БИОХИМИЯ, 2020, том 85, вып. 8, с. 987–1003

УДК 577.171.52

Роль кисспептина в регуляции репродуктивной и иммунной функций

Обзор

© 2020 О.Л. Горбунова *, С.В. Ширшев

Институт экологии и генетики микроорганизмов УрО РАН – филиал Пермского федерального исследовательского центра УрО РАН, 614081 Пермь, Россия; электронная почта: olia15_77@mail.ru

Поступила в редакцию 17.02.2020
После доработки 09.06.2020
Принята к публикации 14.06.2020

DOI: 10.31857/S0320972520080011

КЛЮЧЕВЫЕ СЛОВА: кисспептин, беременность, гонадотропин-рилизинг-гормон, иммунная толерантность.

Аннотация

Работа посвящена физиологической роли гормона кисспептина, который продуцируется нейронами передней зоны гипоталамуса и является ключевым регулятором процессов репродукции. Рассматривается значение гормона в передаче информации о метаболической активности и индукции секреции гонадотропин-рилизинг-гормона (Гн-РГ) гипоталамусом, определяющего процессы гестации, включая оплодотворение, плацентацию, развитие плода и рождение ребенка. Обобщены и проанализированы данные литературы, касающиеся механизмов молекулярного действия и эффектов кисспептина на репродуктивную систему, включая процесс инициирования пубертатного периода. Кроме того, уделяется внимание гормон-опосредованным изменениям сердечно-сосудистой системы у беременных женщин. Впервые в обзоре рассмотрено влияние кисспептина на функциональную активность клеток иммунной системы с расшифровкой молекулярных механизмов трансдукции гормонального сигнала на уровне лимфоидных клеток, приводящее к формированию иммунной толерантности. В заключение представлена концептуальная модель, определяющая роль кисспептина как интегратора репродуктивной и иммунной функций в период физиологически протекающей беременности.

Текст статьи

Пожалуйста, введите код, чтобы получить PDF файл с полным текстом статьи:

captcha

Сноски

* Адресат для корреспонденции.

Финансирование

Работа выполнена в рамках Государственного задания (номер госрегистрации темы: АААА-А19-119112290007-7).

Конфликт интересов

Конфликт интересов в финансовой или какой-либо другой сфере отсутствует.

Соблюдение этических норм

Настоящая статья не содержит описания выполненных авторами исследований с участием людей или использованием животных в качестве объектов.

Список литературы

1. Lee, J. H., Miele, M. E., Hicks, D. J., Phillips, K. K., Trent, J. M., Weissman, B. E., and Welch, D. R. (1996) KISS-1, a novel human malignant melanoma metastasis-suppressor gene, J. Natl. Cancer Ins., 88, 1731-1737, doi: 10.1093/jnci/88.23.1731.

2. Lee, D. K., Nguyen, T., O’Neilld, G. P., Cheng, R., Liu, Y., Howard, A. D., Coulombe, N., Tane, C. P., Tang-Nguyena, A., Georgea, S. R., and O’Dowd, B. F. (1999) Discovery of a receptor related to the galanin receptors, FEBS Lett., 446, 103-107, doi: 10.1016/S0014-5793(99)00009-5.

3. De Roux, N., Genin, E., Carel, J. C., Matsuda, F., Chaussain, J. L., and Milgrom, E. (2003) Hypogonadotropic hypogonadism due to loss of function of the KISS1-derived peptide receptor GPR54, Proc. Natl. Acad. Sci. USA, 100, 10972-10986, doi: 10.1073/pnas.1834399100.

4. Ohtaki, T., Shintani, Y., Honda, S., Matsumoto, H., Hori, A., Kanehashi, K., Terao, Y., Kumano, S., Takatsu, Y., Masuda, Y., Ishibashi, Y., Watanabe, T., Asada, M., Yamada, T., Suenaga, M., Kitada, C., Usuki, S., Kurokawa, T., Onda, H., Nishimura, O., and Fujino, M. (2001) Metastasis suppressor gene KISS-1 encodes peptide ligand of a G-protein-coupled receptor, Nature, 411, 613-617, doi: 10.1038/35079135.

5. Ikeguchi, M., Hirooka, Y., and Kaibara, N. (2003) Quantitative reverse transcriptase polymerase chain reaction analysis for KISS-1 and orphan G-protein-coupled receptor (hOT7T175) gene expression in hepatocellular carcinoma, J. Cancer Res. Clin. Oncol., 129, 531-535, doi: 10.1007/s00432-003-0469-z.

6. Kotani, M., Detheux, M., Vandenbogaerde, A., Le Poul, E., Brézillon, S., Tyldesley, R., Suarez-Huerta, N., Vandeput, F., Blanpain, C., Schiffmann, S. N., Vassart, G., and Parmentier, M. (2001) The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54, J. Biol. Chem., 276, 34631-34636, doi: 10.1074/jbc.M104847200.

7. Muir, A. I., Chamberlain, L., Elshourbagy, N. A., Michalovich, D. J., Moore, A., Calamari, P. G., Szekeres, H. M., Sarau, J. K., Chambers, P., Murdock, K., Steplewski, U., Shabon, J. E., Miller, S. E., Middleton, J. G., Darker, C. G., Larminie, S., Wilson, D. J., Bergsma, P., Emson, R., Faull, K. L., and Philpott, D. C. (2001) AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1, J. Biol. Chem., 276, 28969-28975, doi: 10.1074/jbc.M102743200.

8. Horikoshi, Y., Matsumoto, H., Takatsu, Y., Ohtaki, T., Kitada, C., Usuki, S., and Fujino, M. (2003) Dramatic elevation of plasma metastin concentrations in human pregnancy: metastin as a novel placenta-derived hormone in humans, J. Clin. Endocrinol. Metab., 2, 914-919, doi: 10.1210/jc.2002-021235.

9. Funes, S., Hedric, J. A., Vassileva, G., Markowitz, L., Abbondanzo, S., Golovko, A., Yang, S., Monsma, F. J., and Gustafson, E. L. (2003) The KiSS-1 receptor GPR54 is essentional for the development of the murine reproductive system, Biochem. Biophys. Res. Commun., 4, 1357-1363, doi: 10.1016/j.bbrc.2003.11.066.

10. Thompson, L., Patterson, M., Murphy, K. G., Smith, K. L., Dhillo, W. S., Todd, J. F., Ghatei, M. A., and Bloom, S. R. (2004) Central and peripheral administration of kisspeptin-10 stimulates the hypothalamic-pituitary-gonadal axis, J. Neuroendocrinol., 16, 850-858, doi: 10.1111/j.1365-2826.2004.01240.x.

11. Dhillo, W. S., Murphy, K. G., and Bloom, S. R. (2007) The neuroendocrine physiology of kisspeptin in the human, Rev. Endocrinol. Metab. Disord., 8, 41-46, doi: 10.1007/s11154-007-9029-1.

12. West, A., Vojta, P. J., Welch, D. R., and Weissman, B. E. (1998) Chromosome localization and genomic structure of the KiSS-1 metastasis suppressor gene (KISS1), Genomics, 54, 145-148, doi: 10.1006/geno.1998.5566.

13. Colledge, W. H. (2008) GPR54 and kisspeptins, Results Probl. Cell Differ., 46, 117-143, doi: 10.1007/400_2007_050.

14. Hu, K. L., Chang, H. M., Zhao, H. C., Yu, Y., Li, R., and Qiao, J. (2019) Potential roles for the kisspeptin/kisspeptin receptor system in implantation and placentation, Hum. Reprod. Update, 25, 326-343, doi: 10.1093/humupd/dmy046.

15. Rometo, A. M., Krajewski, S. J., Voytko, M. L., and Rance, N. E. (2007) Hypertrophy and increased kisspeptin gene expression in the hypothalamic infundibular nucleus of postmenopausal women and ovariectomized monkeys, J. Clin. Endocrinol. Metab., 92, 2744-2750, doi: 10.1210/jc.2007-0553.

16. Sullivan-Pyke, C., Haisenleder, D. J., Senapati, S., Nicolais, O., Eisenberg, E., Sammel, M. D., and Barnhart, K. T. (2018) Kisspeptin as a new serum biomarker to discriminate miscarriage from viable intrauterine pregnancy, Fertil. Steril., 109, 137-141, doi: 10.1016/j.fertnstert.2017.09.029.

17. Bilban, M., Ghaffari-Tabrizi, N., Hintermann, E., Bauer, S., Molzer, S., Zoratti, C., Malli, R., Sharabi, A., Hiden, U., Graier, W., Knöfler, M., Andreae, F., Wagner, O., Quaranta, V., and Desoye, G. (2004) Kisspeptin-10, a KiSS-1/metastin-derived decapeptide, is a physiological invasion inhibitor of primary human trophoblasts, J. Cell Sci., 117, 1319-1328, doi: 10.1242/jcs.00971.

18. Al-Kaabi, M. A., Hamdan, F. B., and Al-Matubsi, H. (2020) Maternal plasma kisspeptin-10 level in preeclamptic pregnant women and its relation in changing their reproductive hormones, J. Obstet. Gynaecol. Res., 46, 575-586, doi: 10.1111/jog.14208.

19. Dhillo, W. S., Savage, P., Murphy, K. G., Chaudhri, O. B., Patterson, M., Nijher, G. M., Foggo, V. M., Dancey, G. S., Mitchell, H., Seckl, M. J., Ghatei, M. A., and Bloom, S. R. (2006) Plasma kisspeptin is raised in patients with gestational trophoblastic neoplasia and falls during treatment, Am. J. Physiol. Endocrinol. Metab., 291, E878-E884, doi: 10.1152/ajpendo.00555.2005.

20. Seminara, S. B., Messager, S., Chatzidaki, E. E., Thresher, R. R., Acierno, J. S., Shagomy, J. K., Bo-Abbas, Y., Kuohung, W., Schwinof, K. M., and Yendrick, A. G. (2003) The GPR54 gene as regulator of puberty, New Eng. J. Med., 349, 1614-1627, doi: 10.1056/NEJMoa035322.

21. Shirshev, S. V. (2009) Immunology of Maternal-Fetal Interactions, Ural Branch of the Russian Academy of Sciences, Yekaterinburg.

22. Limonta, P., Marelli, M. M., Moretti, R., Marzagalli, M., Fontana, F., and Maggi, R. (2018) GnRH in the human female reproductive axis, Vitam. Horm., 107, 27-66, doi: 10.1016/bs.vh.2018.01.003.

23. Matsuda, F., Ohkura, S., Magata, F., Munetomo, A., Chen, J., Sato, M., Inoue, N., Uenoyama, Y., and Tsukamura, H. (2019) Role of kisspeptin neurons as a GnRH surge generator: Comparative aspects in rodents and non-rodent mammals, J. Obstet. Gynaecol. Res., 45, 2318-2329, doi: 10.1111/jog.14124.

24. Kauffman, A. S., Gottsch, M. L., Roa, J., Byquist, A. C., Crown, A., Clifton, D. K., Hoffman, G. E., Steiner, R. A., and Tena-Sempere, M. (2007) Sexual differentiation of KISS1 gene expression in the brain of the rat, Endocrinology, 148, 1774-1783, doi: 10.1210/en.2006-1540.

25. Trevisan, C. M., Montagna, E., de Oliveira, R., Christofolini, D. M., Barbosa, C. P., Crandall, K. A., and Bianco, B. (2018) Kisspeptin/GPR54 system: what do we know about its role in human reproduction? Cell Physiol. Biochem., 49, 1259-1276, doi: 10.1159/000493406.

26. Poling, M. C., Luo, E. Y., and Kauffman, A. S. (2017) Sex differences in steroid receptor co-expression and circadian-timed activation of kisspeptin and RFRP-3 neurons may contribute to the sexually dimorphic basis of the LH surge, Endocrinology, 158, 3565-3578, doi: 10.1210/en.2017-00405.

27. Franssen, D., and Tena-Sempere, M. (2018) The kisspeptin receptor: A key G-protein-coupled receptor in the control of the reproductive axis, Best Pract. Res. Clin. Endocrinol. Metab., 32, 107-123, doi: 10.1016/j.beem.2018.01.005.

28. Uenoyama, Y., Nakamura, S., Hayakawa, Y., Ikegami, K., Watanabe, Y., Deura, C., Minabe, S., Tomikawa, J., Goto, T., Ieda, N., Inoue, N., Sanbo, M., Tamura, C., Hirabayashi, M., Maeda, K. I., and Tsukamura, H. (2015) Lack of pulse and surge modes and glutamatergic stimulation of luteinizing hormone release in Kiss1 knockout rats, J. Neuro-endocrinol., 27, 187-197, doi: 10.1111/jne.12257.

29. Kirilov, M., Clarkson, J., Liu, X., Roa, J., Campos, P., Porteous, R., Schütz, G., and Herbison, A. E. (2013) Dependence of fertility on kisspeptin-Gpr54 signaling at the GnRH neuron, Nat. Commun., 4, 2492-2499, doi: 10.1038/ncomms3492.

30. Zeydabadi Nejad, S., Ramezani Tehrani, F., and Zadeh-Vakili, A. (2017) The role of kisspeptin in female reproduction, Int. J. Endocrinol. Metab., 15, 44337-4443, doi: 10.5812/ijem.44337.

31. Sukhbaatar, U., Kanasaki, H., Mijiddorj, T., Oride, A., and Miyazaki, K. (2013) Kisspeptin induces expression of gonadotropin-releasing hormone receptor in GnRH-producing GT1-7 cells over expressing G protein-coupled receptor 54, Gen. Comp. Endocrinol., 194, 94-101, doi: 10.1016/j.ygcen.2013.09.002.

32. Hrabovszky, E., Ciofi, P., Vida, B., Horvath, M., Keller, E., Caraty, A., Bloom, S., Ghatei, M., Dhillo, W., Liposits, Z., and Kallo, I. (2010) The kisspeptin system of the human hypothalamus: sexual dimorphism and relationship with gonadotropin-releasing hormone and neurokinin B neurons, Eur. J. Neurosci., 11, 1984-1998, doi: 10.1111/j.1460-9568.2010.07239.x.

33. Yip, S. H., Boehm, U., Herbison, A. E., and Campbell, R. E. (2015) Conditional viral tract tracing delineates the projections of the distinct kisspeptin neuron populations to gonadotropin-releasing hormone (GnRH) neurons in the mouse, Endocrinology, 156, 2582-2594, doi: 10.1210/en.2015-1131.

34. Uenoyama, Y., Inoue, N., Maeda, K. I., and Tsukamura, H. (2018) The roles of kisspeptin in the mechanism underlying reproductive functions in mammals, J. Reprod. Dev., 64, 469-476, doi: 10.1262/jrd.2018-110.

35. Cortés, M. E., Carrera, B., Rioseco, H., Pablo del Río, J., and Vigil, P. (2015) The role of kisspeptin in the onset of puberty and in the ovulatory mechanism: a mini-review, J. Pediatr. Adolesc. Gynecol., 28, 286-295, doi: 10.1016/j.jpag.2014.09.017.

36. Harter, J. L., Kavanagh, G. S., and Smith, J. T. (2018) Kisspeptin, reproduction and metabolism, J. Endocrinol., 238, R173-R183, doi: 10.1530/JOE-18-0108.

37. Dhillo, W. (2008) Kisspeptin: a novel regulator of reproductive function, J. Neuroendocrinol., 8, 963-970, doi: 10.1111/j.1365-2826.2008.01753.x.

38. Tng, E. L. (2015) Kisspeptin signalling and its roles in humans, Singapore Med. J., 56, 649-656, doi: 10.11622/smedj.2015183.

39. Tena-Sempere, M. (2010) Kisspeptin signaling in the brain: recent developments and future challenges, Mol. Cell Endocrinol., 314, 164-169, doi: 10.1016/j.mce.2009.05.004.

40. Plant, T. M., Ramaswamy, S., and Dipietro, M. J. (2006) Repetitive activation of hypothalamic G protein-coupled receptor 54 with intravenous pulses of kisspeptin in the juvenile monkey (Macaca mulatta) elicits a sustained train of gonadotropin-releasing hormone discharges, Endo-crinolqogy, 147, 1007-1013, doi: 10.1210/en.2005-1261.

41. Navarro, V. M., Castellano, J. M., Fernandez-Fernandez, R., Barreiro, M. L., Roa, J., Sanchez-Criado, J. E., Aguilar, E., Dieguez, C., Pinilla, L., and Tena-Sempere, M. (2004) Developmental and hormonally regulated messenger ribonucleic acid expression of KiSS-1 and its putative receptor, GPR54, in rat hypothalamus and potent luteinizing hormone-releasing activity of KiSS-1 peptide, Endocrinology, 145, 4565-4574, doi: 10.1210/en.2004-0413.

42. Tena-Sempere, M. (2013) Interaction between energy homeostasis and reproduction: central effects of leptin and ghrelin on the reproductive axis, Horm. Metab. Res., 45, 919-927, doi: 10.1055/s-0033-1355399.

43. Mathew, H., Castracane, V. D., and Mantzoros, C. (2017) Adipose tissue and reproductive health, Metabolism, 86, 18-32, doi: 10.1016/j.metabol.2017.11.006.

44. Quenell, J. H., Mulligan, A. C., Tups, A., Liu, X.,Phipps, S. J., Kemp, C. J., Herbison, A. E., Gratten, D. R., and Anderson, G. M. (2009) Leptin indirectly regulates gonadotropin releasing hormone neuronal function, Endocrinology, 150, 2805-2812, doi: 10.1210/en.2008-1693.

45. Garcia-Garcia, R. M. (2012) Integrative control of energy balance and reproduction in females, ISRN Vet. Sci., 51, 121389-121402, doi: 10.5402/2012/121389.

46. Hill, J., Elmquist, J., and Elias, C. (2008) Hypothalamic pathways linking energy balance and reproduction, Am. J. Physiol. Endocrinol. Metab., 294, E827-E832, doi: 10.1152/ajpendo.00670.2007.

47. Pompolo, S., Pereira, A., Estrada, K., and Clarke, I. (2006) Colocalization of kisspeptin and gonadotropin-releasing hormone in the ovine brain, Endocrinology, 147, 804-810, doi: 10.1210/en.2005-1123.

48. Pankov, Y. I. (2015) Kisspeptin and leptin in regulation of fertility, Mol. Biol. (Mosk.), 49, 707-715, doi: 10.7868/S0026898415050134.

49. Norwitz, E. R., Schust, D. J., and Fisher, S. J. (2001) Implantation and the survival of early pregnancy, N. Engl. J. Med., 19, 1400-1407, doi: 10.1056/NEJMra000763.

50. La Vignera, S., Condorelli, R. A., Cannarella, R., Duca, Y., and Calogero, A. E. (2018) Sport, doping and female fertility, Reprod. Biol. Endocrinol., 16, 108-118, doi: 10.1186/s12958-018-0437-8.

51. Tena-Sempere, M. (2008) Ghrelin as a pleotrophic modulator of gonadal function and reproduction, Nat. Clin. Pract. Endocrinol. Metab., 4, 666-674, doi: 10.1038/ncpendmet1003.

52. Frazao, R., Dungan Lemko, H., da Silva, R. P., Ratra, D. V., Lee, C. E., Williams, K. W., Zigman, J. M., and Elias, C. F. (2014) Estradiol modulates Kiss1 neuronal response to ghrelin, Am. J. Physiol. Endocrinol. Metab., 306, 606-614, doi: 10.1152/ajpendo.00211.2013.

53. Roa, J., Garcia-Galiano, D., Castellano, J. M., Gaytan, F., Pinilla, L., and Tena-Sempere, M. (2010) Metabolic control of puberty onset: new players, new mechanisms, Mol. Cell. Endocrinol., 324, 87-94, doi: 10.1016/j.mce.2009.12.018.

54. Reinehr, T., and Roth, C. L. (2019) Is there a causal relationship between obesity and puberty? Lancet Child Adolesc. Health, 3, 44-54, doi: 10.1016/S2352-4642(18)30306-7.

55. Graham, C. H., and Lala, P. K. (1991) Mechanism of control of trophoblast invasion in situ, J. Cell. Physiol., 2, 228-235, doi: 10.1002/jcp.1041480207.

56. Matalon, S. T., Drucker, L., Fishman, A., Ornoy, A., and Lishner, M. (2008) The role of heat shock protein 27 in extravillous trophoblast differentiation, J. Cell. Biochem., 103, 719-729, doi: 10.1002/jcb.21476.

57. Jattela, M. (1999) Escaping cell death: survival proteins in cancer, Exp. Cell Res., 248, 30-43, doi: 10.1006/excr.1999.4455.

58. Ciocca, D. R., and Calderwood, S. K. (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications, Cell Stress Chaperones, 10, 86-103, doi: 10.1379/csc-99r.1.

59. Mohammadi, G., Tavassoli, A., Mousaviagdas, M., Chavoshi, H., and Saniee, L. (2015) Serum levels of MMP9 and MMP2 in patients with oral squamous cell carcinoma, Asian Pac. J. Cancer Prev., 16, 1327-1330, doi: 10.7314/apjcp.2015.16.4.1327.

60. Yoshioka, K., Ohno, Y., Horiguchi, Y., Ozu, C., Namiki, K., and Tachibana, M. (2008) Effects of a KiSS-1 peptide, a metastasis suppressor gene, on the invasive ability of renal cell carcinoma cells through a modulation of a matrix metalloproteinase 2 expression, Life Sci., 83, 332-338, doi: 10.1016/j.lfs.2008.06.018.

61. Chen, S., Chen, W., Zhang, X., Lin, S., and Chen, Z. (2016) Overexpression of KiSS-1 reduces colorectal cancer cell invasion by down-regulating MMP-9 via blocking PI3K/Akt/NF-kappa β signal pathway, Int. J. Oncol., 48, 1391-1398, doi: 10.3892/ijo.2016.3368.

62. Macklin, P. S., McAuliffe, J., Pugh, C. W., and Yamamoto, A. (2017) Hypoxia and HIF pathway in cancer and the placenta, Placenta, 56, 8-13, doi: 10.1016/j.placenta.2017.03.010.

63. Cheng, J. C., Chang, H. M., and Leung, P. C. K. (2017) TGF-β1 Inhibits human trophoblast cell invasion by up-regulating connective tissue growth factor expression, Endocrinology, 158, 3620-3628, doi: 10.1210/en.2017-00536.

64. Hiden, U., Bilban, M., Knöfler, M., and Desoye, G. (2007) Kisspeptins and the placenta: regulation of trophoblast invasion, Rev. Endocr. Metab. Disord., 8, 31-39, doi: 10.1007/s11154-007-9030-8.

65. Prossler, J., Chen, Q., Chamley, L., and James, J. L. (2014) The relationship between TGF-beta, low oxygen and the outgrowth of extravillous trophoblasts from anchoring villi during the first trimester of pregnancy, Cytokine, 68, 9-15, doi: 10.1016/j.cyto.2014.03.001.

66. Renaud, S. J., Postovit, L. M., Macdonald, G. T., Caldwell, J. D., and Graham, C. H. (2005) Activated macrophages inhibit human cytotrophoblast invasiveness in vitro, Biol. Reprod., 2, 237-243, doi: 10.1095/biolreprod.104.038000.

67. Bauer, S., Pollheimer, J., Hartmann, J., Husslein, P., Aplin, J. D., and Knöfler, M. (2004) Tumor necrosis factor-alpha inhibits trophoblast migration through elevation of plasminogen activator inhibitor-1 in first trimester villous explants cultures, J. Clin. Endocrinol. Metab., 2, 812-822, doi: 10.1210/jc.2003-031351.

68. Benyo, D. F., Miles, T. M., and Conrad, K. P. (1997) Hypoxia stimulates cytokine production by villous explants from the human placenta, J. Clin. Endocrinol. Metab., 5, 1582-1588, doi: 10.1210/jcem.82.5.3916.

69. Janneau, J. L., Maldonado-Estrad, J., Tachdjian, G., Miran, I., Motté, N., Saulnier, P., Sabourin, J. C., Coté, J. F., Simon, B., Frydman, R., Chaouat, G., and Bellet, D. (2002) Transcriptional expression of genes involved in cell invasion and migration by normal and tumoral trophoblast cells, J. Clin. Endocrinol. Metab., 11, 5336-5349, doi: 10.1210/jc.2002-021093.

70. Martino, N. A., Rizzo, A., Pizzi, F., Dell’Aquila, M. E., and Sciorsci, R. L. (2015) Effects of kisspeptin-10 on in vitro proliferation and kisspeptin receptor expression in primary epithelial cell cultures isolated from bovine placental cotyledons of fetuses at the first trimester of pregnancy, Theriogenology, 83, 978-987, doi: 10.1016/j.theriogenology.2014.11.033.

71. Biscaro, A., Braga, A., and Berkowitz, R. S. (2015) Diagnosis, classification and treatment of gestational trophoblastic neoplasia, Rev. Bras. Ginecol. Obstet., 37, 42-51, doi: 10.1590/SO100-720320140005198.

72. Li, L., Tian, J., Zhou, L., Wu, S., Zhang, S., Qi, L., and Zhang, H. (2017) Role of kisspeptin/GPR54 in the first trimester trophoblast of women with a history of recurrent spontaneous abortion, Int. J. Clin. Exp. Pathol., 10, 8161-8173.

73. Fellows, E. J., Hazzard, T. M., and Kutzler, M. A. (2012) Gene expression in pre-term, pre-labour and parturient canine placenta, Reprod. Domest. Anim., 6, 182-185, doi: 10.1111/rda.12021.

74. Francis, V. A., Abera, A. B., Matjila, M., Millar, R. P., and Katz, A. A. (2014) Kisspeptin regulation of genes involved in cell invasion and angiogenesis in first trimester human trophoblast cells, PLoS One, 9, 99680-99692, doi: 10.1371/journal.pone.0099680.

75. Hu, K. L., Zhao, H., Chang, H.-M., Yu, Y., and Qiao, J. (2018) Kisspeptin/Kisspeptin receptor system in the ovary, Front. Endocrinol., 8, 365-379, doi: 10.3389/fendo.2017.00365.

76. De Pedro, M. A., Morán, J., Díaz, I., Murias, L., Fernández-Plaza, C., González, C., and Díaz, E. (2015) Circadian Kisspeptin expression in human term placenta, Placenta, 36, 1337-1339, doi: 10.1016/j.placenta.2015.09.009.

77. Torricelli, M., Novembri, R., Conti, N., De Falco, G., De Bonis, M., and Petraglia, F. (2012) Correlation with placental kisspeptin in postterm pregnancy and apoptosis, Reprod. Sci., 19, 1133-1137, doi: 10.1177/1933719112443878.

78. Cao, Y., Li, Z., Jiang, W., Ling, Y., and Kuang, H. (2019) Reproductive functions of Kisspeptin/KISS1R Systems in the periphery. Reprod. Biol. Endocrinol., 17, 65-74, doi: 10.1186/s12958-019-0511-x.

79. Zhai, J., Liu, J., Zhao, S., Zhao, H., Chen, Z., Du, Y., and Li, W. (2017) Kisspeptin-10 inhibits OHSS by suppressing VEGF secretion, Reproduction, 154, 355-362, doi: 10.1530/REP-17-0268.

80. Mezei, Z., Zamani-Forooshani, O., Csabafi, K., Szikszai, B., Papp, E., Onodi, A., Torok, D., Lepran, A., Telegdy, G., and Szabo, G. (2015) The effect of kisspeptin on the regulation of vascular tone, Can. J. Physiol. Pharmacol., 93, 787-791, doi: 10.1139/cjpp-2015-0013.

81. Maguire, J. J., Kirby, H. R., Mead, E. J., Kuc, R. E., d’Anglemont de Tassigny, X., Colledge, W. H., and Davenport, A. P. (2011) Inotropic action of the puberty hormone kisspeptin in rat, mouse and human: cardiovascular distribution and characteristics of the kisspeptin receptor, PLoS One, 6, e27601, doi: 10.1371/journal.pone.0027601.

82. Sato, K., Shirai, R., Hontani, M., Shinooka, R., Hasegawa, A., Kichise, T., Yamashita, T., Yoshizawa, H., Watanabe, R., Matsuyama, T., Ishibashi-Ueda, H., Koba, S., Kobayashi, Y., Hirano, T., and Watanabe, T. (2017) Potent vasoconstrictor kisspeptin 10 induces atherosclerotic plaque progression and instability: reversal by its receptor GPR54 antagonist, J. Am. Heart Assoc., 6, e005790, doi: 10.1161/JAHA.117.005790.

83. Seymour, A. J., Scott, V., Augustine, R. A., Bouwer, G. T., Campbell, R. E., and Brown, C. H. (2017) Development of an excitatory kisspeptin projection to the oxytocin system in late pregnancy, J. Physiol., 595, 825-838, doi: 10.1113/JP273051.

84. Mellor, A. L., and Munn, D. H. (2001) Tryptophan catabolism prevents maternal T cells from activating lethal anti-fetal immune responses, J. Reprod. Immunol., 52, 5-11, doi: 10.1016/S0165-0378(01)00118-8.

85. Liu, Y. S., Wu, L., Tong, X. H., Wu, L. M., He, G. P., Zhou, G. X., Luo, L. H., and Luan, H. B. (2011) Study on the relationship between Th17 cells and unexplained recurrent spontaneous abortion, Am. J. Reprod. Immunol., 65, 503-511, doi: 10.1111/j.1600-0897.2010.00921.x.

86. Gorbunova, O. L., and Shirshev, S. V. (2014) Role of kisspeptin in formation of immune tolerance in pregnancy, Dokl. Akad. Nauk, 457, 494-497, doi: 10.1134/S0012496614040085.

87. Shirshev, S. V., Gorbunova, O. L., and Orlova, E. G. (2017) Involvement of kisspeptin and leptin in formation of immune reactivity, Human Physiol., 43, 109-114, doi: 10.7868/S013116461706011X.

88. Ephrem, A., Epstein, A. L., Stephens, G. L., Stephens, G. L., Thornton, A. M., Glass, D., and Shevach, E. M. (2013) Modulation of Treg cells/T effector function by GITR signaling is context-dependent, Eur. J. Immunol., 43, 2421-2429, doi: 10.1002/eji.201343451.

89. Ichiyama, K., Yoshida, H., and Wakabayashi, Y. (2008) Foxp3 inhibits RORγt-mediated IL-17A mRNA transcription through direct interaction with RORγt, J. Biol. Chem., 283, 17003-17008, doi: 10.1074/jbc.M801286200.

90. Gorbunova, O. L., and Shirshev, S. V. (2016) Molecular mechanisms of the regulation by kisspeptin of formation and functional activity of TREG and TH17, Biol. Membr., 33, 47-55, doi: 10.7868/S0233475516020067.

91. Zhang, H.-T., Zhao, Y., Huang, Y., Dorairaj, N. R., Chandler, L. J., and O’Donnell, J. M. (2004) Inhibition of the phosphodiesterase 4 (PDE4) enzymes reverses memory deficits produced by infusion of the MEK inhibitor U0126 into the CAI subregion of the rat hippocampus, Neuropsychopharmacology, 29, 1432-1439, doi: 10.1038/sj.npp.1300440.

92. Zheng, F., Zhang, M., Ding, Q., Sethna, F., Yan, L., Moon, C., Yang, M., and Wang, H. (2016) Voluntary running depreciates the requirement of Ca2+-stimulated cAMP signaling in synaptic potentiation and memory formation, Learn. Mem., 23, 442-449, doi: 10.1101/lm.040642.115.

93. Quan, J., He, M., Ko, W. K., and Wong, A. O. (2014) Kisspeptin induction of somatolactin-α release in goldfish pituitary cells: functional role of cAMP/PKA-, PLC/PKC-, and Ca2+/calmodulin-dependent cascades, Am. J. Physiol. Endocrinol. Metab., 307, 872-884, doi: 10.1152/ajpendo.00321.2014.

94. Wen, A. Y., Sakamoto, K. M., and Miller, L. S. (2010) The role of the transcription factor CREB in immune function, J. Immunol., 185, 6413-6419, doi: 10.4049/jimmunol.1001829.

95. Ivanov, I. I., McKenzie, B. S., Zhou, L., Tadokoro, C. E., Lepelley, A., Lafaille, J. J., Cua, D. J., and Littman, D. R. (2006) The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells, Cell, 126, 1121-1133, doi: 10.1016/j.cell.2006.07.035.

96. Schwartz, J. H. (2001) The many dimensions of cAMP signaling, Proc. Natl. Acad. Sci. USA, 98, 13482-13484, doi: 10.1073/pnas.251533998.

97. Haiqi, H., Yong, Z., and Yi, L. (2011) Transcriptional regulation of Foxp3 in regulatory T cells, Immunobiology, 216, 678-685, doi: 10.1016/j.imbio.2010.11.002.

98. Albrecht, D., and Jungi, T. W. (1993) Luminol-enhanced chemiluminescence induced in peripheral blood-derived human phagocytes: obligatory requirement of myeloperoxidase exocytosis by monocytes, J. Leukocyte Biol., 54, 300-306, doi: 10.1002/jlb.54.4.300.

99. Gorbunova, O. L., Shirshev, S. V., and Zamorina, S. A. (2013) Kisspeptin influence on the functional activity of monocytes, Immunologiya, 5, 247-251.

100. Alexander, H., Zimmerman, G., Lehmann, M., Pfieffer, R., Schone, E., Leiblein, S., and Ziegert, M. (1998) HCG secretion by peripheral mononuclear cells during pregnancy, Domest. Anim. Endocrinol., 15, 377-387, doi: 10.1016/S0739-7240(98)00025-3.

101. Gorbunova, O. L., Nekrasova, I. V., and Shirshev, S. V. (2018) Kisspeptin influence on the phagocytic activity of neutrophils, in High Tecnologies Determinating the Life Quality, Materials of the II International Conference, Perm State Research University, pp. 208-210.

102. Zhang, J., Shynlova, O., Sabra, S., Bang, A., Briollais, L., and Lye, S. J. (2017) Immunophenotyping and activation status of maternal peripheral blood leukocytes during pregnancy and labour, both term and preterm, J. Cell Mol. Med., 10, 2386-2402, doi: 10.1111/jcmm.13160.

103. Yan, H., Li, H., Zhu, L., Gao, J., Li, P., and Zhang, Z. (2019) Increased TLR4 and TREM-1 expression on monocytes and neutrophils in preterm birth: further evidence of a proinflammatory state, J. Matern. Fetal. Neonatal. Med., 32, 2961-2969, doi: 10.1080/14767058.2018.1452903.

104. Gaynor, L. M., and Colucci, F. (2017) Uterine natural killer cells: functional distinctions and influence on pregnancy in humans and mice, Front. Immunol., 8, 467-474, doi: 10.3389/fimmu.2017.00467.

105. Park, D. W., Lee, S. K., Hong, S. R., Han, A. R., Kwak-Kim, J., and Yang, K. M. (2012) Expression of kisspeptin and its receptor GPR54 in the first trimester trophoblast of women with recurrent pregnancy loss, Am. J. Reprod. Immun., 67, 132-139, doi: 10.1111/j.1600-0897.2011.01073.x.

106. Shirshev, S. V., Nekrasova, I. V., Gorbunova, O. L., and Maslennikova, I. L. (2015) Kisspeptin influence on functional characteristics of separated NK-cells, Dokl. Akad. Nauk, 464, 633-635, doi: 10.1134/S0012496615050129.

107. Shirshev, S. V., Nekrasova, I. V., Zamorina, S. A., Gorbunova, O. L., Orlova, E. G., and Maslennikova, I. V. (2014) Role of gestation-associated hormones in the regulation of expression of molecules responsible for the functional activity of NK-cells, Dokl. Akad. Nauk, 457, 618-621, doi: 10.7868/S0869565214230315.

108. Shirshev, S. V., Orlova, E. G., Loginova, O. A., Nekrasova, I. V., Gorbunova, O. L., and Maslennikova, I. L (2018) Hor-monal regulation of differentiation of dendritic cells of the thymus, Byul. Eksp. Biol. Med., 65, 193-197, doi: 10.1007/s10517-018-4136-4.

109. Yarilin, A. A. (2010) Immunology, GOETAR-Media, Moscow.

110. Sharova, N. I., Litvina, M. M., and Yarilin, A. A. (2010) The cell line of IL-10 producers with the phenotype of plasmocytoid dendritic cells originated from the human thymus, Immunologiya, 31, 181-186.

111. Lutz, M. B., and Schuler, G. (2002) Immature, semi-mature and fully mature dendritic cells: witch signals induce tolerance or immunity? Trends Immunol., 23, 235-244, doi: 10.1016/s1471-4906(02)02281-0.

112. Xing, R., Liu, F., Yang, Y., Cui, X., Wang, T., Xie, L., Zhao, Y., Fang, L., Yi, T., Zheng, B., Liu, M., and Chen, H. (2018) GPR54 deficiency reduces the Treg population and aggravates experimental autoimmune encephalo-myelitis in mice, Sci. China Life Sci., 61, 675-687, doi: 10.1007/s11427-017-9269-8.