БИОХИМИЯ, 2020, том 85, вып. 8, с. 1100–1109
УДК 577.24
Непрерывная умеренная физическая нагрузка усиливает экспрессию FGF21 и KLB у мышей, страдающих ожирением
Center of Sports and Health Research, Division of Sport Science and Physical Education, Tsinghua University, Beijing, China; E-mail: bzhang@mail.tsinghua.edu.cn
Поступила в редакцию 12.03.2020
После доработки 27.06.2020
Принята к публикации 27.06.2020
DOI: 10.31857/S0320972520080096
КЛЮЧЕВЫЕ СЛОВА: MICT, HIIT, FGF21, KLB, экспрессия.
Аннотация
Фактор роста фибробластов 21 (FGF21) и белок β-Klotho (KLB) играют важную роль в предотвращении и лечении повышенного веса и ожирения. Однако не совсем ясны условия, при которых можно индуцировать экспрессию FGF21 и KLB в различных тканях. Поэтому было проведено изучение экспрессии FGF21 и KLB при двух формах физической нагрузки: непрерывная физическая нагрузка умеренной интенсивности (MICT) и физическая нагрузка высокой интенсивности с перерывами в упражнениях (HIIT) (это два популярных способа снизить вес тела). Мыши были случайным образом разбиты на три группы (n = 8 в каждой группе): группы с MICT, HIIT и сидячим образом жизни (SED). Чтобы вызвать у них ожирение, все мыши на протяжении 12 недель получали обогащенный жирами пищевой рацион (HFD). Физические упражнения выполнялиcь на моторизованной беговой дорожке в течение восьми недель, и в каждой группе животных по-прежнему соблюдалась особая диета. Показано, что как MICT, так и HIIT оказывают положительный эффект в плане снижения веса тела, индуцированного HFD, и снижения уровня белка FGF21 в сыворотке крови. HIIT может улучшить показатели веса тела и снизить уровень триглицеридов в сыворотке крови (TG), в то время как MICT был более эффективен в обеспечении экспрессии FGF21 и KLB в печени, бурой жировой ткани (BAT) и мышцах на уровне мРНК и белка.
Текст статьи
Сноски
* Адресат для корреспонденции.
Финансирование
Работа выполнена при финансовой поддержке Министерства образования Китайской Народной Республики (грант 20194180050).
Конфликт интересов
Авторы заявляют об отсутствии конфликта интересов.
Соблюдение этических норм
Все эксперименты с животными проводили в соответствии с протоколом, утвержденным Институциональным комитетом по уходу и использованию лабораторных животных (IACUC) – Institutional Animal Care and Use Committee) Университета Циньхуа.
Список литературы
1. Wang, H., Qiang, L., and Farmer, S. R. (2008) Identification of a domain within peroxisome proliferator-activated receptor gamma regulating expression of a group of genes containing fibroblast growth factor 21 that are selectively repressed by SIRT1 in adipocytes, Mol. Cell. Biol., 28, 188-200, doi: 10.1128/Mcb.00992-07.
2. Lobelo, F., Stoutenberg, M., and Hutber, A. (2014) The exercise is medicine global health initiative: a 2014 update, Brit. J. Sport Med., 48, 1627-1668, doi: 10.1136/bjsports-2013-093080.
3. Nishimura, T., Nakatake, Y., Konishi, M., and Itoh, N. (2000) Identification of a novel FGF, FGF-21, preferentially expressed in the liver, Biochim. Biophys. Acta, 1492, 203-206.
4. Kharitonenkov, A., Shiyanova, T. L., Koester, A., Ford, A. M., Micanovic, R., Galbreath, E. J., Sandusky, G. E., Hammond, L. J., Moyers, J. S., Owens, R. A., Gromada, J., Brozinick, J. T., Hawkins, E. D., Wroblewski, V. J., Li, D. S., Mehrbod, F., Jaskunas, S. R., and Shanafelt, A. B. (2005) FGF-21 as a novel metabolic regulator, J. Clin. Invest., 115, 1627-1635, doi: 10.1172/Jci23606.
5. Kharitonenkov, A., and Shanafelt, A. B. (2008) Fibroblast growth factor-21 as a therapeutic agent for metabolic diseases, BioDrugs, 22, 37-44, doi: 10.2165/00063030-200822010-00004.
6. Coskun, T., Bina, H. A., Schneider, M. A., Dunbar, J. D., Hu, C. C., Chen, Y., Moller, D. E., and Kharitonenkov, A. (2008) Fibroblast growth factor 21 corrects obesity in mice, Endocrinology, 149, 6018-6027, doi: 10.1210/en.2008-0816.
7. Xu, J., Stanislaus, S., Chinookoswong, N., Lau, Y. Y., Hager, T., Patel, J., Ge, H. F., Weiszmann, J., Lu, S. C., Graham, M., Busby, J., Hecht, R., Li, Y. S., Li, Y., Lindberg, R., and Veniant, M. M. (2009) Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models-association with liver and adipose tissue effects, Am. J. Physiol. Endocinol. Metab., 297, 1105-1114, doi: 10.1152/ajpendo.00348.2009.
8. Fazeli, P. K., Lun, M., Kim, S. M., Bredella, M. A., Wright, S., Zhang, Y., Lee, H., Catana, C., Klibanski, A., Patwari, P., and Steinhauser, M. L. (2015) FGF21 and the late adaptive response to starvation in humans, J. Clin. Invest., 125, 4601-4611, doi: 10.1172/Jci83349.
9. Wente, W., Efanov, A. M., Brenner, M., Kharitonenkov, A., Koester, A., Sandusky, G. E., Sewing, S., Treinies, I., Zitzer, H., and Gromada, J. (2006) Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways, Diabetes, 55, 2470-2478, doi: 10.2337/db05-1435.
10. Bookout, A. L., de Groot, M. H., Owen, B. M., Lee, S., Gautron, L., Lawrence, H. L., Ding, X., Elmquist, J. K., Takahashi, J. S., Mangelsdorf, D. J., and Kliewer, S. A. (2013) FGF21 regulates metabolism and circadian behavior by acting on the nervous system, Nat. Med., 19, 1147-1152, doi: 10.1038/nm.3249.
11. Zhang, C., Huang, Z., Gu, J., Yan, X., Lu, X., Zhou, S., Wang, S., Shao, M., Zhang, F., Cheng, P., Feng, W., Tan, Y., and Li, X. (2015) Fibroblast growth factor 21 protects the heart from apoptosis in a diabetic mouse model via extracellular signal-regulated kinase 1/2-dependent signalling pathway, Diabetologia, 58, 1937-1948, doi: 10.1007/s00125-015-3630-8.
12. Hondares, E., Iglesias, R., Giralt, A., Gonzalez, F. J., Giralt, M., Mampel, T., and Villarroya, F. (2011) Thermo-genic activation induces FGF21 expression and release in brown adipose tissue, J. Biol. Chem., 286, 12983-12990, doi: 10.1074/jbc.M110.215889.
13. Fisher, F. M., Adams, A., Antonellis, P., Kharitonenkov, A., Flier, J., and Maratos-Flier, E. (2009) Genetic and diet induced obesity are associated with FGF21 resistance in adipose tissue and liver, Obesity, 17, 68-68.
14. Mashili, F. L., Austin, R. L., Deshmukh, A. S., Fritz, T., Caidahl, K., Bergdahl, K., Zierath, J. R., Chibalin, A. V., Moller, D. E., Kharitonenkov, A., and Krook, A. (2011) Direct effects of FGF21 on glucose uptake in human skeletal muscle: implications for type 2 diabetes and obesity, Diabetes Metab. Res. Rev., 27, 286-297, doi: 10.1002/dmrr.1177.
15. Kharitonenkov, A., Dunbar, J. D., Bina, H. A., Bright, S., Moyers, J. S., Zhang, C., Ding, L., Micanovic, R., Mehrbod, S. F., Knierman, M. D., Hale, J. E., Coskun, T., and Shanafelt, A. B. (2008) FGF-21/FGF-21 receptor interaction and activation is determined by betaKlotho, J. Cell. Physiol., 215, 1-7, doi: 10.1002/jcp.21357.
16. Petryszak, R., Keays, M., Tang, Y. A., Fonseca, N. A., Barrera, E., Burdett, T., Fullgrabe, A., Fuentes, A. M., Jupp, S., Koskinen, S., Mannion, O., Huerta, L., Megy, K., Snow, C., Williams, E., Barzine, M., Hastings, E., Weisser, H., Wright, J., Jaiswal, P., Huber, W., Choudhary, J., Parkinson, H. E., and Brazma, A. (2016) Expression atlas update – an integrated database of gene and protein expression in humans, animals and plants, Nucleic Acids Res., 44, 746-752, doi: 10.1093/nar/gkv1045.
17. Diaz-Delfin, J., Hondares, E., Iglesias, R., Giralt, M., Caelles, C., and Villarroya, F. (2012) TNF-alpha represses beta-Klotho expression and impairs FGF21 action in adipose cells: involvement of JNK1 in the FGF21 pathway, Endocrinology, 153, 4238-4245, doi: 10.1210/en.2012-1193.
18. Wisløff, U., Helgerud, J., Kemi, O. J., and Ellingsen, Ø. (2001) Intensity-controlled treadmill running in rats: VO2 max and cardiac hypertrophy, Am. J. Physiol. Heart Circ. Physiol., 280, 1301-1310, doi: 10.1152/ajpheart.2001.280.3.H1301.
19. Petot, H., Meilland, R., Le Moyec, L., Mille-Hamard, L., and Billat, V. L. (2012). A new incremental test for VO2 max accurate measurement by increasing VO2 max plateau duration, allowing the investigation of its limiting factors, Eur. J. Appl. Physiol., 112, 2267-2276, doi: 10.1007/s00421-011-2196-5.
20. Ayachi, M., Niel, R., Momken, I., Billat, V. L., and Mille-Hamard, L. (2016) Validation of a ramp running protocol for determination of the true VO2 max in mice, Front Physiol., 7, 372, doi: 10.3389/fphys.2016.00372.
21. Geng, L., Liao, B., Jin, L., Huang, Z., Triggle, C. R., Ding, H., Zhang, J., Huang, Y., Lin, Z., and Xu, A. (2019) Exercise alleviates obesity-induced metabolic dysfunction via enhancing FGF21 sensitivity in adipose tissues, Cell Rep., 26, 2738-2752, doi: 10.1016/j.celrep.2019.02.014.
22. Somm, E., Henry, H., Bruce, S. J., Aeby, S., Rosikiewicz, M., Sykiotis, G. P., Asrih, M., Jornayvaz, F. R., Denechaud, P. D., Albrecht, U., Mohammadi, M., Dwyer, A., Acierno, J. S., Jr., Schoonjans, K., Fajas, L., Greub, G., and Pitteloud, N. (2017) beta-Klotho deficiency protects against obesity through a crosstalk between liver, microbiota, and brown adipose tissue, JCI Insight, 2, doi: 10.1172/jci.insight.91809.
23. Tezze, C., Romanello, V., and Sandri, M. (2019) FGF21 as modulator of metabolism in health and disease, Front. Physiol., 10, 419, doi: 10.3389/fphys.2019.00419.
24. Staiger, H., Keuper, M., Berti, L., Hrabe de Angelis, M., and Haring, H. U. (2017) Fibroblast growth factor 21-metabolic role in mice and men, Endocr. Rev., 38, 468-488, doi: 10.1210/er.2017-00016.
25. Fisher, F. M., and Maratos-Flier, E. (2016) Understanding the physiology of FGF21, Annu. Rev. Physiol., 78, 223-241, doi: 10.1146/annurev-physiol-021115-105339.
26. Markan, K. R., Naber, M. C., Ameka, M. K., Anderegg, M. D., Mangelsdorf, D. J., Kliewer, S. A., Mohammadi, M., and Potthoff, M. J. (2014) Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding, Diabetes, 63, 4057-4063, doi: 10.2337/db14-0595.
27. Kim, K. H., Kim, S. H., Min, Y. K., Yang, H. M., Lee, J. B., and Lee, M. S. (2013) Acute exercise induces FGF21 expression in mice and in healthy humans, PLoS One, 8, e63517, doi: 10.1371/journal.pone.0063517.
28. Dushay, J., Chui, P. C., Gopalakrishnan, G. S., Varela-Rey, M., Crawley, M., Fisher, F. M., Badman, M. K., Martinez-Chantar, M. L., and Maratos-Flier, E. (2010) Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease, Gastroenterology, 139, 456-463, doi: 10.1053/j.gastro.2010.04.054.
29. Yilmaz, Y., Eren, F., Yonal, O., Kurt, R., Aktas, B., Celikel, C. A., Ozdogan, O., Imeryuz, N., Kalayci, C., and Avsar, E. (2010) Increased serum FGF21 levels in patients with nonalcoholic fatty liver disease, Eur. J. Clin. Invest., 40, 887-892, doi: 10.1111/j.1365-2362.2010.02338.x.
30. Chavez, A. O., Molina-Carrion, M., Abdul-Ghani, M. A., Folli, F., Defronzo, R. A., and Tripathy, D. (2009) Circulating fibroblast growth factor-21 is elevated in impaired glucose tolerance and type 2 diabetes and correlates with muscle and hepatic insulin resistance, Diabetes Care, 32, 1542-1546, doi: 10.2337/dc09-0684.
31. Ji, F., Liu, Y., Hao, J. G., Wang, L. P., Dai, M. J., Shen, G. F., and Yan, X. B. (2019) KLB gene polymorphism is associated with obesity and non-alcoholic fatty liver disease in the Han Chinese, Aging (Albany NY), 11, doi: 10.18632/aging.102293.
32. Samms, R. J., Cheng, C. C., Kharitonenkov, A., Gimeno, R. E., and Adams, A. C. (2016) Overexpression of beta-klotho in adipose tissue sensitizes male mice to endogenous FGF21 and provides protection from diet-induced obesity, Endocrinology, 157, 1467-1480, doi: 10.1210/en.2015-1722.
33. Hansen, J. S., Clemmesen, J. O., Secher, N. H., Hoene, M., Drescher, A., Weigert, C., Pedersen, B. K., and Plomgaard, P. (2015) Glucagon-to-insulin ratio is pivotal for splanchnic regulation of FGF-21 in humans, Mol. Metab., 4, 551-560, doi: 10.1016/j.molmet.2015.06.001.
34. Hansen, J. S., Pedersen, B. K., Xu, G., Lehmann, R., Weigert, C., and Plomgaard, P. (2016) Exercise-induced secretion of FGF21 and Follistatin are blocked by pancreatic clamp and impaired in type 2 diabetes, J. Clin. Endocrinol. Metab., 101, 2816-2825, doi: 10.1210/jc.2016-1681.
35. Taniguchi, H., Tanisawa, K., Sun, X., Kubo, T., and Higuchi, M. (2016) Endurance exercise reduces hepatic fat content and serum fibroblast growth factor 21 levels in elderly men, J. Clin. Endocrinol. Metab., 101, 191-198, doi: 10.1210/jc.2015-3308.
36. Yang, S. J., Hong, H. C., Choi, H. Y., Yoo, H. J., Cho, G. J., Hwang, T. G., Baik, S. H., Choi, D. S., Kim, S. M., and Choi, K. M. (2011) Effects of a three-month combined exercise programme on fibroblast growth factor 21 and fetuin-A levels and arterial stiffness in obese women, Clin. Endocrinol. (Oxf), 75, 464-469, doi: 10.1111/j.1365-2265.2011.04078.x.
37. Andersen, T. R., Schmidt, J. F., Thomassen, M., Hornstrup, T., Frandsen, U., Randers, M. B., and Bangsbo, J. (2014) A preliminary study: effects of football training on glucose control, body composition, and performance in men with type 2 diabetes, Scand. J. Med. Sci. Sports, 24, 43-56, doi: 10.1111/sms.12259.
38. Besse-Patin, A., Montastier, E., Vinel, C., Castan-Laurell, I., Louche, K., Dray, C., and Valet, P. (2014) Effect of endurance training on skeletal muscle myokine expression in obese men: identification of apelin as a novel myokine, Int. J. Obesity, 38, 707-713, doi: 10.1038/ijo.2013.158.
39. Berglund, E. D., Lustig, D. G., Baheza, R. A., Hasenour, C. M., Lee-Young, R. S., Donahue, E. P., and Wasserman, D. H. (2011) Hepatic glucagon action is essential for exercise-induced reversal of mouse fatty liver, Diabetes, 60, 2720-2729, doi: 10.2337/db11-0455.
40. Loyd, C., Magrisso, I. J., Haas, M., Balusu, S., Krishna, R., Itoh, N., and Habegger, K. M. (2016) Fibroblast growth factor 21 is required for beneficial effects of exercise during chronic high-fat feeding, J. Appl. Physiol., 121, 687-698, doi: 10.1152/japplphysiol.00456.2016.
41. Fletcher, J. A., Linden, M. A., Sheldon, R. D., Meers, G. M., Morris, E. M., Butterfield, A., and Rector, R. S. (2016) Fibroblast growth factor 21 and exercise-induced hepatic mitochondrial adaptations, Am. J. Physiol. Gastrointest. Liver Physiol., 310, 832-843, doi: 10.1152/ajpgi.00355.2015.
42. Yu, H., Xia, F., Lam, K. S., Wang, Y., Bao, Y., Zhang, J., and Xu, A. (2011) Circadian rhythm of circulating fibroblast growth factor 21 is related to diurnal changes in fatty acids in humans, Clin. Chem., 57, 691-700, doi: 10.1373/clinchem.2010.155184.
43. Villarroya, F., Cereijo, R., Villarroya, J., and Giralt, M. (2017) Brown adipose tissue as a secretory organ, Nat. Rev. Endocrinol., 13, 26-35, doi: 10.1038/nrendo.2016.136.
44. Sanchez-Delgado, G., Martinez-Tellez, B., Olza, J., Aguilera, C. M., Gil, A., and Ruiz, J. R. (2015) Role of exercise in the activation of brown adipose tissue, Ann. Nutr. Metab., 67, 21-32, doi: 10.1159/000437173.
45. Peres Valgas da Silva, C., Hernandez-Saavedra, D., White, J. D., and Stanford, K. I. (2019) Cold and exercise: therapeutic tools to activate brown adipose tissue and combat obesity, Biology (Basel), 8, doi: 10.3390/biology8010009.
46. BonDurant, L. D., Ameka, M., Naber, M. C., Markan, K. R., Idiga, S. O., Acevedo, M. R., and Potthoff, M. J. (2017) FGF21 regulates metabolism through adipose-dependent and-independent mechanisms, Cell Metab., 25, 935-944, doi: 10.1016/j.cmet.2017.03.005.
47. Izumiya, Y., Bina, H. A., Ouchi, N., Akasaki, Y., Kharitonenkov, A., and Walsh, K. (2008) FGF21 is an Akt-regulated myokine, FEBS Lett., 582, 3805-3810, doi: 10.1016/j.febslet.2008.10.021.
48. Izumiya, Y., Hopkins, T., Morris, C., Sato, K., Zeng, L., Viereck, J., Hamilton, J. A., Ouchi, N., LeBrasseur, N. K., and Walsh, K. (2008) Fast/Glycolytic muscle fiber growth reduces fat mass and improves metabolic parameters in obese mice, Cell Metab., 7, 159-172, doi: 10.1016/j.cmet.2007.11.003.
49. Kim, K. H., Jeong, Y. T., Oh, H., Kim, S. H., Cho, J. M., Kim, Y. N., Kim, S. S., Kim, D. H., Hur, K. Y., Kim, H. K., Ko, T., Han, J., Kim, H. L., Kim, J., Back, S. H., Komatsu, M., Chen, H. C., Chan, D. C., Konishi, M., Itoh, N., Choi, C. S., and Lee, M. S. (2013) Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine, Nat. Med., 19, 83-92, doi: 10.1038/nm.3014.
50. Lindegaard, B., Hvid, T., Grondahl, T., Frosig, C., Gerstoft, J., Hojman, P., and Pedersen, B. K. (2013) Expression of fibroblast growth factor-21 in muscle is associated with lipodystrophy, insulin resistance and lipid disturbances in patients with HIV, PLoS One, 8, e55632, doi: 10.1371/journal.pone.0055632.
51. Verzijl, C. R. C., Van De Peppel, I. P., Struik, D., and Jonker, J. W. (2020) Pegbelfermin (BMS-986036): an investigational PEGylated fibroblast growth factor 21 analogue for the treatment of nonalcoholic steatohepatitis, Expert Opin. Investig. Drugs, 29, 125-133, doi: 10.1080/13543784.2020.1708898.