БИОХИМИЯ, 2020, том 85, вып. 4, с. 507–520
УДК 577.032
Обзор механизмов действия цитокина Tgfβ3 как терапевтического агента для увеличения синтеза внеклеточного матрикса гиалинового хряща
Обзор
1 Российский научно-исследовательский институт травматологии и ортопедии им. Р.Р. Вредена, 195427 Санкт-Петербург, Россия; электронная почта: writeback@mail.ru
2 Институт цитологии РАН, 194064 Санкт-Петербург, Россия
3 Санкт-Петербургский филиал Института общей генетики РАН, 199034 Санкт-Петербург, Россия
4 Санкт-Петербургский государственный университет, биологический факультет, 199034 Санкт-Петербург, Россия
5 Санкт-Петербургский государственный университет, научная лаборатория биологии амилоидов, 199034 Санкт-Петербург, Россия
Поступила в редакцию 04.01.2020
После доработки 26.02.2020
Принята к публикации 26.02.2020
DOI: 10.31857/S0320972520040041
КЛЮЧЕВЫЕ СЛОВА: Tgfβ3, механизм действия, гиалиновый хрящ, Smad белки, внеклеточный матрикс.
Аннотация
Гиалиновый хрящ представляет собой аваскулярную соединительную ткань поверхности суставов, состоящую преимущественно из белков внеклеточного матрикса и небольшого количества высоко дифференцированных клеток – хондроцитов. В настоящее время исследуются различные методики восстановления повреждённой суставной поверхности, например, с использованием модифицированной клеточной культуры и биодеградируемого скаффолда. Активно изучаются молекулярные процессы, связанные с пролиферацией хрящевой ткани. Одним из важнейших белков среди цитокинов и факторов роста, влияющих на хондрогенез, является белок Tgfβ3, который выполняет критическую роль для нормальной пролиферации хрящевой ткани. Взаимодействуя с лигандами на поверхности клеточной мембраны, он запускает каскад молекулярных механизмов с участием транскрипционного фактора Sox9. В данном обзоре рассмотрено действие данного цитокина на активацию рецепторного комплекса и последующее внутриклеточное перемещение связанных с этим Smad медиаторов. Также изложен анализ связи данных процессов с увеличением экспрессии основных генов внеклеточного матрикса, таких как col2a1 и acan.
Текст статьи
Сноски
* Адресат для корреспонденции.
Финансирование
Работа выполнена в рамках темы Государственного задания Института цитологии РАН при финансовой поддержке Министерства образования и науки России и при финансовой поддержке гранта СПбГУ ID 51140332.
Благодарности
Авторы благодарны за сотрудничество ресурсным центрам «ЦКП ХРОМАС», «Биобанк» и «РМиКТ» научного парка СПбГУ.
Конфликт интересов
Авторы статьи заявляют об отсутствии конфликта интересов.
Соблюдение этических норм
Настоящая статья не содержит описания выполненных авторами исследований с участием людей или использованием животных в качестве объектов.
Список литературы
1. Божокин М. С., Божкова С. А., Нетылько Г. И. (2016) Возможности современных клеточных технологий для восстановления повреждённого суставного хряща (аналитический обзор литературы), Травматология и ортопедия России, 22,122-134, doi: 10.21823/2311-2905-2016-22-3-122-134.
2. Sophia Fox, A. J., Bedi, A., and Rodeo, S. A. (2009) The basic science of articular cartilage: structure, composition, and function, Sports Health, 1, 461-468, doi: 10.1177/1941738109350438.
3. Божокин М. С., Божкова С. А., Нетылько Г. И., Румакин В. П., Наконечный Д. Г., Чепурненко М. Н. (2017) Морфофункциональная характеристика хондрорегенераторного процесса в экспериментальном локальном дефекте поверхности суставного хряща, Международный журнал прикладных и фундаментальных исследований, 8, 302-306.
4. Maglio, M., Brogini, S., Pagani, S., Giavaresi, G., and Tschon, M. (2019) Current trends in the evaluation of osteochondral lesion treatments: histology, histomorphometry, and biomechanics in preclinical models, Bio. Med. Research Intern., 2019, 4040236, doi: 10.1155/2019/4040236.
5. Kurtz, S., Ong, K., Lau, E., Mowat, F., and Halpern, M. (2007) Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030, J. Bone Jt. Surg. – Ser. A., 89, 780-785, doi: 10.2106/JBJS.F.00222.
6. Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O., and Peterson, L. (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation, N. Engl. J. Med., 6, 889-895, doi: 10.1056/NEJM199410063311401.
7. Xiang, Y., Bunpetch, V., Zhou, W., and Ouyang, H. (2019) Optimization strategies for ACI: a step-chronicle review, J. Orthopaedic Transl., 17, 3-14, doi: 10.1016/j.jot.2018.12.005.
8. Elmallah, R., Cherian, J., Jauregui, J., Pierce, T., Beaver, W., and Mont, M. (2015) Genetically modified chondrocytes expressing TGF-β1: a revolutionary treatment for articular cartilage damage? Expert Opin. Biol. Therapy, 15, 455-464, doi: 10.1517/14712598.2015.1009886.
9. Finnson, K., Chi, Y., Bou-Gharios, G., Leask, A., and Philip, A. (2012) TGF-beta signaling in cartilage homeostasis and osteoarthritis, Front. Biosci. Sch., 1, 251-268, doi: 10.2741/s266.
10. Jeuken, R., Roth, A., Peters, R., Van Donkelaar, C., Thies, J., Van Rhijn, L., and Emans, P. J. (2016) Polymers in cartilage defect repair of the knee: current status and future prospects, Polymers, 4, 8, doi: 10.3390/polym8060219.
11. Plánka, L., Starý, D., Srnec, R., Necas, A., and Gál, P. (2008) New options for management of posttraumatic articular cartilage defects, Rozhledy v Chirurgii: Měsičnik Československé Chirurgické Společnosti, 87, 1, 42-45.
12. Diederichs, S., Gabler, J., Autenrieth, J., Kynast, K., Merle, C., Walles, H., Utikal, J., and Richter, W. (2016) Differential regulation of SOX9 protein during chondrogenesis of induced pluripotent stem cells versus mesenchymal stromal cells: a shortcoming for cartilage formation, Stem Cells Dev., 25, 598-609, doi: 10.1089/scd.2015.0312.
13. Skuse, G., and Lamkin-Kennard, K. (2013) Reverse engineering life: physical and chemical mimetics for controlled stem cell differentiation into cardiomyocytes, Methods Mol. Biol., 1001, 99-114, doi: 10.1007/978-1-62703-363-3_9.
14. Tokuda, S., and Yu, A. (2019) Regulation of epithelial cell functions by the osmolality and hydrostatic pressure gradients: a possible role of the tight junction as a sensor, Intern. J. Mol. Sci., 20, doi: 10.3390/ijms20143513.
15. Vieira, H., Alves, P., and Vercelli, A. (2011) Modulation of neuronal stem cell differentiation by hypoxia and reactive oxygen species, Prog. Neurobiol., 93, 444-455, doi: 10.1016/j.pneurobio.2011.01.007.
16. Khamo, J., Krishnamurthy, V., Sharum, S., Mondal, P., and Zhang, K. (2017) Applications of optobiology in intact cells and multicellular organisms, J. Mol. Biol., 429, 2999-3017, doi: 10.1016/j.jmb.2017.08.015.
17. Божокин М. С., Божкова С. А., Нетылько Г. И., Наконечный Д. Г., Блинова М. И., Нащекина Ю. А. (2018) Результаты замещения поверхностного дефекта гиалинового хряща крысы клеточно-инженерной конструкцией в эксперименте, Труды Карельского НЦ РАН, 4, 13-22, doi: 10.17076/them815.
18. Kuroda, Y., Kawai, T., Goto, K., and Matsuda, S. (2019) Clinical application of injectable growth factor for bone regeneration: a systematic review, Inflamm. Regen., 39, 1-10, doi: 10.1186/s41232-019-0109-x.
19. Hamann, A., Nguyen, A., and Pannier, A. (2019) Nucleic acid delivery to mesenchymal stem cells: a review of nonviral methods and applications, J. Biol. Engin., 13,7, doi: 10.1186/s13036-019-0140-0.
20. Oggu, G., Sasikumar, S., Reddy, N., Ella, K., Rao, C., and Bokara, K. (2017) Gene delivery approaches for mesenchymal stem cell therapy: strategies to increase efficiency and specificity, Stem Cell Rev., 13, 725-740, doi: 10.1007/s12015-017-9760-2.
21. Hata, A., and Chen, Y. (2016) TGF-β signaling from receptors to smads, Cold Spring Harb. Perspect. Biol., 8, doi: 10.1101/cshperspect.a022061.
22. Yang, X., Chen, L., Xu, X., Li, C., Huang, C., and Deng, C. (2001) TGF-β/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage, J. Cell Biol., 153, 35-46.
23. Moses, H., Roberts, A., and Derynck, R. (2016) The discovery and early days of TGF-b: a historical perspective, Cold Spring Harb. Perspect. Biol., 8, doi: 10.1101/cshperspect.a021865.
24. Derynck, R., and Budi, E. (2019) Specificity, versatility, and control of TGF-b family signaling, Sci. Signal., 12, 570, doi: 10.1126/scisignal.aav5183.
25. De Larco, J., and Todaro, G. (1978) Growth factors from murine sarcoma virus-transformed cells, Proc. Natl. Acad. Sci. USA, 75, 4001-4005.
26. Todaro, G., De Larco, J., and Fryling, C. (1982) Sarcoma growth factor and other transforming peptides produced by human cells: interactions with membrane receptors, Fed. Proc., 41, 2996-3003.
27. Kastin, A. (2013) Handbook of Biologically Active Peptides, Chapter 225, doi: 10.1016/C2010-0-66490-X.
28. Assoian, R., Komoriya, A., Meyers, C., Miller, D., and Sporn, M. (1983) Transforming growth factor-β in human platelets. Identification of a major storage site, purification, and characterization, J. Biol. Chem., 258, 7155-7160.
29. Frenkel, S., Saadeh, P., Mehrara, B., Chin, G., Steinbrech, D., Brent, B., Gittes, G., and Longaker, M. (2000) Transforming growth factor beta superfamily members: role in cartilage modeling, Plast. Reconstr. Surg., 105, 980-990, doi: 10.1097/00006534-200003000-00022.
30. Reddi, A., and Cunningham, N. (1990) Bone induction by osteogenin and bone morphogenetic proteins, Biomaterials, 11, 33-34
31. Glick, A., Weinberg, W., Wu, I., Quan, W., and Yuspa, S. (1996) Transforming growth factor beta 1 suppresses genomic instability independent of a G1 arrest, p53, and Rb, Cancer Res., 56, 3645-3650.
32. Massagué, J. (1999) Wounding Smad, Nat. Cell. Biol., 1, 117-119, doi: 10.1038/12944.
33. Herpin, A., Lelong, C., and Favrel, P. (2004) Transforming growth factor-β-related proteins: an ancestral and widespread superfamily of cytokines in metazoans, Dev. Comp. Immunol., 28, 461-485, doi: 10.1016/j.dci.2003.09.007.
34. Kwiatkowski, W., Gray, P., and Choe, S. (2014) Engineering TGF-β superfamily ligands for clinical applications, Trends Pharmacol. Sci., 35, 648-657, doi: 10.1016/j.tips.2014.10.006.
35. Lu, Y., Boer, J., Barsova, R., Favorova, O., Goel, A., Müller, M., and Feskens, E. (2012) TGFB1 genetic polymorphisms and coronary heart disease risk: a meta-analysis, BMC Med. Genet., 13, 39, doi: 10.1186/1471-2350-13-39.
36. Rao, K., Nagireddy, S., and Chakrabarti, S. (2011) Complex genetic mechanisms in glaucoma: an overview, Ind. J. Ophthalm., 59, 31-42, doi: 10.4103/0301-4738.73685.
37. Leutermann, R., Sheikhzadeh, S., Brockstädt, L., Rybczynski, M., van Rahden, V., Kutsche, K., von Kodolitsch, Y., and Rosenberger, G. (2014) A 1-bp duplication in TGFB2 in three family members with a syndromic form of thoracic aortic aneurysm, Eur. J. Hum. Genet., 22, 944-948, doi: 10.1038/ejhg.2013.252.
38. Occleston, N., Laverty, H., O’Kane, S., and Ferguson, M. (2008) Prevention and reduction of scarring in the skin by transforming growth factor beta 3 (TGFβ3): from laboratory discovery to clinical pharmaceutical, J. Biomater. Sci., Polymer Edition, 19, 1047-1063, doi: 10.1163/156856208784909345.
39. Gilbert, R., Vickaryous, M., and Viloria-Petit, A. (2016) Signalling by transforming growth factor beta isoforms in wound healing and tissue regeneration, J. Dev. Biol., 22, 4, doi: 10.3390/jdb4020021.
40. Furumatsu, T., Tsuda, M., Taniguchi, N., Tajima, Y., and Asahara, H. (2005) Smad3 induces chondrogenesis through the activation of SOX9 via CREB-binding protein/p300 recruitment, J. Biol. Chem., 280, 8343-8350 doi: 10.1074/jbc.M413913200.
41. Yu, J., Shao, L., Lemas, V., Yu, A., Vaughan, J., Rivier, J., and Vale, W. (1987) Importance of FSH-releasing protein and inhibin in erythrodifferentiation, Nature, 330, 765-767, doi: 10.1038/330765a0.
42. Bloise, E., Ciarmela, P., Cruz, C., Luisi, S., Petraglia, F., and Reis, F. (2019) Activin A in mammalian physiology, Physiol. Rev., 99, 739-780, doi: 10.1152/physrev.00002.2018.
43. Ling, N., Ying, S., Ueno, N., Shimasaki, S., Esch, F., Hotta, M., and Guillemin, R. (1986) Pituitary FSH is released by a heterodimer of the β-subunits from the two forms of inhibin, Nature, 321, 779-782, doi: 10.1038/321779a0.
44. Namwanje, M., and Brown, C. (2016) Activins and inhibins: roles in development, physiology, and disease, Cold Spring Harb. Perspect. Biol., 8, doi: 10.1101/cshperspect.a021881.
45. Chin, D., Boyl, G., Parsons, P., and Coman, W. (2004) What is transforming growth factor-beta (TGF-β)? Brit. J. Plastic Surg., 57, 215-221, doi: 10.1016/j.bjps.2003.12.012.
46. Kushnir, V., Seifer, D., Barad, D., Sen, A., and Gleicher, N. (2017) Potential therapeutic applications of human anti-Müllerian hormone (AMH) analogues in reproductive medicine, J. Assist. Reprod. Genet., 34, 1105-1113, doi: 10.1007/s10815-017-0977-4.
47. Tabibzadeh, S., and Hemmati-Brivanlou, A. (2006) Lefty at the crossroads of “stemness” and differentiative events, Stem Cells, 24, 1998-2006, doi: 10.1634/stemcells.2006-0075.
48. Jones, C., Kuehn, M., Hogan, B., Smith, J., and Wright, C. (1995) Nodal-related signals induce axial mesoderm and dorsalize mesoderm during gastrulation, Development, 121, 3651-3662.
49. Morikawa, M., Derynck, R., and Miyazono, K. (2016) TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology, Cold Spring Harb. Perspect. Biol., 2, 8, doi: 10.1101/cshperspect.a021873.
50. Papageorgis, P., and Stylianopoulos, T. (2015) Role of TGFβ in regulation of the tumor microenvironment and drug delivery (review), Int. J. Oncol., 46, 933-943, doi: 10.3892/ijo.2015.2816.
51. Gatza, C., Oh, S., and Blobe, G. (2010) Roles for the type III TGF-β receptor in human cancer, Cell. Signal., 22, 1163-1174, doi: 10.1016/j.cellsig.2010.01.016.
52. Lawler, S., Feng, X., Chen, R., Maruoka, E., Turck, C., Griswold-Prenner, I., and Derynck, R. (1997) The type II transforming growth factor-β receptor autophosphorylates not only on serine and threonine but also on tyrosine residues, J. Biol. Chem., 272, 14850-14859, doi: 10.1074/jbc.272.23.14850.
53. Heldin, C., and Moustakas, A. (2016) Signaling receptors for TGF-β family members, Cold Spring Harb. Perspect. Biol., 8, 8, doi: 10.1101/cshperspect.a022053.
54. Ahmadi, A., Najafi, M., Farhood, B., and Mortezaee, K. (2019) Transforming growth factor-β signaling: tumorigenesis and targeting for cancer therapy, J. Cell. Physiol., 234, 12173-12187, doi: 10.1002/jcp.27955.
55. Wrana, J., Attisano, L., Cárcamo, J., Zentella, A., Doody, J., Laiho, M., Wang, X., and Massagué, J. (1992) TGFβ signals through a heteromeric protein kinase receptor complex, Cell, 71, 1003-1014, doi: 10.1016/0092-8674(92)90395-S.
56. Yamashita, H., ten Dijke, P., Franzén, P., Miyazono, K., and Heldin, C. (1994) Formation of hetero-oligomeric complexes of type I and type II receptors for transforming growth factor-β, J. Biol. Chem., 269, 20172-20178.
57. Massagué, J. (1998) TGF-beta signal transduction, Annu. Rev. Biochem., 67, 753-791, doi: 10.1146/annurev.biochem.67.1.753.
58. Massagué, J., and Chen, Y. (2000) Controlling TGF-beta signaling, Genes Dev., 14, 627-644.
59. Feng, X., and Derynck, R. (2005) Specificity and versatility in tgf-beta signaling through smads, Annu. Rev. Cell Dev. Biol., 21, 659-693, doi: 10.1146/annurev.cellbio.21.022404.142018.
60. Huang, T., David, L., Mendoza, V., Yang, Y., Villarreal, M., De, K., Sun, L., Fang, X., López-Casillas, F., Wrana, J., and Hinck, A. (2011) TGF-β signalling is mediated by two autonomously functioning TβRI:TβRII pairs, EMBO J., 30, 1263-1276, doi: 10.1038/emboj.2011.54.
61. Atfi, A., Dumont, E., Colland, F., Bonnier, D., L’helgoualc’h, A., Prunier, C., Ferrand, N., Clément, B., Wewer, U., and Théret, N. (2007) The disintegrin and metalloproteinase ADAM12 contributes to TGF-β signaling through interaction with the type II receptor, J. Cell Biol., 16, 201-208, doi: 10.1083/jcb.200612046.
62. Kang, J., Liu, C., and Derynck, R. (2009) New regulatory mechanisms of TGF-β receptor function, Trends Cell Biol., 19, 385-394, doi: 10.1016/j.tcb.2009.05.008.
63. Imamura, T., Oshima, Y., and Hikita, A..(2013) Regulation of TGF-β family signalling by ubiquitination and deubiquitination, J. Biochem., 154, 481-489, doi: 10.1093/jb/mvt097.
64. Zuo, W., Huang, F., Chiang, Y., Li, M., Du, J., Ding, Y., Zhang, T., Lee, H., Jeong, L., Chen, Y., Deng, H., Feng, X., Luo, S., Gao, C., and Chen, Y. (2013) C-Cbl-mediated neddylation antagonizes ubiquitination and degradation of the TGF-β type II receptor, Mol. Cell, 49, 499-510, doi: 10.1016/j.molcel.2012.12.002.
65. Zhang, L., Zhou, F., Drabsch, Y., Gao, R., Snaar-Jagalska, B., Mickanin, C., Huang, H., Sheppard, K., Porter, J., Lu, C., and Dijke, P. (2012) USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-β type i receptor, Nat. Cell Biol., 14, 717-726, doi: 10.1038/ncb2522.
66. Flotho, A., and Melchior, F. (2013) Sumoylation: a regulatory protein modification in health and disease, Annu. Rev. Biochem., 82, 357-385, doi: 10.1146/annurev-biochem-061909-093311.
67. Mu, Y., Sundar, R., Thakur, N., Ekman, M., Gudey, S., Yakymovych, M., Hermansson, A., Dimitriou, H., Bengoechea-Alonso, M., Ericsson, J., Heldin, C., and Landström, M. (2011) TRAF6 ubiquitinates TGFβ type i receptor to promote its cleavage and nuclear translocation in cancer, Nat. Commun., 2, 330, doi: 10.1038/ncomms1332.
68. Li, S. B., and Wu, J.-F. (2020) TGF-β/SMAD Signaling regulation of mesenchymal stem cells in adipocyte commitment, Rev. Stem Cell Res. Therl., 11, 41, doi: 10.1186/s13287-020-1552-y.
69. Nishita, M., Ueno, N., and Shibuya, H. (1999) Smad8B, a Smad8 splice variant lacking the SSXS site that inhibits Smad8-mediated signaling, Genes Cells, 4, 583-591, doi: 10.1046/j.1365-2443.1999.00285.x.
70. Hill, C. (2009) Nucleocytoplasmic shuttling of Smad proteins, Cell Res., 19, 36-46, doi: 10.1038/cr.2008.325.
71. Wu, M., Chen, G., and Li, Y. (2016) TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease, Bone Res., 4, 16009, doi: 10.1038/boneres.2016.9.
72. Kang, J., Alliston, T., Delston, R., and Derynck, R. (2014) Repression of Runx2 function by TGF-beta through recruitment of class II histone deacetylases by Smad3, EMBO J., 24, 2543-2555.
73. Massagué, J. (2014) TGFbeta signalling in context, Nat. Rev. Mol. Cell Biol., 13, 616-630, doi: 10.1038/nrm3434.
74. Zhang, S., Fei, T., Zhang, L., Zhang, R., Chen, F., Ning, Y., Han, Y., Feng, X., Meng, A., and Chen, Y. (2007) Smad7 antagonizes transforming growth factor signaling in the nucleus by interfering with functional Smad-DNA complex formation, Mol. Cell. Biol., 27, 4488-4499, doi: 10.1128/mcb.01636-06.
75. Gu, W., Monteiro, R., Zuo, J., Simões, F., Martella, A., Andrieu-Soler, C., Grosveld, F., Sauka-Spengler, T., and Patient, R. (2015) A novel TGFβ modulator that uncouples R-Smad/I-Smad-mediated negative feedback from R-Smad/ligand-driven positive feedback, PLoS Biol., 13, doi: 10.1371/journal.pbio.1002051.
76. Thielen, N., van der Kraan, P., and van Caam, A. (2019) TGFβ/BMP signaling pathway in cartilage homeostasis, 8, 9, doi: 10.3390/cells8090969.
77. Li, Y., Luo, W., and Yang, W. (2018) Nuclear transport and accumulation of Smad proteins studied by single-molecule microscopy, Biophys. J., 114, 2243-2251 doi: 10.1016/j.bpj.2018.03.018.
78. Jin, Q., Gao, G., and Mulder, K. (2009) Requirement of a dynein light chain in TGFβ/Smad3 signaling, J. Cell. Physiol., 221, 707-715, doi: 10.1002/jcp.21910.
79. Batut, J., Howell, M., and Hill, C. (2007) Kinesin-mediated transport of Smad2 is required for signaling in response to TGF-β ligands, Dev. Cell., 12, 261-274, doi: 10.1016/j.devcel.2007.01.010.
80. Massagué, J., Seoane, J., and Wotton, D. (2005) Smad transcription factors, Genes Dev., 19, 2783-2810, doi: 10.1101/gad.1350705.
81. Hill, C. (2016) Transcriptional control by the SMADs, Cold Spring Harbor Persp. Biol., 8, doi: 10.1101/cshperspect.a022079.
82. Qiao, B., Padilla, S., and Benya, P. (2005) Transforming growth factor (TGF)-β-activated kinase 1 mimics and mediates TGF-β-induced stimulation of type II collagen synthesis in chondrocytes independent of Col2a1 transcription and Smad3 signaling, J. Biol. Chem., 280, 17562-17571, doi: 10.1074/jbc.M500646200.
83. Bhogal, R., Stoica, C., McGaha, T., and Bona, C. (2005) Molecular aspects of regulation of collagen gene expression in fibrosis, J. Clin. Immun., 25, 592-603, doi: 10.1007/s10875-005-7827-3.
84. Bell, D., Leung, K., Wheatley, S., Ng, L., Zhou, S., Ling, K., Sham, M., Koopman, P., Tam, P., and Cheah, K. (1997) SOX9 directly regulates the type-II collagen gene, Nat. Genet., 16,174-178, doi: 10.1038/ng0697-174.
85. Sen, R., Pezoa, S., Carpio, Shull, L., Hernandez-Lagunas, L., Niswander, L., and Artinger, K. (2018) Kat2a and Kat2b acetyltransferase activity regulates craniofacial cartilage and bone differentiation in Zebrafish and mice, J. Dev. Biol., 12, doi: 10.3390/jdb6040027.
86. Chen, X., Huang, H., Wang, H., Guo, F., Du, X., Ma, L., Zhao, L., Pan, Z., Gui, H., Yuan, T., Liu, X., Song, L., Wang, Y., He, J., Lei, H., and Gao, R. (2014) Characterization of zebrafish pax1b and pax9 in fin bud development, Biomed Res. Int., 2014, 309385, doi: 10.1155/2014/309385.
87. Seoane, J., Le, H., Shen, L., Anderson, S., and Massagué, J. (2004) Integration of smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation, Cell, 117, 211-223, doi: 10.1016/S0092-8674(04)00298-3.
88. Naka, K., Hoshii, T., Muraguchi, T., Tadokoro, Y., Ooshio, T., Kondo, Y., Nakao, S., Motoyama, N., and Hirao, A. (2010) TGF-β-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia, Nature, 463, 676-680, doi: 10.1038/nature08734.
89. Kang, Y., Chen, C., and Massagué, J. (2003) A self-enabling TGFβ response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells, Mol. Cell, 11, 915-926, doi: 10.1016/S1097-2765(03)00109-6.
90. Vincent, T., Neve, E., Johnson, J., Kukalev, A., Rojo, F., Albanell, J., Pietras, K., Virtanen, I., Philipson, L., Leopold, P., Crystal, R., de Herreros, A., Moustakas, A., Pettersson, R., and Fuxe, J. (2009) A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-β mediated epithelial-mesenchymal transition, Nat. Cell Biol., 11, 943-950, doi: 10.1038/ncb1905.
91. Pardali, K., Kurisaki, A., Morén, A., ten Dijke, P., Kardassis, D., and Moustakas, A. (2000) Role of Smad proteins and transcription factor Sp1 in p21Waf1/Cip1 regulation by transforming growth factor-β, J. Biol. Chem., 275, 29244-29256, doi: 10.1074/jbc.M909467199.
92. Baugé, C., Cauvard, O., Leclercq, S., Galéra, P., and Boumédiene, K. (2011) Modulation of transforming growth factor beta signalling pathway genes by transforming growth factor beta in human osteoarthritic chondrocytes: Involvement of Sp1 in both early and late response cells to transforming growth factor beta, Arthritis Res. Ther., 13, 23, doi: 10.1186/ar3247.
93. Blaney Davidson, E., Remst, D., Vitters, E., van Beuningen, H., Blom, A., Goumans, M., van den Berg, W., and van der Kraan, P. (2009) Increase in ALK1/ALK5 ratio as a cause for elevated MMP-13 expression in osteoarthritis in humans and mice, J. Immunol., 182, 7937-7945, doi: 10.4049/jimmunol.0803991.
94. Siomi, H., and Siomi, M. (2010) Posttranscriptional regulation of microRNA biogenesis in animals, Mol. Cell, 38, 323-332, doi: 10.1016/j.molcel.2010.03.013.
95. Ha, M., and Kim, V. (2014) Regulation of microRNA biogenesis, Nat. Rev. Mol. Cell Biol., 15, 509-524, doi: 10.1038/nrm3838.
96. Blahna, M., and Hata, A. (2012) Smad-mediated regulation of microRNA biosynthesis, FEBS Lett., 586, 1906-1912, doi: 10.1016/j.febslet.2012.01.041.
97. Zhang, Y., Huang, X., and Yuan, Y. (2017) MicroRNA-410 promotes chondrogenic differentiation of human bone marrow mesenchymal stem cells through down-regulating Wnt3a, Am. J. Transl. Res., 9, 136-145.
98. Lee, S., Yoon, D., Paik, S., Lee, K., Jang, Y., and Lee, J. (2014) MicroRNA-495 Inhibits chondrogenic differentiation in human mesenchymal stem cells by targeting Sox9, Stem Cells Dev., 23, 1798-1808, doi: 10.1089/scd.2013.0609.
99. Crecente-Campo, J., Borrajo, E., Vidal, A., and Garcia-Fuentes, M., (2017) New scaffolds encapsulating TGF-β3/BMP-7 combinations driving strong chondrogenic differentiation, Eur. J. Pharm. Biopharm., 114, 69-78, doi: 10.1016/j.ejpb.2016.12.021.
100. Wang, J., Sun, B., Tian, L., He, X., Gao, Q., Wu, T., Ramakrishna, S., Zheng, J., and Mo, X. (2017) Evaluation of the potential of rhTGF- β3 encapsulated P(LLA-CL)/collagen nanofibers for tracheal cartilage regeneration using mesenchymal stems cells derived from Wharton’s jelly of human umbilical cord, Mater. Sci. Eng., 70, 637-645, doi: 10.1016/j.msec.2016.09.044.
101. Yanagawa, Y., Hiraide, S., and Iizuka, K. (2016) Isoform-specific regulation of transforming growth factor-β mRNA expression in macrophages in response to adrenoceptor stimulation, Microbiol. Immunol., 60, 56-63. doi: 10.1111/1348-0421.12344.
102. Frangogiannis, N. G. (2017) The role of transforming growth factor (TGF)-β in the infarcted myocardium, J. Thor. Dis., 9, 52-63, doi: 10.21037/jtd.2016.11.19.
103. Luo, Z., Jiang, L., Xu, Y., Li, H., Xu, W., Wu, S., Wang, Y., Tang, Z., Lv, Y., and Yang, L. (2015) Mechano growth factor (MGF) and transforming growth factor (TGF)-β3 functionalized silk scaffolds enhance articular hyaline cartilage regeneration in rabbit model, Biomaterials, 52, 463-475, doi: 10.1016/j.biomaterials.2015.01.001.
104. Yang, S. S., Jin, L. H., Park, S. H., Kim, M. S., Kim, Y. J., Choi, B. H., Lee, C. T., Park, S. R., and Min, B. H. (2016) Extracellular matrix (ECM) multilayer membrane as a sustained releasing growth factor delivery system for rhTGF-β3 in articular cartilage repair, PLoS One, 11, e0156292, doi: 10.1371/journal.pone.0156292.
105. Yang, Q., Teng, B. H., Wang, L. N., Li, K., Xu, C., Ma, X. L., Zhang, Y., Kong, D.L., Wang, L. Y., and Zhao, Y. H. (2017) Silk fibroin/cartilage extracellular matrix scaffolds with sequential delivery of TGF-β3 for chondrogenic differentiation of adipose-derived stem cells, Int. J. Nanomed., 12, 6721-6733, doi: 10.2147/IJN.S141888.
106. Wang, X., Li, Y., Han, R., He, C., Wang, G., Wang, J., Zheng, J., Pei, M., and Wei, L. (2014) Demineralized bone matrix combined bone marrow mesenchymal stem cells, bone morphogenetic protein-2 and transforming growth factor-β3 gene promoted pig cartilage defect repair, PLoS One, 9, e116061, doi: 10.1371/journal.pone.0116061.
107. Sun, Q., Zhang, L., Xu, T., Ying, J., Xia, B., Jing, H., and Tong, P. (2018) Combined use of adipose derived stem cells and TGF-β3 microspheres promotes articular cartilage regeneration in vivo, Biotech. Histochem., 93, 168-176, doi: 10.1080/10520295.2017.1401663.
108. Zhou, M., Lozano, N., Wychowaniec, J. K., Hodgkinson, T., Richardson, S. M., Kostarelos, K., and Hoyland, J. A. (2019) Graphene oxide: a growth factor delivery carrier to enhance chondrogenic differentiation of human mesenchymal stem cells in 3D hydrogels, Acta Biomater., 96, 271-280, doi: 10.1016/j.actbio.2019.07.027.
109. Rothrauff, B., Sasaki, H., Kihara, S., Overholt, K., Gottardi, R., Lin, H., Fu, F., Tuan, R., and Alexander, P. (2019) Point-of-care procedure for enhancement of meniscal healing in a goat model utilizing infrapatellar fat pad-derived stromal vascular fraction cells seeded in photocrosslinkable hydrogel, Am. J. Sports Med., 47, 3396-3405, doi: 10.1177/0363546519880468.