БИОХИМИЯ, 2020, том 85, вып. 7, с. 978–983

Гипотеза

УДК 577.217;616.98

Активация транскрипционного фактора Nrf2 как подход к предотвращению цитокинового шторма при COVID-19

© 2020 Р.А. Зиновкин 1,2,3*, О.А. Гребенчиков 4

НИИ физико-химической биологии имени А.Н. Белозерского, Московский государственный университет имени М.В. Ломоносова, 119991 Москва, Россия; электронная почта: roman.zinovkin@gmail.com

НИИ Митоинженерии МГУ, 119992 Москва, Россия

Институт молекулярной медицины, Первый Московский государственный медицинский университет имени И.М. Сеченова, 119991 Москва, Россия

НИИ общей реаниматологии имени В.А. Неговского ФНКЦ РР, 107031 Москва, Россия

Поступила в редакцию 30.05.2020
После доработки 04.06.2020
Принята к публикации 04.06.2020

DOI: 10.31857/S0320972520070118

КЛЮЧЕВЫЕ СЛОВА: Nrf2, SARS-CoV-2, COVID-19, цитокиновый шторм, окислительный стресс.

Аннотация

Nrf2 является ключевым фактором транскрипции, ответственным за антиоксидантную защиту во многих тканях и клетках, включая альвеолярный эпителий, эндотелий и макрофаги. Кроме того, Nrf2 функционирует как транскрипционный репрессор, подавляющий экспрессию цитокинов воспаления в макрофагах. Пациенты с COVID-19 в критическом состоянии зачастую имеют чрезвычайно высокие параметры окислительного стресса и системного воспаления, которое служит одной из основных причин летальности. В данной статье представлено обоснование использования индукторов транскрипционного фактора Nrf2 для предотвращения развития избыточного воспалительного ответа при COVID-19.

Сноски

* Адресат для корреспонденции.

Благодарности

Авторы благодарят А. С. Приходько (НИИ физико-химической биологии имени А. Н. Белозерского МГУ) за полезное обсуждение работы.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических норм

Настоящая статья не содержит описания выполненных автором исследований с участием людей или использованием животных в качестве объектов.

Список литературы

1. Blanco-Melo, D., Nilsson-Payant, B. E., Liu, W.-C., Uhl, S., Hoagland, D., Møller, R., Jordan, T. X., Oishi, K., Panis, M., Sachs, D., Wang, T. T., Schwartz, R. E., Lim, J. K., Albrecht, R. A., and tenOever, B. R. (2020) Imbalanced host response to SARS-CoV-2 drives development of COVID-19, Cell, 181, 1036-1045, doi: 10.1016/j.cell.2020.04.026.

2. Ackermann, M., Verleden, S. E., Kuehnel, M., Haverich, A., Welte, T., Laenger, F., Vanstapel, A., Werlein, C., Stark, H., Tzankov, A., Li, W. W., Li, V. W., Mentzer, S. J., and Jonigk, D. (2020) Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19, N. Engl. J. Med., doi: 10.1056/NEJMoa2015432.

3. Mehta, P., McAuley, D. F., Brown, M., Sanchez, E., Tattersall, R. S., Manson, J. J., and HLH Across Speciality Collaboration (2020) COVID-19: consider cytokine storm syndromes and immunosuppression, Lancet, 395, 1033-1034, doi: 10.1016/S0140-6736(20)30628-0.

4. Zhang, W., Zhao, Y., Zhang, F., Wang, Q., Li, T., Liu, Z., Wang, J., Qin, Y., Zhang, X., Yan, X., Zeng, X., and Zhang, S. (2020) The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): the perspectives of clinical immunologists from China, Clin. Immunol., 214, 108393, doi: 10.1016/j.clim.2020.108393.

5. Chen, G., Wu, D., Guo, W., Cao, Y., Huang, D., Wang, H., Wang, T., Zhang, X., Chen, H., Yu, H., Zhang, X., Zhang, M., Wu, S., Song, J., Chen, T., Han, M., Li, S., Luo, X., Zhao, J., and Ning, Q. (2020) Clinical and immunological features of severe and moderate coronavirus disease 2019, J. Clin. Invest., 130, 2620-2629, doi: 10.1172/JCI137244.

6. Schieber, M., and Chandel, N. S. (2014) ROS function in redox signaling and oxidative stress, Curr. Biol., 24, R453-R462, doi: 10.1016/j.cub.2014.03.034.

7. Winn, R. K., and Harlan, J. M. (2005) The role of endothelial cell apoptosis in inflammatory and immune diseases, J. Thromb. Haemost., 3, 1815-1824, doi: 10.1111/j.1538-7836.2005.01378.x.

8. Klok, F. A., Kruip, M. J. H. A., van der Meer, N. J. M., Arbous, M. S., Gommers, D. A. M. P. J., Kant, K. M., Kaptein, F. H. J., van Paassen, J., Stals, M. A. M., Huisman, M. V., and Endeman, H. (2020) Incidence of thrombotic complications in critically ill ICU patients with COVID-19, Thromb. Res., 191, 145-147, doi: 10.1016/j.thromres.2020.04.013.

9. Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, H., Wang, J., Liu, Y., Wei, Y., Xia, J., Yu, T., Zhang, X., and Zhang, L. (2020) Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study, Lancet, 395, 507-513, doi: 10.1016/S0140-6736(20)30211-7.

10. Zha, L., Li, S., Pan, L., Tefsen, B., Li, Y., French, N., Liyun Chen, L., Gang Yang, G., and Villanueva, E. V. (2020) Corticosteroid treatment of patients with corona-virus disease 2019 (COVID-19), Med. J. Aust., 212, 416-420, doi: 10.5694/mja2.50577.

11. Motohashi, H., and Yamamoto, M. (2004) Nrf2-Keap1 defines a physiologically important stress response mechanism, Trends. Mol. Med., 10, 549-557, doi: 10.1016/j.molmed.2004.09.003.

12. Ahmed, S. M. U., Luo, L., Namani, A., Wang, X. J., and Tang, X. (2017) Nrf2 signaling pathway: pivotal roles in inflammation, Biochim. Biophys. Acta Mol. Basis Dis., 1863, 585-597, doi: 10.1016/j.bbadis.2016.11.005.

13. Kensler, T. W., Wakabayashi, N., and Biswal, S. (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway, Annu. Rev. Pharmacol. Toxicol., 47, 89-116, doi: 10.1146/annurev.pharmtox.46.120604.141046.

14. Kobayashi, E. H., Suzuki, T., Funayama, R., Nagashima, T., Hayashi, M., Sekine, H., Tanaka, N., Moriguchi, T., Motohashi, H., Nakayama, K., and Yamamoto, M. (2016) Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription, Nat. Commun., 7, 11624, doi: 10.1038/ncomms11624.

15. Thimmulappa, R. K., Scollick, C., Traore, K., Yates, M., Trush, M. A., Liby, K. T., Sporn, M. B., Yamamoto, M., Kensler, T. W., and Biswal, S. (2006) Nrf2-dependent protection from LPS induced inflammatory response and mortality by CDDO-Imidazolide, Biochem. Biophys. Res. Commun., 351, 883-889, doi: 10.1016/j.bbrc.2006.10.102.

16. Lin, W., Wu, R. T., Wu, T., Khor, T.-O., Wang, H., and Kong, A.-N. (2008) Sulforaphane suppressed LPS-induced inflammation in mouse peritoneal macrophages through Nrf2 dependent pathway, Biochem. Pharmacol., 76, 967-973, doi: 10.1016/j.bcp.2008.07.036.

17. Motterlini, R., Nikam, A., Manin, S., Ollivier, A., Wilson, J. L., Djouadi, S., Muchova, L., Martens, T., Rivard, M., and Foresti, R. (2019) HYCO-3, a dual CO-releaser/Nrf2 activator, reduces tissue inflammation in mice challenged with lipopolysaccharide, Redox Biol., 20, 334-348, doi: 10.1016/j.redox.2018.10.020.

18. Kosmider, B., Messier, E. M., Janssen, W. J., Nahreini, P., Wang, J., Hartshorn, K. L., and Mason, R. J. (2012) Nrf2 protects human alveolar epithelial cells against injury induced by influenza A virus, Respir. Res., 13, 43, doi: 10.1186/1465-9921-13-43.

19. Chan, K., and Kan, Y. W. (1999) Nrf2 is essential for protection against acute pulmonary injury in mice, Proc. Natl. Acad. Sci. USA, 96, 12731-12736, doi: 10.1073/pnas.96.22.12731.

20. Boutten, A., Goven, D., Artaud-Macari, E., Boczkowski, J., and Bonay, M. (2011) NRF2 targeting: a promising therapeutic strategy in chronic obstructive pulmonary disease, Trends Mol. Med., 17, 363-371, doi: 10.1016/j.molmed.2011.02.006.

21. Zakkar, M., Van der Heiden, K., Luong, L. A., Chaudhury, H., Cuhlmann, S., Hamdulay, S. S., Krams, R., Edirisinghe, I., Rahman, I., Carlsen, H., Haskard, D. O., Mason, J. C., and Evans, P. C. (2009) Activation of Nrf2 in endothelial cells protects arteries from exhibiting a proinflammatory state, Arterioscler. Thromb. Vasc. Biol., 29, 1851-1857, doi: 10.1161/ATVBAHA.109.193375.

22. Chen, X.-L., Dodd, G., Thomas, S., Zhang, X., Wasserman, M. A., Rovin, B. H., and Kunsch, C. (2006) Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inhibits inflammatory gene expression, Am. J. Physiol. Heart. Circ. Physiol., 290, H1862-H1870, doi: 10.1152/ajpheart.00651.2005.

23. Jhang, J.-J., and Yen, G.-C. (2017) The role of Nrf2 in NLRP3 inflammasome activation, Cell. Mol. Immunol., 14, 1011-1012, doi: 10.1038/cmi.2017.114.

24. Zhao, C., Gillette, D. D., Li, X., Zhang, Z., and Wen, H. (2014) Nuclear factor E2-related factor-2 (Nrf2) is required for NLRP3 and AIM2 inflammasome activation, J. Biol. Chem., 289, 17020-17029, doi: 10.1074/jbc.M114.563114.

25. Robledinos-Antón, N., Fernández-Ginés, R., Manda, G., and Cuadrado, A. (2019) Activators and inhibitors of NRF2: a review of their potential for clinical development, Oxid. Med. Cell. Longev., 2019, 9372182, doi: 10.1155/2019/9372182.

26. Wu, C., Chen, X., Cai, Y., Xia, J., Zhou, X., Xu, S., Huang, H., Zhang, L., Zhou, X., Du, C., Zhang, Y., Song, J., Wang, S., Chao, Y., Yang, Z., Xu, J., Zhou, X., Chen, D., Xiong, W., Xu, L., Zhou, F., Jiang, J., Bai, C., Zheng, J., and Song, Y. (2020) Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China, JAMA Intern. Med., doi: 10.1001/jamainternmed.2020.0994.

27. Mehla, K., Balwani, S., Agrawal, A., and Ghosh, B. (2013) Ethyl gallate attenuates acute lung injury through Nrf2 signaling, Biochimie, 95, 2404-2414, doi: 10.1016/j.biochi.2013.08.030.

28. Sardu, C., Gambardella, J., Morelli, M. B., Wang, X., Marfella, R., and Santulli, G. (2020) Is COVID-19 an endothelial disease? Clinical and basic evidence, J. Clin. Med., 9, E1417, doi: 10.3390/jcm9051417.

29. Chapple, S. J., Siow, R. C. M., and Mann, G. E. (2012) Crosstalk between Nrf2 and the proteasome: therapeutic potential of Nrf2 inducers in vascular disease and aging, Int. J. Biochem. Cell. Biol., 44, 1315-1320, doi: 10.1016/j.biocel.2012.04.021.

30. Buinitskaya, Y., Gurinovich, R., Wlodaver, C. G., and Kastsiuchenka, S. (2020) Highlights of COVID-19 pathogenesis. Insights into oxidative damage, doi: 10.6084/m9.figshare.12121575.v9.

31. Horowitz, R. I., Freeman, P. R., and Bruzzese, J. (2020) Efficacy of glutathione therapy in relieving dyspnea associated with COVID-19 pneumonia: a report of 2 cases, Respir. Med. Case Rep., 101063, doi: 10.1016/j.rmcr.2020.101063.

32. Li, N., Alam, J., Venkatesan, M. I., Eiguren-Fernandez, A., Schmitz, D., Di Stefano, E., Slaughter, N., Killeen, E., Wang, X., Huang, A., Wang, M., Miguel, A. H., Cho, A., Sioutas, C., and Nel, A. E. (2004) Nrf2 is a key transcription factor that regulates antioxidant defense in macrophages and epithelial cells: protecting against the proinflammatory and oxidizing effects of diesel exhaust chemicals, J. Immunol., 173, 3467-3481, doi: 10.4049/jimmunol.173.5.3467.

33. Zhang, H., Davies, K. J. A., and Forman, H. J. (2015) Oxidative stress response and Nrf2 signaling in aging, Free Radic. Biol. Med., 88, 314-336, doi: 10.1016/j.freeradbiomed.2015.05.036.

34. Richardson, S., Hirsch, J. S., Narasimhan, M., Crawford, J. M., McGinn, T., Davidson, K. W., and the Northwell COVID-19 Research Consortium (2020) Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City Area, JAMA, 323, 2052-2059, doi: 10.1001/jama.2020.6775.

35. Uruno, A., Furusawa, Y., Yagishita, Y., Fukutomi, T., Muramatsu, H., Negishi, T., Sugawara, A., Kensler, T. W., and Yamamoto, M. (2013) The Keap1-Nrf2 system prevents onset of diabetes mellitus, Mol. Cell. Biol., 33, 2996-3010, doi: 10.1128/MCB.00225-13.

36. Rooney, J., Oshida, K., Vasani, N., Vallanat, B., Ryan, N., Chorley, B. N., Wang, X., Bell, D. A., Wu, K. C., Aleksunes, L. M., Klaassen, C. D., Kensler, T. W., and Corton, J. C. (2018) Activation of Nrf2 in the liver is associated with stress resistance mediated by suppression of the growth hormone-regulated STAT5b transcription factor, PLoS One, 13, e0200004, doi: 10.1371/journal.pone.0200004.

37. Innamorato, N. G., Rojo, A. I., García-Yagüe, A. J., Yamamoto, M., de Ceballos, M. L., and Cuadrado, A. (2008) The transcription factor Nrf2 is a therapeutic target against brain inflammation, J. Immunol., 181, 680-689, doi: 10.4049/jimmunol.181.1.680.

38. Tahata, S., Singh, S. V., Lin, Y., Hahm, E.-R., Beumer, J. H., Christner, S. M., Rao, U. N., Sander, C., Tarhini, A. A., Tawbi, H., Ferris, L. K., Wilson, M., Rose, A., Dietz, C. M., Hughes, E. K., Fahey, J. W., Leachman, S. A., Cassidy, P. B., Butterfield, L. H., Zarour, H. M., and Kirkwood, J. M. (2018) Evaluation of biodistribution of sulforaphane after administration of oral broccoli sprout extract in melanoma patients with multiple atypical nevi, Cancer Prev. Res., 11, 429-438, doi: 10.1158/1940-6207.CAPR-17-0268.

39. Lin, S. X., Lisi, L., Dello Russo, C., Polak, P. E., Sharp, A., Weinberg, G., Kalinin, S., and Feinstein, D. L. (2011) The anti-inflammatory effects of dimethyl fumarate in astrocytes involve glutathione and haem oxygenase-1, ASN Neuro, 3, doi: 10.1042/AN20100033.

40. Schulze-Topphoff, U., Varrin-Doyer, M., Pekarek, K., Spencer, C. M., Shetty, A., Sagan, S. A., Cree, B. A. C., Sobel, R. A., Wipke, B. T., Steinman, L., Scannevin, R. H., and Zamvi, S. S. (2016) Dimethyl fumarate treatment induces adaptive and innate immune modulation independent of Nrf2, Proc. Natl. Acad. Sci. USA, 113, 4777-4782, doi: 10.1073/pnas.1603907113.

41. Kornberg, M. D., Bhargava, P., Kim, P. M., Putluri, V., Snowman, A. M., Putluri, N., Snowman, A. M., Putluri, N., Calabresi, P., and Snyder, S. H. (2018) Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity, Science, 360, 449-453, doi: 10.1126/science.aan4665.

42. Corsello, T., Komaravelli, N., and Casola, A. (2018) Role of hydrogen sulfide in NRF2- and sirtuin-dependent maintenance of cellular redox balance, Antioxidants (Basel), 7, doi: 10.3390/antiox7100129.

43. Bazhanov, N., Escaffre, O., Freiberg, A. N., Garofalo, R. P., and Casola, A. (2017) Broad-range antiviral activity of hydrogen sulfide against highly pathogenic RNA viruses, Sci. Rep., 7, 41029, doi: 10.1038/srep41029.

44. Evgen’ev, M. B., and Frenkel, A. (2020) Possible application of H2S-producing compounds in therapy of corona-virus (COVID-19) infection and pneumonia, Cell Stress Chaperones, doi: 10.1007/s12192-020-01120-1.

45. Ohishi, T., Goto, S., Monira, P., Isemura, M., and Nakamura, Y. (2016) Anti-inflammatory action of green tea, Antiinflamm. Antiallergy Agents Med. Chem., 15, 74-90, doi: 10.2174/1871523015666160915154443.

46. Zhu, J., Van de Ven, W. J. M., Verbiest, T., Koeckelberghs, G., Chen, C., Cui, Y., and Vermorken, A. J. M. (2013) Poly-phenols can inhibit furin in vitro as a result of the reactivity of their auto-oxidation products to proteins, Curr. Med. Chem., 20, 840-850, doi: 10.2174/0929867311320060009.

47. Shang, J., Wan, Y., Luo, C., Ye, G., Geng, Q., Auerbach, A., and Li, F. (2020) Cell entry mechanisms of SARS-CoV-2, Proc. Natl. Acad. Sci. USA, 117, 11727-11734, doi: 10.1073/pnas.2003138117.

48. Coutard, B., Valle, C., de Lamballerie, X., Canard, B., Seidah, N. G., and Decroly, E. (2020) The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade, Antiviral Res., 176, 104742, doi: 10.1016/j.antiviral.2020.104742.

49. Ungvari, Z., Bagi, Z., Feher, A., Recchia, F. A., Sonntag, W. E., Pearson, K., de Cabo, R., and Csiszar, A. (2010) Resver-atrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2, Am. J. Physiol. Heart Circ. Physiol., 299, H18-H24, doi: 10.1152/ajpheart.00260.2010.

50. Ghanim, H., Sia, C. L., Korzeniewski, K., Lohano, T., Abuaysheh, S., Marumganti, A., Chaudhuri, A., and Dandona, P. (2011) A resveratrol and polyphenol preparation suppresses oxidative and inflammatory stress response to a high-fat, high-carbohydrate meal, J. Clin. Endocrinol. Metab., 96, 1409-1414, doi: 10.1210/jc.2010-1812.

51. Kode, A., Rajendrasozhan, S., Caito, S., Yang, S.-R., Megson, I. L., and Rahman, I. (2008) Resveratrol induces glutathione synthesis by activation of Nrf2 and protects against cigarette smoke-mediated oxidative stress in human lung epithelial cells, Am. J. Physiol. Lung Cell. Mol. Physiol., 294, L478-L488, doi: 10.1152/ajplung.00361.2007.