cell recognition, Biochim. Biophys. Acta, 1778, 983-996.

104. Engelberg, Y., and Landau, M. (2020) The Human LL-37(17-29) Antimicrobial peptide reveals a functional supramolecular nanostructure, bioRxiv, doi: 10.1101/2020.02.04.933432.

105. Auvynet, C., El Amri, C., Lacombe, C., Bruston, F., Bourdais, J., Nicolas, P., and Rosenstein, Y. (2008) Structural requirements for antimicrobial versus chemoattractant activities for dermaseptin S9, FEBS J., 275, 4134-4151.

106. Caillon, L., Killian, J. A., Lequin, O., and Khemtémourian, L. (2013) Biophysical investigation of the membrane-disrupting mechanism of the antimicrobial and amyloid-like peptide dermaseptin S9, PLoS One, 8, e75528.

107. Gössler-Schöfberger, R., Hesser, G., Muik, M., Wechselberger, C., and Jilek, A. (2009) An orphan dermaseptin from frog skin reversibly assembles to amyloid-like aggregates in a pH-dependent fashion, FEBS J., 276, 5849-5859.

108. Zasloff, M. (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor, Proc. Natl. Acad. Sci. USA, 84, 5449-5453.

109. Zasloff, M., Martin, B., and Chen, H. C. (1988) Antimicrobial activity of synthetic magainin peptides and several analogues, Proc. Natl. Acad. Sci. USA, 85, 910-913.

110. Cruciani, R. A., Barker, J. L., Zasloff, M., Chen, H. C., and Colamonici, O. (1991) Antibiotic magainins exert cytolytic activity against transformed cell lines through channel formation, Proc. Natl. Acad. Sci. USA, 88, 3792-3796.

111. Baker, M. A., Maloy, W. L., Zasloff, M., and Jacob, L. S. (1993) Anticancer efficacy of Magainin2 and analogue peptides, Cancer Res., 53, 3052-3057.

112. Ludtke, S., He, K., and Huang, H. (1995) Membrane thinning caused by magainin 2, Biochemistry, 34, 16764-16769.

113. Jang, H., Arce, F. T., Mustata, M., Ramachandran, S., Capone, R., Nussinov, R., and Lal, R. (2011) Antimicrobial protegrin-1 forms amyloid-like fibrils with rapid kinetics suggesting a functional link, Biophys. J., 100, 1775-1783.

114. Gour, S., Kumar, V., Singh, A., Gadhave, K., Goyal, P., Pandey, J., Giri, R., and Yadav, J. K. (2019) Mammalian antimicrobial peptide protegrin-4 self assembles and forms amyloid-like aggregates: Assessment of its functional relevance, J. Pept. Sci., 25, e3151.

115. Bieler, S., Estrada, L., Lagos, R., Baeza, M., Castilla, J., and Soto, C. (2005) Amyloid formation modulates the biological activity of a bacterial protein, J. Biol. Chem., 280, 26880-26885.

116. Chu, H., Pazgier, M., Jung, G., Nuccio, S.-P., Castillo, P. A., de Jong, M. F., Winter, M. G., Winter, S. E., Wehkamp, J., Shen, B., Salzman, N. H., Underwood, M. A., Tsolis, R. M., Young, G. M., Lu, W., Lehrer, R. I., Bäumler, A. J., and Bevins, C. L. (2012) Human α-defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets, Science, 337, 477-481.

117. Gour, S., Kaushik, V., Kumar, V., Bhat, P., Yadav, S. C., and Yadav, J. K. (2016) Antimicrobial peptide (Cn-AMP2) from liquid endosperm of Cocos nucifera forms amyloid-like fibrillar structure, J. Pept. Sci., 22, 201-207.

118. Wang, G. (2008) Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles, J. Biol. Chem., 283, 32637-32643.

119. Fahrner, R. L., Dieckmann, T., Harwig, S. S., Lehrer, R. I., Eisenberg, D., and Feigon, J. (1996) Solution structure of protegrin-1, a broad-spectrum antimicrobial peptide from porcine leukocytes, Chem. Biol., 3, 543-550.

120. De Felice, F. G., Vieira, M. N. N., Meirelles, M. N. L., Morozova-Roche, L. A., Dobson, C. M., and Ferreira, S. T. (2004) Formation of amyloid aggregates from human lysozyme and its disease-associated variants using hydrostatic pressure, FASEB J., 18, 1099-1101.

121. Majumdar, A., Cesario, W. C., White-Grindley, E., Jiang, H., Ren, F., Khan, M. R., Li, L., Choi, E. M.-L., Kannan, K., Guo, F., Unruh, J., Slaughter, B., and Si, K. (2012) Critical role of amyloid-like oligomers of Drosophila Orb2 in the persistence of memory, Cell, 148, 515-529.

122. Si, K., Choi, Y.-B., White-Grindley, E., Majumdar, A., and Kandel, E. R. (2010) Aplysia CPEB can form prion-like multimers in sensory neurons that contribute to long-term facilitation, Cell, 140, 421-435.

123. Stephan, J. S., Fioriti, L., Lamba, N., Colnaghi, L., Karl, K., Derkatch, I. L., and Kandel, E. R. (2015) The CPEB3 protein is a functional prion that interacts with the actin cytoskeleton, Cell Rep., 11, 1772-1785.

124. Heinrich, S. U., and Lindquist, S. (2011) Protein-only mechanism induces self-perpetuating changes in the activity of neuronal Aplysia cytoplasmic polyadenylation element binding protein (CPEB), Proc. Natl. Acad. Sci. USA, 108, 2999-3004.

125. Hervas, R., Rau, M. J., Park, Y., Zhang, W., Murzin, A. G., Fitzpatrick, J. A. J., Scheres, S. H. W., and Si, K. (2020) Cryo-EM structure of a neuronal functional amyloid implicated in memory persistence in Drosophila, Science, 367, 1230-1234.

126. Sopova, J. V., Koshel, E. I., Belashova, T. A., Zadorsky, S. P., Sergeeva, A. V., Siniukova, V. A., Shenfeld, A. A., Velizhanina, M. E., Volkov, K. V., Nizhnikov, A. A., Kachkin, D. V., Gaginskaya, E. R., and Galkin, A. P. (2019) RNA-binding protein FXR1 is presented in rat brain in amyloid form, Sci. Rep., 9, 18983.

127. Caudron, F., and Barral, Y. (2013) A super-assembly of Whi3 encodes memory of deceptive encounters by single cells during yeast courtship, Cell, 155, 1244-1257.

128. Boke, E., Ruer, M., Wühr, M., Coughlin, M., Lemaitre, R., Gygi, S. P., Alberti, S., Drechsel, D., Hyman, A. A., and Mitchison, T. J. (2016) Amyloid-like self-assembly of a cellular compartment, Cell, 166, 637-650.

129. Iconomidou, V. A., Vriend, G., and Hamodrakas, S. J. (2000) Amyloids protect the silkmoth oocyte and embryo, FEBS Lett., 479, 141-145.

130. Iconomidou, V. A., Chryssikos, G. D., Gionis, V., Vriend, G., Hoenger, A., and Hamodrakas, S. J. (2001) Amyloid-like fibrils from an 18-residue peptide analogue of a part of the central domain of the B-family of silkmoth chorion proteins, FEBS Lett., 499, 268-273.

131. Iconomidou, V. A., Chryssikos, G. D., Gionis, V., Galanis, A. S., Cordopatis, P., Hoenger, A., and Hamodrakas, S. J. (2006) Amyloid fibril formation propensity is inherent into the hexapeptide tandemly repeating sequence of the central domain of silkmoth chorion proteins of the A-family, J. Struct. Biol., 156, 48-488.

132. Hamodrakas, S. J., Hoenger, A., and Iconomidou, V. A. (2004) Amyloid fibrillogenesis of silkmoth chorion protein peptide-analogues via a liquid-crystalline intermediate phase, J. Struct. Biol., 145, 226-235.

133. Louros, N. N., Petronikolou, N., Karamanos, T., Cordopatis, P., Iconomidou, V. A., and Hamodrakas, S. J. (2014) Structural studies of “aggregation-prone” peptide-analogues of teleostean egg chorion ZPB proteins, Biopolymers, 102, 427-436.

134. Egge, N., Muthusubramanian, A., and Cornwall, G. A. (2015) Amyloid properties of the mouse egg zona pellucida, PLoS One, 10, e0129907.

135. Louros, N. N., Chrysina, E. D., Baltatzis, G. E., Patsouris, E. S., Hamodrakas, S. J., and Iconomidou, V. A. (2016) A common “aggregation-prone” interface possibly participates in the self-assembly of human zona pellucida proteins, FEBS Lett., 590, 619-630.

136. Carpenter, K., Bell, R. B., Yunus, J., Amon, A., and Berchowitz, L. E. (2018) Phosphorylation-mediated clearance of amyloid-like assemblies in meiosis, Dev. Cell, 45, 392-405.e6.

137. Fowler, D. M., Koulov, A. V., Alory-Jost, C., Marks, M. S., Balch, W. E., and Kelly, J. W. (2006) Functional amyloid formation within mammalian tissue, PLoS Biol., 4, e6.

138. Hoashi, T., Muller, J., Vieira, W. D., Rouzaud, F., Kikuchi, K., Tamaki, K., and Hearing, V. J. (2006) The repeat domain of the melanosomal matrix protein PMEL17/GP100 is required for the formation of organellar fibers, J. Biol. Chem., 281, 21198-21208.

139. Watt, B., van Niel, G., Fowler, D. M., Hurbain, I., Luk, K. C., Stayrook, S. E., Lemmon, M. A., Raposo, G., Shorter, J., Kelly, J. W., and Marks, M. S. (2009) N-terminal domains elicit formation of functional Pmel17 amyloid fibrils, J. Biol. Chem., 284, 35543-35555.

140. McGlinchey, R. P., Shewmaker, F., McPhie, P., Monterroso, B., Thurber, K., and Wickner, R. B. (2009) The repeat domain of the melanosome fibril protein Pmel17 forms the amyloid core promoting melanin synthesis, Proc. Natl. Acad. Sci. USA, 106, 13731-13736.

141. Leonhardt, R. M., Vigneron, N., Hee, J. S., Graham, M., and Cresswell, P. (2013) Critical residues in the PMEL/Pmel17 N-terminus direct the hierarchical assembly of melanosomal fibrils, Mol. Biol. Cell, 24, 964-981.

142. Maji, S. K., Perrin, M. H., Sawaya, M. R., Jessberger, S., Vadodaria, K., Rissman, R. A., Singru, P. S., Nilsson, K. P. R., Simon, R., Schubert, D., Eisenberg, D., Rivier, J., Sawchenko, P., Vale, W., and Riek, R. (2009) Functional amyloids as natural storage of peptide hormones in pituitary secretory granules, Science, 325, 328-332.

143. Onoue, S., Ohshima, K., Debari, K., Koh, K., Shioda, S., Iwasa, S., Kashimoto, K., and Yajima, T. (2004) Mishandling of the therapeutic peptide glucagon generates cytotoxic amyloidogenic fibrils, Pharm. Res., 21, 1274-1283.

144. Gul, S., Bahadir, B., Dusak, A., Kalayci, M., Edebali, N., and Acikgoz, B. (2009) Spherical amyloid deposition in a prolactin-producing pituitary adenoma, Neuropathology, 29, 81-84.

145. Wickner, R. B., Edskes, H. K., Kryndushkin, D., McGlinchey, R., Bateman, D., and Kelly, A. (2011) Prion diseases of yeast: amyloid structure and biology, Semin. Cell Dev. Biol., 22, 469-475.

146. Newby, G. A., and Lindquist, S. (2013) Blessings in disguise: biological benefits of prion-like mechanisms, Trends Cell Biol., 23, 251-259.

147. Cox, B. S. (1965) ψ, a cytoplasmic suppressor of super-suppressor in yeast, Heredity, 20, 505521, doi: 10.1038/hdy.1965.65.

148. King, C.-Y., and Diaz-Avalos, R. (2004) Protein-only transmission of three yeast prion strains, Nature, 428, 319-323.

149. Sondheimer, N., and Lindquist, S. (2000) Rnq1: an epigenetic modifier of protein function in yeast, Mol. Cell, 5, 163-172.

150. Derkatch, I. L., Bradley, M. E., Hong, J. Y., and Liebman, S. W. (2001) Prions affect the appearance of other prions: the story of [PIN +], Cell, 106, 171-182.

151. Du, Z., Park, K.-W., Yu, H., Fan, Q., and Li, L. (2008) Newly identified prion linked to the chromatin-remodeling factor Swi1 in Saccharomyces cerevisiae, Nat. Genet., 40, 460-465.

152. Saifitdinova, A. F., Nizhnikov, A. A., Lada, A. G., Rubel, A. A., Magomedova, Z. M., Ignatova, V. V, Inge-Vechtomov, S. G., and Galkin, A. P. (2010) [NSI +]: a novel non-Mendelian nonsense suppressor determinant in Saccharomyces cerevisiae, Curr. Genet., 56, 467-478.

153. Nizhnikov, A. A., Ryzhova, T. A., Volkov, K. V., Zadorsky, S. P., Sopova, J. V., Inge-Vechtomov, S. G., and Galkin, A. P. (2016) Interaction of prions causes heritable traits in Saccharomyces cerevisiae, PLoS Genet., 12, e1006504.

154. Suzuki, G., Shimazu, N., and Tanaka, M. (2012) A yeast prion, Mod5, promotes acquired drug resistance and cell survival under environmental stress, Science, 336, 355-359.

155. Patel, B. K., Gavin-Smyth, J., and Liebman, S. W. (2009) The yeast global transcriptional co-repressor protein Cyc8 can propagate as a prion, Nat. Cell Biol., 11, 344-349.

156. Holmes, D. L., Lancaster, A. K., Lindquist, S., and Halfmann, R. (2013) Heritable remodeling of yeast multicellularity by an environmentally responsive prion, Cell, 153, 153-165.

157. Halfmann, R., Wright, J. R., Alberti, S., Lindquist, S., and Rexach, M. (2012) Prion formation by a yeast GLFG nucleoporin, Prion, 6, 391-399.

158. Chernova, T. A., Kiktev, D. A., Romanyuk, A. V., Shanks, J. R., Laur, O., Ali, M., Ghosh, A., Kim, D., Yang, Z., Mang, M., Chernoff, Y. O., and Wilkinson, K. D. (2017) Yeast short-lived actin-associated protein forms a metastable prion in response to thermal stress, Cell Rep., 18, 751-761.

159. Chernova, T. A., Romanyuk, A. V., Karpova, T. S., Shanks, J. R., Ali, M., Moffatt, N., Howie, R. L., O’Dell, A., McNally, J. G., Liebman, S. W., Chernoff, Y. O., and Wilkinson, K. D. (2011) Prion induction by the short-lived, stress-induced protein Lsb2 is regulated by ubiquitination and association with the actin cytoskeleton, Mol. Cell, 43, 242-252.

160. Antonets, K. S., Belousov, M. V., Belousova, M. E., and Nizhnikov, A. A. (2019) The Gln3 transcriptional regulator of Saccharomyces cerevisiae manifests prion-like properties upon overproduction, Biochemistry (Moscow), 84, 441-451.

161. Rogoza, T., Goginashvili, A., Rodionova, S., Ivanov, M., Viktorovskaya, O., Rubel, A., Volkov, K., and Mironova, L. (2010) Non-Mendelian determinant [ISP+] in yeast is a nuclear-residing prion form of the global transcriptional regulator Sfp1, Proc. Natl. Acad. Sci. USA, 107, 10573-10577.

162. Drozdova, P., Mironova, L., and Zhouravleva, G. (2016) Haploid yeast cells undergo a reversible phenotypic switch associated with chromosome II copy number, BMC Genet., 17, 152.

163. Matveenko, A. G., Drozdova, P. B., Belousov, M. V., Moskalenko, S. E., Bondarev, S. A., Barbitoff, Y. A., Nizhnikov, A. A., and Zhouravleva, G. A. (2016) SFP1 – mediated prion-dependent lethality is caused by increased Sup35 aggregation and alleviated by Sis1, Genes to Cells, 21, 1290-1308.

164. Brown, J. C. S., and Lindquist, S. (2009) A heritable switch in carbon source utilization driven by an unusual yeast prion, Genes Dev., 23, 2320-2332.

165. Chakravarty, A. K., Smejkal, T., Itakura, A. K., Garcia, D. M., and Jarosz, D. F. (2020) A non-amyloid prion particle that activates a heritable gene expression program, Mol. Cell, 77, 251-265.e9.

166. Chakrabortee, S., Byers, J. S., Jones, S., Garcia, D. M., Bhullar, B., Chang, A., She, R., Lee, L., Fremin, B., Lindquist, S., and Jarosz, D. F. (2016) Intrinsically disordered proteins drive emergence and inheritance of biological traits, Cell, 167, 369-381.e12.

167. Franzmann, T. M., Jahnel, M., Pozniakovsky, A., Mahamid, J., Holehouse, A. S., Nüske, E., Richter, D., Baumeister, W., Grill, S. W., Pappu, R. V., Hyman, A. A., and Alberti, S. (2018) Phase separation of a yeast prion protein promotes cellular fitness, Science, 359, eaao5654.

168. Gomes, E., and Shorter, J. (2019) The molecular language of membraneless organelles, J. Biol. Chem., 294, 7115-7127.

169. Mitrea, D. M., and Kriwacki, R. W. (2016) Phase separation in biology; functional organization of a higher order, Cell Commun. Signal., 14, 1.

170. Audas, T. E., Audas, D. E., Jacob, M. D., Ho, J. J. D., Khacho, M., Wang, M., Perera, J. K., Gardiner, C., Bennett, C. A., Head, T., Kryvenko, O. N., Jorda, M., Daunert, S., Malhotra, A., Trinkle-Mulcahy, L., Gonzalgo, M. L., and Lee, S. (2016) Adaptation to stressors by systemic protein amyloidogenesis, Dev. Cell, 39, 155-168.

171. Uversky, V. N., Kuznetsova, I. M., Turoverov, K. K., and Zaslavsky, B. (2015) Intrinsically disordered proteins as crucial constituents of cellular aqueous two phase systems and coacervates, FEBS Lett., 589, 15-22.

172. Uversky, V. N. (2017) Protein intrinsic disorder-based liquid-liquid phase transitions in biological systems: complex coacervates and membrane-less organelles, Adv. Colloid Interface Sci., 239, 97-114.

173. Uversky, V. N. (2019) Supramolecular fuzziness of intracellular liquid droplets: liquid-liquid phase transitions, membrane-less organelles, and intrinsic disorder, Molecules, 24, 3265.

174. Turoverov, K. K., Kuznetsova, I. M., Fonin, A. V., Darling, A. L., Zaslavsky, B. Y., and Uversky, V. N. (2019) Stochasticity of biological soft matter: emerging concepts in intrinsically disordered proteins and biological phase separation, Trends Biochem. Sci., 44, 716-728.

175. Darling, A. L., Liu, Y., Oldfield, C. J., and Uversky, V. N. (2018) Intrinsically disordered proteome of human membrane-less organelles, Proteomics, 18, e1700193.

176. Uversky, V. N. (2017) Intrinsically disordered proteins in overcrowded milieu: Membrane-less organelles, phase separation, and intrinsic disorder, Curr. Opin. Struct. Biol., 44, 18-30.

177. Babinchak, W. M., and Surewicz, W. K. (2020) Liquid-liquid phase separation and its mechanistic role in pathological protein aggregation, J. Mol. Biol., 432, 1910-1925.

178. Darling, A. L., Zaslavsky, B. Y., and Uversky, V. N. (2019) Intrinsic disorder-based emergence in cellular biology: physiological and pathological liquid-liquid phase transitions in cells, Polymers (Basel), 11, 990.

179. De Oliveira, G. A. P., Cordeiro, Y., Silva, J. L., andVieira, T. C. R. G. (2019) Liquid–liquid phase transitions and amyloid aggregation in proteins related to cancer and neurodegenerative diseases, Adv. Protein Chem. Struct. Biol., 118, 289-331.

180. Kato, M., Han, T. W., Xie, S., Shi, K., Du, X., Wu, L. C., Mirzaei, H., Goldsmith, E. J., Longgood, J., Pei, J., Grishin, N. V., Frantz, D. E., Schneider, J. W., Chen, S., Li, L., Sawaya, M. R., Eisenberg, D., Tycko, R., and McKnight, S. L. (2012) Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels, Cell, 149, 753-767.

181. Gui, X., Luo, F., Li, Y., Zhou, H., Qin, Z., Liu, Z., Gu, J., Xie, M., Zhao, K., Dai, B., Shin, W. S., He, J., He, L., Jiang, L., Zhao, M., Sun, B., Li, X., Liu, C., and Li, D. (2019) Structural basis for reversible amyloids of hnRNPA1 elucidates their role in stress granule assembly, Nat. Commun., 10, 2006.

182. Chen, C., Ding, X., Akram, N., Xue, S., and Luo, S.-Z. (2019) Fused in sarcoma: properties, self-assembly and correlation with neurodegenerative diseases, Molecules, 24, 1622.

183. Murray, D. T., Kato, M., Lin, Y., Thurber, K. R., Hung, I., McKnight, S. L., and Tycko, R. (2017) Structure of FUS protein fibrils and its relevance to self-assembly and phase separation of low-complexity domains, Cell, 171, 615-627.e16.

184. Luo, F., Gui, X., Zhou, H., Gu, J., Li, Y., Liu, X., Zhao, M., Li, D., Li, X., and Liu, C. (2018) Atomic structures of FUS LC domain segments reveal bases for reversible amyloid fibril formation, Nat. Struct. Mol. Biol., 25, 341-346.

185. Fushimi, K., Long, C., Jayaram, N., Chen, X., Li, L., and Wu, J. Y. (2011) Expression of human FUS/TLS in yeast leads to protein aggregation and cytotoxicity, recapitulating key features of FUS proteinopathy, Protein Cell, 2, 141-149.

186. Chaudhury, A., Chander, P., and Howe, P. H. (2010) Heterogeneous nuclear ribonucleoproteins (hnRNPs) in cellular processes: focus on hnRNP E1’s multifunctional regulatory roles, RNA, 16, 1449-1462.

187. Kim, H. J., Kim, N. C., Wang, Y.-D., Scarborough, E. A., Moore, J., et al. (2013) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS, Nature, 495, 467-473.

188. Prasad, A., Bharathi, V., Sivalingam, V., Girdhar, A., and Patel, B. K. (2019) Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis, Front. Mol. Neurosci., 12, 25.

189. Wegmann, S., Eftekharzadeh, B., Tepper, K., Zoltowska, K. M., Bennett, R. E., Dujardin, S., Laskowski, P. R., MacKenzie, D., Kamath, T., Commins, C., Vanderburg, C., Roe, A. D., Fan, Z., Molliex, A. M., Hernandez-Vega, A., Muller, D., Hyman, A.A., Mandelkow, E., Taylor, J. P., and Hyman, B. T. (2018) Tau protein liquid-liquid phase separation can initiate tau aggregation, EMBO J., 37, e98049.

190. Kosolapova, A. O., Belousov, M. V., Sulatskaya, A. I., Belousova, M. E., Sulatsky, M. I., Antonets, K. S., Volkov, K. V., Lykholay, A. N., Shtark, O. Y., Vasileva, E. N., Zhukov, V. A., Ivanova, A. N., Zykin, P. A., Kuznetsova, I. M., Turoverov, K. K., Tikhonovich, I. A., and Nizhnikov, A. A. (2019) Two novel amyloid proteins, RopA and RopB, from the root nodule bacterium Rhizobium leguminosarum, Biomolecules, 9, 694.

191. Danoff, E. J., and Fleming, K. G. (2015) Aqueous, unfolded OmpA forms amyloid-like fibrils upon self-association, PLoS One, 10, e0132301.

192. Antonets, K. S., Volkov, K. V., Maltseva, A. L., Arshakian, L. M., Galkin, A. P., and Nizhnikov, A. A. (2016) Proteomic analysis of Escherichia coli protein fractions resistant to solubilization by ionic detergents, Biochemistry (Moscow), 81, 34-46.

193. Sahaya Rajan, J. J., Chinnappan Santiago, T., Singaravel, R., and Ignacimuthu, S. (2016) Outer membrane protein C (OmpC) of Escherichia coli induces neurodegeneration in mice by acting as an amyloid, Biotechnol. Lett., 38, 689-700.

194. Villain, E., Nikekhin, A. A., and Kajava, A. V. (2019) Porins and amyloids are coded by similar sequence motifs, Proteomics, 19, e1800075.

195. Kaur, G., Kaundal, S., Kapoor, S., Grimes, J. M., Huiskonen, J. T., and Thakur, K. G. (2018) Mycobacterium tuberculosis CarD, an essential global transcriptional regulator forms amyloid-like fibrils, Sci. Rep., 8, 10124.

196. Higurashi, T., Yagi, H., Mizobata, T., and Kawata, Y. (2005) Amyloid-like fibril formation of co-chaperonin GroES: nucleation and extension prefer different degrees of molecular compactness, J. Mol. Biol., 351, 1057-1069.

197. Giraldo, R. (2007) Defined DNA sequences promote the assembly of a bacterial protein into distinct amyloid nanostructures, Proc. Natl. Acad. Sci. USA, 104, 17388-17393.

198. Gasset-Rosa, F., Coquel, A.-S., Moreno-Del Álamo, M., Chen, P., Song, X., Serrano, A. M., Fernández-Tresguerres, M. E., Moreno-Diaz de la Espina, S., Lindner, A. B., and Giraldo, R. (2014) Direct assessment in bacteria of prionoid propagation and phenotype selection by Hsp70 chaperone, Mol. Microbiol., 91, 1070-1087.

199. Fernández-Tresguerres, Moreno-Diaz de la Espina, S., S. M.-D., Gasset-Rosa, F., and Giraldo, R. (2010) A DNA-promoted amyloid proteinopathy in Escherichia coli, Mol. Microbiol., 77, 1456-1469.

200. Torreira, E., Moreno-Del Álamo, M., Fuentes-Perez, M. E., Fernández, C., Martin-Benito, J., Moreno-Herrero, F., Giraldo, R., and Llorca, O. (2015) Amyloidogenesis of bacterial prionoid RepA-WH1 recapitulates dimer to monomer transitions of RepA in DNA replication initiation, Structure, 23, 183-189.

201. Belousov, M. V., Bondarev, S. A., Kosolapova, A. O., Antonets, K. S., Sulatskaya, A. I., Sulatsky, M. I., Zhouravleva, G. A., Kuznetsova, I. M., Turoverov, K. K., and Nizhnikov, A. A. (2018) M60-like metalloprotease domain of the Escherichia coli YghJ protein forms amyloid fibrils, PLoS One, 13, e0191317.

202. Villar-Piqué, A., Sabaté, R., Lopera, O., Gibert, J., Torne, J. M., Santos, M., and Ventura, S. (2010) Amyloid-like protein inclusions in tobacco transgenic plants, PLoS One, 5, e13625.

203. Hughes, M. P., Sawaya, M. R., Boyer, D. R., Goldschmidt, L., Rodriguez, J. A., Cascio, D., Chong, L., Gonen, T., and Eisenberg, D. S. (2018) Atomic structures of low-complexity protein segments reveal kinked β sheets that assemble networks, Science, 359, 698-701.

204. Nizhnikov, A. A., Alexandrov, A. I., Ryzhova, T. A., Mitkevich, O. V., Dergalev, A. A., Ter-Avanesyan, M. D., and Galkin, A. P. (2014) Proteomic screening for amyloid proteins, PLoS One, 9, e116003.

205. Kryndushkin, D., Pripuzova, N., Burnett, B. G., and Shewmaker, F. (2013) Non-targeted identification of prions and amyloid-forming proteins from yeast and mammalian cells, J. Biol. Chem., 288, 27100-27111.

206. Kayed, R., Head, E., Sarsoza, F., Saing, T., Cotman, C. W., Necula, M., Margol, L., Wu, J., Breydo, L., Thompson, J. L., Rasool, S., Gurlo, T., Butler, P., and Glabe, C. G. (2007) Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers, Mol. Neurodegener., 2, 18.

207. Alberti, S. (2017) The wisdom of crowds: regulating cell function through condensed states of living matter, J. Cell Sci., 130, 2789-2796.