БИОХИМИЯ, 2020, том 85, вып. 5, с. 620–636

УДК 577.2

Мембранные контакты в составе плазмодесм: структурные компоненты и их функции

Обзор

© 2020 А.В. Панкратенко 1, А.К. Атабекова 1, С.Ю. Морозов 1,2, А.Г. Соловьев 1,2,3,4*

Московский государственный университет им. М.В. Ломоносова, биологический факультет, кафедра вирусологии, 119991 Москва, Россия

Московский государственный университет им. М.В. Ломоносова, НИИ физико-химической биологии им. А.Н. Белозерского, 119992 Москва, Россия; электронная почта: solovyev@belozersky.msu.ru

Институт Молекулярной Медицины, Первый Московский Государственный Медицинский Университет им. И.М. Сеченова, 119991 Москва, Россия

Всероссийский Научно-Исследовательский Институт Сельскохозяйственной Биотехнологии, 127550 Москва, Россия

Поступила в редакцию 12.02.2020
После доработки 10.03.2020
Принята к публикации 16.03.2020

DOI: 10.31857/S0320972520050024

КЛЮЧЕВЫЕ СЛОВА: плазмодесмы, мембранные контакты, эндоплазматический ретикулум, плазматическая мембрана, мембранные микродомены, белки плазмодесм, белки мембранных контактов, вирусы растений.

Аннотация

Плазмодесмы представляют собой каналы, соединяющие клетки в тканях растений. В плазмодесмах происходит соединение цитоплазмы, плазматической мембраны (ПМ) и эндоплазматического ретикулума (ЭПР) соседних клеток. Через плазмодесмы происходит активный транспорт макромолекул, таких как белки и РНК, что обеспечивает функциональную целостность тканей растений и передачу сигналов, необходимых для индивидуального развития и ответов на внешние воздействия. Исследования последних лет показали, что в состав плазмодесм входят мембранные контакты (МК), специализированные структуры, которые формируются при участии ряда белковых компонентов, соединяющих мембраны ЭПР и ПМ. В общем случае, как показано преимущественно для клеток животных, МК между ЭПР и ПМ участвуют в транспорте липидных и белковых компонентов между этими мембранными компартментами, а также в поддержании структурной целостности ЭПР и ответе на стрессы. Структура МК в составе плазмодесм растений изучена существенно хуже, и в настоящее время активные исследования структурных элементов плазмодесм, обеспечивающих связь между ЭПР и ПМ в составе этих органелл, только начинают разворачиваться. В настоящем обзоре рассмотрены белковые компоненты, для которых показано или предполагается участие в формировании МК в плазмодесмах, их структурные и функциональные особенности. Кроме того, обсуждается роль цитоскелета, липидных микродоменов в составе мембран и компонентов клеточной стенки в поддержании структуры МК плазмодесм и ее ремоделировании в ответ на различные биотические и абиотические воздействия.

Сноски

* Адресат для корреспонденции.

Финансирование

Работа выполнена при финансовой поддержке Российского научного фонда (грант № 17-14-01032).

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических норм

Данная статья не содержит исследований, в которых в качестве объектов использовали людей или животных.

Список литературы

1. Tilsner, J., Nicolas, W., Rosado, A., and Bayer, E. M. (2016) Staying tight: plasmodesmal membrane contact sites and the control of cell-to-cell connectivity in plants, Annu. Rev. Plant Biol., 67, 23.1-23.28, doi: 10.1146/annurev-arplant-043015-111840.

2. Prinz, W. A., Toulmay, A., and Balla, T. (2020) The functional universe of membrane contact sites, Nat. Rev. Mol. Cell Biol., 21, 7-24, doi: 10.1038/s41580-019-0180-9.

3. Alpy, F., Rousseau, A., Schwab, Y., Legueux, F., Stoll, I., Wendling, C., Spiegelhalter, C., Kessler, P., Mathelin, C., Rio, M. C., Levine, T. P., and Tomasetto, C. (2013) STARD3/STARD3NL and VAP make a novel molecular tether between late endosomes and the ER, J. Cell Sci., 126, 5500-5512, doi: 10.1242/jcs.139295.

4. Iwasawa, R., Mahul-Mellier, A. L., Datler, C., Pazarentzos, E., and Grimm, S. (2011) Fis1 and Bap31 bridge the mitochondria–ER interface to establish a platform for apoptosis induction, EMBO J., 30, 556-568, doi: 10.1038/emboj.2010.346.

5. Hanada, K. (2018) Lipid transfer proteins rectify inter-organelle flux and accurately deliver lipids at membrane contact sites, J. Lipid Res., 59, 1341-1366, doi: 10.1194/jlr.R085324.

6. Wang, P., Richardson, C., Hawkins, T. J., Sparkes, I., Hawes, C., and Hussey, P. J. (2016) Plant VAP27 proteins: domain characterization, intracellular localization and role in plant development, New Phytol., 210, 1311-1326, doi: 10.1111/nph.13857.

7. Levy, A., Zheng, J. Y., and Lazarowitz, S. G. (2015) Synaptotagmin SYTA forms ER-plasma membrane junctions that are recruited to plasmodesmata for plant virus movement, Curr. Biol., 25, 2018-2025, doi: 10.1016/j.cub.2015.06.015.

8. Liu, L., and Li, J. (2019) Communications between the endoplasmic reticulum and other organelles during abiotic stress response in plants, Front. Plant Sci., 10, 749, doi: 10.3389/fpls.2019.00749.

9. Michaud, M., and Jouhet, J. (2019) Lipid trafficking at membrane contact sites during plant development and stress response, Front. Plant Sci., 10, 2, doi: 10.3389/fpls.2019.00002.

10. Bayer, E. M., Mongrand, S., and Tilsner, J. (2014) Specialized membrane domains of plasmodesmata, plant intercellular nanopores, Front. Plant Sci., 5, 507, doi: 10.3389/fpls.2014.00507.

11. Petit, J. D., Immel, F., Lins, L., and Bayer, E. M. (2019) Lipids or proteins: who is leading the dance at membrane contact sites, Front. Plant Sci., 10, 198, doi: 10.3389/fpls.2019.00198.

12. Ding, B., Turgeon, R., and Parthasarathy, M. V. (1992) Substructure of freeze-substituted plasmodesmata, Protoplasma, 169, 28-41, doi: 10.1007/BF01343367.

13. Nicolas, W. J., Grison, M. S., Trépout, S., Gaston, A., Fouché, M., Cordelières, F. P., Oparka, K., Tilsner, J., Brocard, L., and Bayer, E. M. (2017) Architecture and permeability of post-cytokinesis plasmodesmata lacking cytoplasmic sleeves, Nat. Plants, 3, 17082, doi: 10.1038/nplants.2017.82.

14. Faulkner, C., and Maule, A. (2011) Opportunities and successes in the search for plasmodesmal proteins, Protoplasma, 248, 27-38, doi: 10.1007/s00709-010-0213-x.

15. Salmon, M. S., and Bayer, E. M. F. (2013) Dissecting plasmodesmata molecular composition by mass spectrometry-based proteomics, Front. Plant Sci., 3, 307, doi: 10.3389/fpls.2012.00307.

16. Kraner, M. E., Müller, C., and Sonnewald, U. (2017) Com-parative proteomic profiling of the Choline transporter-like1 (CHER1) mutant provides insights into plasmodesmata composition of fully developed Arabidopsis thaliana leaves, Plant J., 92, 696-709, doi: 10.1111/tpj.13702.

17. Fernandez-Calvino, L., Faulkner, C., Walshaw, J., Saalbach, G., Bayer, E., Benitez-Alfonso, Y., and Maule, A. (2011) Arabidopsis plasmodesmal proteome, PLoS One., 6, e18880, doi: 10.1371/journal.pone.0018880.

18. Thomas, C. L., Bayer, E. M., Ritzenthaler, C., Fernandez-Calvino, L., and Maule, A. J. (2008) Specific targeting of a plasmodesmal protein affecting cell-to-cell communication, PLoS Biol., 6, e7, doi: 10.1371/journal.pbio.0060007.

19. Kim, H., Kwon, H., Kim, S., Kim, M. K., Botella, M. A., Yun, H. S., and Kwon, C. (2016) Synaptotagmin 1 negatively controls the two distinct immune secretory pathways to powdery mildew fungi in Arabidopsis, Plant Cell Physiol., 57, 1133-1141, doi: 10.1093/pcp/pcw061.

20. Simpson, C., Thomas, C., Findlay, K., Bayer, E., and Maule, A. J. (2009) An Arabidopsis GPI-anchor plasmo-desmal neck protein with callose binding activity and potential to regulate cell-to-cell trafficking, Plant Cell., 21, 581-594, doi: 10.1105/tpc.108.060145.

21. Grison, M. S., Kirk, P., Brault, M. L., Wu, X. N., Schulze, W. X., Benitez-Alfonso, Y., Immel, F., and Bayer, E. M. (2019) Plasma membrane-associated receptor-like kinases relocalize to plasmodesmata in response to osmotic stress, Plant Physiol., 181, 142-160, doi: 10.1104/pp.19.00473.

22. Hunter, K., Kimura, S., Rokka, A., Tran, H. C., Toyota, M., Kukkonen, J. P., and Wrzaczek, M. (2019) CRK2 Enhances salt tolerance by regulating callose deposition in connection with PLDα1, Plant Physiol., 180, 2004-2021, doi: 10.1104/pp.19.00560.

23. Ham, B. K., Li, G., Kang, B. H., Zeng, F., and Lucas, W. J. (2012) Overexpression of Arabidopsis plasmodesmata germin-like proteins disrupts root growth and development, Plant Cell, 24, 3630-3648, doi: 10.1105/tpc.112.101063.

24. Knox, K., Wang, P., Kriechbaumer, V., Tilsner, J., Frigerio, L., Sparkes, I., Hawes, C., and Oparka, K. (2015) Putting the squeeze on plasmodesmata: a role for reticulons in primary plasmodesmata formation, Plant Physiol., 168, 1563-1572, doi: 10.1104/pp.15.00668.

25. Pérez-Sancho, J., Vanneste, S., Lee, E., McFarlane, H. E., Esteban Del Valle, A., Valpuesta, V., Friml, J., Botella, M. A., and Rosado, A. (2015) The Arabidopsis synaptotagmin1 is enriched in endoplasmic reticulum-plasma membrane contact sites and confers cellular resistance to mechanical stresses, Plant Physiol., 168, 132-143, doi: 10.1104/pp.15.00260.

26. Brault, M. L., Petit, J. D., Immel, F., Nicolas, W. J., Glavier, M., Brocard, L., Gaston, A., Fouché, M., Hawkins, T. J., Crowet, J. M., Grison, M. S., Germain, V., Rocher, M., Kraner, M., Alva, V., Claverol, S., Paterlini, A., Helariutta, Y., Deleu, M., Lins, L., Tilsner, J., and Bayer, E. M. (2019) Multiple C2 domains and transmembrane region proteins (MCTPs) tether membranes at plasmodesmata, EMBO Rep., 20, e47182, doi: 10.15252/embr.201847182.

27. Wang, P., Hawkins, T. J., Richardson, C., Cummins, I., Deeks, M. J., Sparkes, I., Hawes, C., and Hussey, P. J. (2014) The plant cytoskeleton, NET3C, and VAP27 mediate the link between the plasma membrane and endoplasmic reticulum, Curr. Biol., 24, 1397-1405, doi: 10.1016/j.cub.2014.05.003.

28. Kagiwada, S., and Hashimoto, M. (2007) The yeast VAP homolog Scs2p has a phosphoinositide-binding ability that is correlated with its activity, Biochem. Biophys. Res. Commun., 364, 870-876, doi: 10.1016/j.bbrc.2007.10.079.

29. Chang, C. L., Hsieh, T. S., Yang, T. T., Rothberg, K. G., Azizoglu, D. B., Volk, E., Liao, J. C., and Liou, J. (2013) Feedback regulation of receptor-induced Ca2+ signaling mediated by E-Syt1 and Nir2 at endoplasmic reticulum-plasma membrane junctions, Cell Rep., 5, 813-825, doi: 10.1016/j.celrep.2013.09.038.

30. Murphy, S. E., and Levine, T. P. (2016) VAP, a versatile access point for the endoplasmic reticulum: review and analysis of FFAT-like motifs in the VAPome, Biochim. Biophys. Acta, 1861, 952-961, doi: 10.1016/j.bbalip.2016.02.009.

31. Kriechbaumer, V., Botchway, S. W., Slade, S. E., Knox, K., Frigerio, L., Oparka, K., and Hawes, C. (2015) Reticulomics: protein-protein interaction studies with two plasmodesmata-localized reticulon family proteins identify binding partners enriched at plasmodesmata, endoplasmic reticulum, and the plasma membrane, Plant Physiol., 169, 1933-1945, doi: 10.1104/pp.15.01153.

32. Deeks, M. J., Calcutt, J. R., Ingle, E. K., Hawkins, T. J., Chapman, S., Richardson, A. C., Mentlak, D. A., Dixon, M. R., Cartwright, F., Smertenko, A. P., Oparka, K., and Hussey, P. J. (2012) A superfamily of actin-binding proteins at the actin-membrane nexus of higher plants, Curr. Biol., 22, 1595-1600, doi: 10.1016/j.cub.2012.06.041.

33. Siao, W., Wang, P., Voigt, B., Hussey, P. J., and Baluska, F. (2016) Arabidopsis SYT1 maintains stability of cortical endoplasmic reticulum networks and VAP27-1-enriched endoplasmic reticulum-plasma membrane contact sites,J. Exp. Bot., 67, 6161-6171, doi: 10.1093/jxb/erw381.

34. Ishikawa, K., Tamura, K., Fukao, Y., and Shimada, T. (2019) Structural and functional relationships between plasmodesmata and plant endoplasmic reticulum-plasma membrane contact sites consisting of three synaptotagmins, New Phytol., doi: 10.1111/nph.16391.

35. Fernández-Busnadiego, R., Saheki, Y., and De Camilli, P. (2015) Three-dimensional architecture of extended synaptotagmin-mediated endoplasmic reticulum-plasma membrane contact sites, Proc. Natl. Acad. Sci. USA, 112, E2004-E2013, doi: 10.1073/pnas.1503191112.

36. Schauder, C. M., Wu, X., Saheki, Y., Narayanaswamy, P., Torta, F., Wenk, M. R., De Camilli, P., and Reinisch, K. M. (2014) Structure of a lipid-bound extended synaptotagmin indicates a role in lipid transfer, Nature, 510, 552-555, doi: 10.1038/nature13269.

37. Reinisch, K. M., and De Camilli, P. (2016) SMP-domain proteins at membrane contact sites: structure and function, Biochim. Biophys. Acta, 1861, 924-927, doi: 10.1016/j.bbalip.2015.12.003.

38. Dalal, J., Lewis, D. R., Tietz, O., Brown, E. M., Brown, C. S., Palme, K., Muday, G. K., and Sederoff, H. W. (2016) ROSY1, a novel regulator of gravitropic response is a stigmasterol binding protein, J. Plant Physiol., 196-197, 28-40, doi: 10.1016/j.jplph.2016.03.011.

39. Ho, C. M., Paciorek, T., Abrash, E., and Bergmann, D. C. (2016) Modulators of stomatal lineage signal transduction alter membrane contact sites and reveal specialization among ERECTA kinases, Dev. Cell., 38, 345-357, doi: 10.1016/j.devcel.2016.07.016.

40. Schapire, A. L., Voigt, B., Jasik, J., Rosado, A., Lopez-Cobollo, R., Menzel, D., Salinas, J., Mancuso, S., Valpuesta, V., Baluska, F., and Botella, M. A. (2008) Arabidopsis synaptotagmin 1 is required for the maintenance of plasma membrane integrity and cell viability, Plant Cell, 20, 3374-3388, doi: 10.1105/tpc.108.063859.

41. Yamazaki, T., Kawamura, Y., Minami, A., and Uemura, M. (2008) Calcium-dependent freezing tolerance in Arabi-dopsis involves membrane resealing via synaptotagmin SYT1, Plant Cell, 20, 3389-3404, doi: 10.1105/tpc.108.062679.

42. Dickson, E. J., Jensen, J. B., and Hille, B. (2016) Regulation of calcium and phosphoinositides at endoplasmic reticulum-membrane junctions, Biochem. Soc. Trans., 44, 467-473, doi: 10.1042/BST20150262.

43. Bayer, E. M., Sparkes, I., Vanneste, S., and Rosado, A. (2017) From shaping organelles to signalling platforms: the emerging functions of plant ER-PM contact sites, Curr. Opin. Plant Biol., 40, 89-96, doi: 10.1016/j.pbi.2017.08.006.

44. Held, K., Pascaud, F., Eckert, C., Gajdanowicz, P., Hashimoto, K., Corratgé-Faillie, C., Offenborn, J. N., Lacombe, B., Dreyer, I., Thibaud, J. B., and Kudla, J. (2011) Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex, Cell Res., 21, 1116-1130, doi: 10.1038/cr.2011.50.

45. Musetti, R., Buxa, S. V., De Marco, F., Loschi, A., Polizzotto, R., Kogel, K. H., and van Bel, A. J. (2013) Phytoplasma-triggered Ca2+ influx is involved in sieve-tube blockage, Mol. Plant Microbe Interact., 26, 379-386, doi: 10.1094/MPMI-08-12-0207-R.

46. Liu, L., Liu, C., Hou, X., Xi, W., Shen, L., Tao, Z., Wang, Y., and Yu, H. (2012) FTIP1 is an essential regulator required for florigen transport, PLoS Biol., 10, e1001313, doi: 10.1371/journal.pbio.1001313.

47. Vaddepalli, P., Herrmann, A., Fulton, L., Oelschner, M., Hillmer, S., Stratil, T. F., Fastner, A., Hammes, U. Z., Ott, T., Robinson, D. G., and Schneitz, K. (2014) The C2-domain protein QUIRKY and the receptor-like kinase STRUBBELIG localize to plasmodesmata and mediate tissue morphogenesis in Arabidopsis thaliana, Development, 141, 4139-4148, doi: 10.1242/dev.113878.

48. Liu, L., Li, C., Song, S., Teo, Z. W. N., Shen, L., Wang, Y., Jackson, D., and Yu, H. (2018) FTIP-dependent STM trafficking regulates shoot meristem development in Arabidopsis, Cell Rep., 23, 1879-1890, doi: 10.1016/j.celrep.2018.04.033.

49. Robyn L. Overall, R. L., and Blackman, L. M. (1996) A model of the macromolecular structure of plasmodesmata, Trends Plant Sci., 1, 307-311, doi: 10.1016/S1360-1385(96)88177-0.

50. Knight, A. E., and Kendrick-Jones, J. (1993) A myosin-like protein from a higher plant. J. Mol. Biol., 231, 148-154, doi: 10.1006/jmbi.1993.1266.

51. Haraguchi, T., Tominaga, M., Matsumoto, R., Sato, K., Nakano, A., Yamamoto, K., and Ito, K. (2014) Molecular characterization and subcellular localization of Arabidopsis class VIII myosin, ATM1, J. Biol. Chem., 289, 12343-12355, doi: 10.1074/jbc.M113.521716.

52. Su, S., Liu, Z., Chen, C., Zhang, Y., Wang, X., Zhu, L., Miao, L., Wang, X. C., and Yuan, M. (2010) Cucumber mosaic virus movement protein severs actin filaments to increase the plasmodesmal size exclusion limit in tobacco, Plant Cell, 22, 1373-1387, doi: 10.1105/tpc.108.064212.

53. Amari, K., Di Donato, M., Dolja, V. V., and Heinlein, M. (2014) Myosins VIII and XI play distinct roles in reproduction and transport of tobacco mosaic virus, PLoS Pathog., 10, e1004448, doi: 10.1371/journal.ppat.1004448.

54. Van Vliet, A. R., Giordano, F., Gerlo, S., Segura, I., Van Eygen, S., Molenberghs, G., Rocha, S., Houcine, A., Derua, R., Verfaillie, T., Vangindertael, J., De Keersmaecker, H., Waelkens, E., Tavernier, J., Hofkens, J., Annaert, W., Carmeliet, P., Samali, A., Mizuno, H., and Agostinis, P. (2017) The ER stress sensor PERK coordinates ER-plasma membrane contact site formation through interaction with filamin-A and F-actin remodeling, Mol. Cell, 65, 885-899, doi: 10.1016/j.molcel.2017.01.020.

55. Hepler, P. K. (2016) The Cytoskeleton and its regulation by calcium and protons, Plant Physiol., 170, 3-22, doi: 10.1104/pp.15.01506.

56. Bürstenbinder, K., Möller, B., Plötner, R., Stamm, G., Hause, G., Mitra, D., and Abel, S. (2017) The IQD family of calmodulin-binding proteins links calcium signaling to microtubules, membrane subdomains, and the nucleus, Plant Physiol., 173, 1692-1708, doi: 10.1104/pp.16.01743.

57. Pankratenko, A. V., Atabekova, A. K., Lazareva, E. A., Baksheeva, V. E., Zhironkina, O. A., Zernii, E. Y., Owens, R. A., Solovyev, A. G., and Morozov, S. Y. (2017) Plant-specific 4/1 polypeptide interacts with an endoplasmic reticulum protein related to human BAP31, Planta, 245, 193-205, doi: 10.1007/s00425-016-2601-8.

58. Makarova, S. S., Minina, E. A., Makarov, V. V., Semenyuk, P. I., Kopertekh, L., Schiemann, J., Serebryakova, M. V., Erokhina, T. N., Solovyev, A. G., and Morozov, S. Y. (2011) Orthologues of a plant-specific At-4/1 gene in the genus Nicotiana and the structural properties of bacterially expressed 4/1 protein, Biochimie, 93, 1770-1778, doi: 10.1016/j.biochi.2011.06.018.

59. Solovyev, A. G., Minina, E. A., Makarova, S. S., Erokhina, T. N., Makarov, V. V., Kaplan, I. B., Kopertekh, L., Schiemann, J., Richert-Pöggeler, K. R., and Morozov, S. Y. (2013) Subcellular localization and self-interaction of plant-specific Nt-4/1 protein, Biochimie, 95, 1360-1370, doi: 10.1016/j.biochi.2013.02.015.

60. Morozov, S. Y., Makarova, S. S., Erokhina, T. N., Kopertekh, L., Schiemann, J., Owens, R. A., and Solovyev, A. G. (2014) Plant 4/1 protein: potential player in intracellular, cell-to-cell and long-distance signaling, Front. Plant Sci., 5, 26, doi: 10.3389/fpls.2014.00026.

61. Atabekova, A. K., Lazareva, E. A., Strelkova, O. S., Solovyev, A. G., and Morozov, S. Y. (2018) Mechanical stress-induced subcellular re-localization of N-terminally truncated tobacco Nt-4/1 protein, Biochimie, 144, 98-107, doi: 10.1016/j.biochi.2017.10.020.

62. Atabekova, A. K., Pankratenko, A. V., Makarova, S. S., Lazareva, E. A., Owens, R. A., Solovyev, A. G., and Morozov, S. Y. (2017) Phylogenetic and functional analyses of a plant protein related to human B-cell receptor-associated proteins, Biochimie, 132, 28-37, doi: 10.1016/j.biochi.2016.10.009.

63. Müller, M., Richter, K., Heuck, A., Kremmer, E., Buchner, J., Jansen, R. P., and Niessing, D. (2009) Formation of She2p tetramers is required for mRNA binding, mRNP assembly, and localization, RNA, 15, 2002-2012, doi: 10.1261/rna.1753309.

64. Grison, M. S., Brocard, L., Fouillen, L., Nicolas, W., Wewer, V., Dörmann, P., Nacir, H., Benitez-Alfonso, Y., Claverol, S., Germain, V., Boutté, Y., Mongrand, S., and Bayer, E. M. (2015) Specific membrane lipid composition is important for plasmodesmata function in Arabidopsis, Plant Cell., 27, 1228-1250, doi: 10.1105/tpc.114.135731.

65. Marsh, D. (2010) Liquid-ordered phases induced by cholesterol: a compendium of binary phase diagrams, Biochim. Biophys. Acta, 1798, 688-699, doi: 10.1016/j.bbamem.2009.12.027.

66. Javanainen, M., Martinez-Seara, H., and Vattulainen, I. (2017) Nanoscale membrane domain formation driven by cholesterol, Sci. Rep., 7, 1143, doi: 10.1038/s41598-017-01247-9.

67. Dufourc, E. J. (2008) Sterols and membrane dynamics, J. Chem. Biol., 1, 63-77, doi: 10.1007/s12154-008-0010-6.

68. Milovanovic, D., Honigmann, A., Koike, S., Göttfert, F., Pähler, G., Junius, M., Müllar, S., Diederichsen, U., Janshoff, A., Grubmüller, H., Risselada, H. J., Eggeling, C., Hell, S. W., van den Bogaart, G., and Jahn, R. (2015) Hydrophobic mismatch sorts SNARE proteins into distinct membrane domains, Nat. Commun., 6, 5984, doi: 10.1038/ncomms6984.

69. Leijon, F., Melzer, M., Zhou, Q., Srivastava, V., and Bulone, V. (2018) Proteomic analysis of plasmodesmata from populus cell suspension cultures in relation with callose biosynthesis, Front. Plant Sci., 9, 1681, doi: 10.3389/fpls.2018.01681.

70. De Almeida, R. F., and Joly, E. (2014) Crystallization around solid-like nanosized docks can explain the specificity, diversity, and stability of membrane microdomains, Front. Plant Sci., 5, 72, doi: 10.3389/fpls.2014.00072.

71. Gronnier, J., Germain, V., Gouguet, P., Cacas, J. L., and Mongrand, S. (2016) GIPC: Glycosyl Inositol Phospho Ceramides, the major sphingolipids on earth, Plant Signal. Behav., 11, e1152438, doi: 10.1080/15592324.2016.1152438.

72. Grosjean, K., Mongrand, S., Beney, L., Simon-Plas, F., and Gerbeau-Pissot, P. (2015) Differential effect of plant lipids on membrane organization: specificities of phytosphingolipids and phytosterols, J. Biol. Chem., 290, 5810-5825, doi: 10.1074/jbc.M114.598805.

73. Konrad, S. S., and Ott, T. (2015) Molecular principles of membrane microdomain targeting in plants, Trends Plant Sci., 20, 351-361, doi: 10.1016/j.tplants.2015.03.016.

74. Cannon, K. S., Woods, B. L., Crutchley, J. M., and Gladfelter, A. S. (2019) An amphipathic helix enables septins to sense micrometer-scale membrane curvature,J. Cell Biol., 218, 1128-1137, doi: 10.1083/jcb.201807211.

75. Baoukina, S., Ingólfsson, H. I., Marrink, S. J., and Tieleman, D. P. (2018) Curvature-induced sorting of lipids in plasma membrane tethers, Adv. Theory Simul., 1, 1800034, doi: 10.1002/adts.201800034.

76. Aimon, S., Callan-Jones, A., Berthaud, A., Pinot, M., Toombes, G. E., and Bassereau, P. (2014) Membrane shape modulates transmembrane protein distribution, Dev. Cell, 28, 212-218, doi: 10.1016/j.devcel.2013.12.012.

77. Makowski, S. L., Kuna, R. S., and Field, S. J. (2019) Induction of membrane curvature by proteins involved in Golgi trafficking, Adv. Biol. Regul., 75, 100661, doi: 10.1016/j.jbior.2019.100661.

78. González-Solis, A., Cano-Ramirez, D. L., Morales-Cedillo, F., Tapia de Aquino, C., and Gavilanes-Ruiz, M. (2014) Arabidopsis mutants in sphingolipid synthesis as tools to understand the structure and function of membrane microdomains in plasmodesmata, Front. Plant Sci., 5, 3, doi: 10.3389/fpls.2014.00003.

79. De Saint-Jean, M., Delfosse, V., Douguet, D., Chicanne, G., Payrastre, B., Bourguet, W., Antonny, B., and Drin, G. (2011) Osh4p exchanges sterols for phosphatidylinositol4-phosphate between lipid bilayers, J. Cell Biol., 195, 965-978, doi: 10.1083/jcb.201104062.

80. Martens, S., Kozlov, M. M., and McMahon, H. T. (2007) How synaptotagmin promotes membrane fusion, Science, 316, 1205-1208, doi: 10.1126/science.1142614.

81. Eisenberg-Bord, M., Shai, N., Schuldiner, M., and Bohnert, M. (2016) A tether is a tether is a tether: tethering at membrane contact sites, Dev. Cell, 39, 395-409, doi: 10.1016/j.devcel.2016.10.022.

82. Wong, L. H., Gatta, A. T., and Levine, T. P. (2019) Lipid transfer proteins: the lipid commute via shuttles, bridges and tubes, Nat. Rev. Mol. Cell Biol., 20, 85-101, doi: 10.1038/s41580-018-0071-5.

83. Drin, G., Casella, J. F., Gautier, R., Boehmer, T., Schwartz, T. U., and Antonny, B. (2007) A general amphipathic α-helical motif for sensing membrane curvature, Nat. Struct. Mol. Biol., 14, 138-146, doi: 10.1038/nsmb1194.

84. Simon, M. L., Platre, M. P., Assil, S., van Wijk, R., Chen, W. Y., Chory, J., Dreux, M., Munnik, T., and Jaillais, Y. (2014) A multi-colour/multi-affinity marker set to visualize phosphoinositide dynamics in Arabidopsis, Plant J., 77, 322-37, doi: 10.1111/tpj.12358.

85. Simon, M. L., Platre, M. P., Marquès-Bueno, M. M., Armengot, L., Stanislas, T., Bayle, V., Caillaud, M. C., and Jaillais, Y. (2016) A PtdIns(4)P-driven electrostatic field controls cell membrane identity and signalling in plants, Nat. Plants, 2, 16089, doi: 10.1038/nplants.2016.89.

86. Platre, M. P., Noack, L. C., Doumane, M., Bayle, V., Simon, M. L. A., Maneta-Peyret, L., Fouillen, L., Stanislas, T., Armengot, L., Pejchar, P., Caillaud, M. C., Potocký, M., Copic, A., Moreau, P., and Jaillais, Y. (2018) A combinatorial lipid code shapes the electrostatic landscape of plant endomembranes, Dev. Cell., 45, 465-480, e11, doi: 10.1016/j.devcel.2018.04.011.

87. Bian, X., Saheki, Y., and De Camilli, P. (2018) Ca2+ releases E-Syt1 autoinhibition to couple ER-plasma membrane tethering with lipid transport, EMBO J., 37, 219-234, doi: 10.15252/embj.201797359.

88. Himschoot, E., Pleskot, R., Van Damme, D., and Vanneste, S. (2017) The ins and outs of Ca2+ in plant endomembrane trafficking, Curr. Opin. Plant Biol., 40, 131-137, doi: 10.1016/j.pbi.2017.09.003.

89. Graber, Z. T., Shi, Z., and Baumgart, T. (2017) Cations induce shape remodeling of negatively charged phospholipid membranes, Phys. Chem. Chem. Phys., 19, 15285-15295, doi: 10.1039/c7cp00718c.

90. Lahiri, S., Toulmay, A., and Prinz, W. A. (2015) Membrane contact sites, gateways for lipid homeostasis, Curr. Opin. Cell Biol., 33, 82-87, doi: 10.1016/j.ceb.2014.12.004.

91. Olkkonen, V. M. (2015) OSBP-related protein family in lipid transport over membrane contact sites, Lipid Insights, 8, 1-9, doi: 10.4137/LPI.S31726.

92. Chung, J., Torta, F., Masai, K., Lucast, L., Czapla, H., Tanner, L. B., Narayanaswamy, P., Wenk, M. R., Nakatsu, F., and De Camilli, P. (2015) PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER–plasma membrane contacts, Science, 349, 428-432, doi: 10.1126/science.aab1370.

93. Ghai, R., Du, X., Wang, H., Dong, J., Ferguson, C., Brown, A. J., Parton, R. G., Wu, J. W., and Yang, H. (2017) ORP5 and ORP8 bind phosphatidylinositol-4, 5-biphosphate (PtdIns(4,5)P2) and regulate its level at the plasma membrane, Nat. Commun., 8, 757, doi: 10.1038/s41467-017-00861-5.

94. Yamaji, T., Kumagai, K., Tomishige, N., and Hanada, K. (2008) Two sphingolipid transfer proteins, CERT and FAPP2: their roles in sphingolipid metabolism, IUBMB Life, 60, 511-518, doi: 10.1002/iub.83.

95. McMahon, H. T., and Boucrot, E. (2015) Membrane curvature at a glance, J. Cell Sci., 128, 1065-1070, doi: 10.1242/jcs.114454.

96. Sager, R., and Lee, J. Y. (2014) Plasmodesmata in integrated cell signalling: insights from development and environmental signals and stresses, J. Exp. Bot., 65, 6337-6358, doi: 10.1093/jxb/eru365.

97. Dorokhov, Y. L., Ershova, N. M., Sheshukova, E. V., and Komarova, T. V. (2019) The role of plasmodesmata-associated receptor in plant development and environmental response, Plants (Basel), 8, E595, doi: 10.3390/plants8120595.

98. De Storme, N., and Geelen, D. (2014) Callose homeostasis at plasmodesmata: molecular regulators and developmental relevance, Front Plant Sci., 5, 138, doi: 10.3389/fpls.2014.00138.

99. Paul, L. K., Rinne, P. L., and van der Schoot, C. (2014) Refurbishing the plasmodesmal chamber: a role for lipid bodies, Front. Plant Sci., 5, 40, doi: 10.3389/fpls.2014.00040.

100. Lee, J. Y., Wang, X., Cui, W., Sager, R., Modla, S., Czymmek, K., Zybaliov, B., van Wijk, K., Zhang, C., Lu, H., and Lakshmanan, V. (2011) A plasmodesmata-localized protein mediates crosstalk between cell-to-cell communication and innate immunity in Arabidopsis, Plant Cell, 23, 3353-3373, doi: 10.1105/tpc.111.087742.

101. Wang, X., Sager, R., Cui, W., Zhang, C., Lu, H., and Lee, J. Y. (2013) Salicylic acid regulates plasmodesmata closure during innate immune responses in Arabidopsis, Plant Cell, 25, 2315-2329, doi: 10.1105/tpc.113.110676.

102. Gui, J., Liu, C., Shen, J., and Li, L. (2014) Grain setting defect1, encoding a remorin protein, affects the grain setting in rice through regulating plasmodesmatal conductance, Plant Physiol., 166, 1463-1478, doi: 10.1104/pp.114.246769.

103. Perraki, A., Binaghi, M., Mecchia, M. A., Gronnier, J., German-Retana, S., Mongrand, S., Bayer, E., Zelada, A. M., and Germain, V. (2014) StRemorin1.3 hampers potato virus X TGBp1 ability to increase plasmodesmata permeability, but does not interfere with its silencing suppressor activity, FEBS Lett., 588, 1699-1705, doi: 10.1016/j.febslet.2014.03.014.

104. Zavaliev, R., Dong, X., and Epel, B. L. (2016) Glycosyl-phosphatidylinositol (GPI) modification serves as a primary plasmodesmal sorting signal, Plant Physiol., 172, 1061-1073, doi: 10.1104/pp.16.01026.

105. Faulkner, C., Akman, O. E., Bell, K., Jeffree, C., and Oparka, K. (2008) Peeking into pit fields: a multiple twinning model of secondary plasmodesmata formation in tobacco, Plant Cell, 20, 1504-1518, doi: 10.1105/tpc.107.056903.

106. Morvan, O., Quentin, M., Jauneau, A., Mareck, A., and Morvan, C. (1998) Immunogold localization of pectin methylesterases in the cortical tissues of flax hypocotyl, Protoplasma, 202, 175-184, doi: 10.1007/BF01282545.

107. Yu, C. H., Guo, G. Q., Nie, X. W., and Zheng, G. C. (2004) Cytochemical localization of pectinase activity in pollen mother cells of tobacco during meiotic prophase I and Its relation to the formation of secondary plasmodesmata and cytoplasmic channels, Acta Bot. Sin., 46, 1443-1453.

108. Baluska, F., Samaj, J., Napier, R., and Volkmann, D. (1999) Maize calreticulin localizes preferentially to plasmodesmata in root apex, Plant J., 19, 481-488, doi: 10.1046/j.1365-313x.1999.00530.x.

109. Foreman, J., Demidchik, V., Bothwell, J. H. F., Mylona, P., Miedema, H., Torresk, M. A., Linstead, P., Costa, S., Brownlee, C., Jonesk, J. D. G., Davies, J. M., and Dolan, L. (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth, Nature, 422, 442-446, doi: 10.1038/nature01485.

110. Benitez-Alfonso, Y., and Jackson, D. (2009) Redox homeo-stasis regulates plasmodesmal communication in Arabidopsis meristems, Plant Signal. Behav., 4, 655-659, doi: 10.4161/psb.4.7.8992.

111. Xu, K., and Nagy, P. D. (2014) Expanding use of multi-origin subcellular membranes by positive-strand RNA viruses during replication, Curr. Opin. Virol., 9, 119-126, doi: 10.1016/j.coviro.2014.09.015.

112. Barajas, D., Xu, K., Fernandez de Castro Martin, I., Sasvari, Z., Brandizzi, F., Risco, C., and Nagy, P. D. (2014) Co-opted oxysterol-binding ORP and VAP proteins channel sterols to RNA virus replication sites via membrane contact sites, PLoS Pathog., 10, e1004388, doi: 10.1371/journal.ppat.1004388.

113. Pitzalis, N., and Heinlein, M. (2017) The roles of membranes and associated cytoskeleton in plant virus replication and cell-to-cell movement, J. Exp. Bot., 69, 117-132, doi: 10.1093/jxb/erx334.

114. Epel, B. L. (2009) Plant viruses spread by diffusion on ER-associated movement-protein-rafts through plasmodesmata gated by viral induced host beta-1,3-glucanases, Semin. Cell Dev. Biol., 20, 1074-1081, doi: 10.1016/j.semcdb.2009.05.010.

115. Zavaliev, R., Levy, A., Gera, A., and Epel, B. L. (2013) Subcellular dynamics and role of arabidopsis β-1,3-glucanases in cell-to-cell movement of tobamoviruses, Mol. Plant Microbe Interact., 26, 1016-1030, doi: 10.1094/MPMI-03-13-0062-R.