БИОХИМИЯ, 2020, том 85, вып. 2, с. 208–224

УДК 576.52, 576.54

Липидные рафты в биогенезе экзосом

Обзор

© 2020 Г.О. Скрябин, А.В. Комельков *, Е.Е. Савельева, Е.М. Чевкина

ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России, 115478 Москва, Россия; электронная почта: komelkov@gmail.com

Поступила в редакцию 01.10.2019
После доработки 28.11.2019
Принята к публикации 28.11.2019

DOI: 10.31857/S0320972520020050

КЛЮЧЕВЫЕ СЛОВА: экзосомы, липидные рафты, SPFH-белки, кавеолин.

Аннотация

Экзосомы, секретируемые экстраклеточные везикулы, формирующиеся в системе внутриклеточного везикулярного транспорта, играют важнейшую роль в дистанционной межклеточной коммуникации. Экзосомы переносят активные формы биомолекул различных классов, причем молекулярный состав их содержимого является результатом направленного отбора и зависит от типа клеток-продуцентов. Механизмы, лежащие в основе формирования экзосом и селекции переносимых биомолекул (экзосомального карго), до сих пор остаются не до конца понятными. Предполагается, что существует несколько путей биогенеза экзосом, хотя вопросы о независимости этих путей и их одновременном сосуществовании в клетке остаются открытыми. Наименее изученным является недавно обнаруженный механизм формирования экзосом, связанный с липидными рафтами или мембранными липидными микродоменами. В данном обзоре приведены современные представления и основные гипотезы о механизмах биогенеза и секреции экзосом и обобщены имеющиеся в настоящее время данные об участии липидных рафтов и составляющих их молекул в этом процессе. Отдельное внимание уделено анализу возможной роли в формировании экзосом рафт-образующих белков семейства SPFH, компонентов плоских рафтов, а также кавеолина, основного компонента кавеол.

Сноски

* Адресат для корреспонденции.

Финансирование

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект 18-04-00038А).

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических норм

Настоящая статья не содержит описания выполненных авторами исследований с участием людей или использованием животных в качестве объектов.

Список литературы

1. Johnstone, R.M., Adam, M., Hammond, J.R., Orr, L., and Turbide, C. (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes), J. Biol. Chem., 262, 9412–9420, doi: 10.1016/j.biocel.2011.10.005.

2. Trams, E.G., Lauter, C.J., Norman Salem, J., and Heine, U. (1981) Exfoliation of membrane ecto-enzymes in the form of micro-vesicles, Biochim. Biophys. Acta, 645, 63–70, doi: 10.1016/0005-2736(81)90512-5.

3. Harding, C., Heuser, J., and Stahl, P. (1983) Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes, J. Cell Biol., 97, 329–339, doi: 10.1083/jcb.97.2.329.

4. Yu, S., Cao, H., Shen, B., and Feng, J. (2015) Tumor-derived exosomes in cancer progression and treatment failure, Oncotarget, 6, 37151–37168, doi: 10.18632/oncotarget.6022.

5. Soung, Y.H., Nguyen, T., Cao, H., Lee, J., and Chung, J. (2015) Emerging roles of exosomes in cancer invasion and metastasis, BMB Rep., 49, 18–25 doi: 10.5483/BMBRep.2016.49.1.239.

6. Чевкина Е., Щербаков А., Журавская А., Семина С., Комельков А., Красильников М. (2016) Экзосомы и передача (эпи)генетической информации опухолевыми клетками, Успехи мол. онкологии, 2, 8–20.

7. Willms, E., Johansson, H.J., Mäger, I., Lee, Y., Blomberg, K.E.M., Sadik, M., Alaarg, A., Smith, C.I.E., Lehtiö, J., El Andaloussi, S., Wood, M.J.A., and Vader, P. (2016) Cells release subpopulations of exosomes with distinct molecular and biological properties, Sci. Rep., 6, 22519, doi: 10.1038/srep22519.

8. Baietti, M.F., Zhang, Z., Mortier, E., Melchior, A., Degeest, G., Geeraerts, A., Ivarsson, Y., Depoortere, F., Coomans, C., Vermeiren, E., Zimmermann, P., and David, G. (2012) mSyndecan-syntenin-ALIX regulates the biogenesis of exosomes, Nature Cell Biol., 14, 677–685, doi: 10.1038/ncb2502.

9. Villarroya-Beltri, C., Baixauli, F., Gutiérrez-Vázquez, C., Sánchez-Madrid, F., and Mittelbrunn, M. (2014) Sorting it out: regulation of exosome loading, Semin. Cancer Biol., 28, 3–13, doi: 10.1016/j.semcancer.2014.04.009.

10. Kowal, J., Tkach, M., and Tháry, C. (2014) Biogenesis and secretion of exosomes, Curr. Opin. Cell Biol., 29, 116–125, doi: 10.1016/j.ceb.2014.05.004.

11. Tan, S.S., Yin, Y., Lee, T., Lai, R.C., Yeo, R.W.Y., Zhang, B., Choo, A., and Lim, S.K. (2013) Therapeutic MSC exosomes are derived from lipid raft microdomains in the plasma membrane, J. Extr. Vesicles, 2, doi: 10.3402/jev.v2i0.22614.

12. Trajkovic, K., Hsu, C., Chiantia, S., Rajendran, L., Wenzel, D., Wieland, F., Schwille, P., Brügger, B., and Simons, M. (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes, Science, 319, 1244–1247, doi: 10.1126/science.1153124.

13. Stuffers, S., Sem Wegner, C., Stenmark, H., and Brech, A. (2009) Multivesicular endosome biogenesis in the absence of ESCRTs, Traffic, 10, 925–937, doi: 10.1111/j.1600-0854.2009.00920.x.

14. Van Niel, G., Charrin, S., Simoes, S., Romao, M., Rochin, L., Saftig, P., Marks, M.S., Rubinstein, E., and Raposo, G. (2011) The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis, Dev. Cell, 21, 708–721, doi: 10.1016/j.devcel.2011.08.019.

15. Phuyal, S., Hessvik, N. P., Skotland, T., Sandvig, K., and Llorente, A. (2014) Regulation of exosome release by glycosphingolipids and flotillins, FEBS J., 281, 2214–2227, doi: 10.1111/febs.12775.

16. Singer, S.J., and Nicolson, G.L. (1972) The fluid mosaic model of the structure of cell membranes, Science, 175, 720–731, doi: 10.1126/science.175.4023.720.

17. Sezgin, E., Levental, I., Mayor, S., and Eggeling, C. (2017) The mystery of membrane organization: composition, regulation and roles of lipid rafts, Nat. Rev. Mol. Cell Biol., 18, 361–374, doi: 10.1038/nrm.2017.16.

18. Lingwood, D., and Simons, K. (2010) Lipid rafts as a membrane-organizing principle, Science, 327, 46–50, doi: 10.1126/science.1174621.

19. Prior, I.A., Muncke, C., Parton, R.G., and Hancock, J.F. (2003) Direct visualization of ras proteins in spatially distinct cell surface microdomains, J. Cell Biol., 160, 165–170, doi: 10.1083/jcb.200209091.

20. Pike, L.J. (2003) Lipid rafts, J. Lipid Res., 44, 655–667, doi: 10.1194/jlr.R200021-JLR200.

21. Simons, K., and Vaz, W.L.C. (2004) Model systems, lipid rafts, and cell membranes, Ann. Rev. Biophys. Biomol. Struct., 33, 269–295, doi: 10.1146/annurev.biophys.32.110601.141803.

22. Neumann, A., Itano, M., and Jacobson, K. (2013) Understanding lipid rafts and other related membrane domains, F1000 Biol. Rep., 2, doi: 10.3410/b2-31.

23. Simons, K., and Sampaio, J.L. (2011) Membrane organization and lipid rafts, Cold Spr. Harb. Perspect. Biol., 3, 1–17, doi: 10.1101/cshperspect.a004697.

24. Pike, L.J. (2009) The challenge of lipid rafts, J. Lipid Res., 50, 323–328. doi: 10.1194/jlr.R800040-JLR200.

25. Eggeling, C., Ringemann, C., Medda, R., Schwarzmann, G., Sandhoff, K., Polyakova, S., Belov, V.N., Hein, B., Von Middendorff, C., Schönle, A., and Hell, S.W. (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell, Nature, 457, 1159–1162, doi: 10.1038/nature07596.

26. Parton, R.G. (2018) Caveolae: structure, function, and relationship to disease, Ann. Review Cell. Develop. Biol., 34, 111–136, doi: 10.1146/annurev-cellbio-100617-062737.

27. Marsh, M., and Meer, G.V. (2008) Cell biology: no ESCRTs for exosomes, Science, 319, 1191–1192, doi: 10.1126/science.1155750.

28. Strauss, K., Goebel, C., Runz, H., Möbius, W., Weiss, S., Feussner, I., Simons, M., and Schneider, A. (2010) Exosome secretion ameliorates lysosomal storage of cholesterol in niemann-pick type C disease, J. Biol. Chem., 285, 26279–26288, doi: 10.1074/jbc.M110.134775.

29. Yuyama, K., Sun, H., Mitsutake, S., and Igarashi, Y. (2012) Sphingolipid-modulated exosome secretion promotes clearance of amyloid by microglia, J. Biol. Chem., 287, 10977–10989, doi: 10.1074/jbc.M111.324616.

30. Wang, X., Yin, X., and Yang, Y. (2019) Rasal2 suppresses breast cancer cell proliferation modulated by secretory autophagy, Mol. Cell. Biochem., doi: 10.1007/s11010-019-03615-7.

31. Li, X.Q., Liu, J.T., Fan, L.L., Liu, Y., Cheng, L., Wang, F., Yu, H.Q., Gao, J., Wei, W., Wang, H., and Sun, G.P. (2016) Exosomes derived from gefitinib-treated EGFR-mutant lung cancer cells alter cisplatin sensitivity via up-regulating autophagy, Oncotarget, doi: 10.18632/oncotarget.8358.

32. Menck, K., Sönmezer, C., Worst, T.S., Schulz, M., Dihazi, G.H., Streit, F., Erdmann, G., Kling, S., Boutros, M., Binder, C., and Gross, J.C. (2017) Neutral sphingomyelinases control extracellular vesicles budding from the plasma membrane, J. Extracel. Vesicles, 6, 1378056, doi: 10.1080/20013078.2017.1378056.

33. Sonnino, S., and Prinetti, A. (2009) Sphingolipids and membrane environments for caveolin, FEBS Lett., 583, 597–606, doi: 10.1016/j.febslet.2009.01.007.

34. Zabeo, D., Cvjetkovic, A., Lässer, C., Schorb, M., Lötvall, J., and Höög, J.L. (2017) Exosomes purified from a single cell type have diverse morphology, J. Extr. Vesicles, 6, doi: 10.1080/20013078.2017.1329476.

35. Ji, H., Chen, M., Greening, D.W., He, W., Rai, A., Zhang, W., and Simpson, R.J. (2014) Deep sequencing of RNA from three different extracellular vesicle (EV) subtypes released from the human LIM1863 colon cancer cell line uncovers distinct mirna-enrichment signatures, PLoS One, 9, doi: 10.1371/journal.pone.0110314.

36. Hoshino, A., Costa-Silva, B., Shen, T.-L., Rodrigues, G., Hashimoto, A., Tesic Mark, M., Molina, H., Kohsaka, S., Di Giannatale, A., Ceder, S., Singh, S., Williams, C., Soplop, N., Uryu, K., Pharmer, L., King, T., Bojmar, L., Lyden, D. (2015) Tumour exosome integrins determine organotropic metastasis, Nature, 527, 329–335, doi: 10.1038/nature15756.

37. Sreekumar, P.G., Kannan, R., Kitamura, M., Spee, C., Barron, E., Ryan, S.J., and Hinton, D.R. (2010) αB crystallin is apically secreted within exosomes by polarized human retinal pigment epithelium and provides neuroprotection to adjacent cells, PLoS One, 5, doi: 10.1371/journal.pone.0012578.

38. Tauro, B.J., Greening, D.W., Mathias, R.A., Mathivanan, S., Ji, H., and Simpson, R.J. (2013) Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids, Mol. Cell Proteomics, 12, 587–598, doi: 10.1074/mcp.M112.021303.

39. Mittelbrunn, M., Gutiérrez-Vázquez, C., Villarroya-Beltri, C., González, S., Sánchez-Cabo, F., González, M.Á., Bernad, A., and Sánchez-Madrid, F. (2011) Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells, Nat. Commun., 2, 282, doi: 10.1038/ncomms1285.

40. Kajimoto, T., Okada, T., Miya, S., Zhang, L., and Nakamura, S.I. (2013) Ongoing activation of sphingosine 1-phosphate receptors mediates maturation of exosomal multivesicular endosomes, Nat. Commun., 4, 2712, doi: 10.1038/ncomms3712.

41. Sprong, H., Van Der Sluijs, P., and Van Meer, G. (2001) How proteins move lipids and lipids move proteins, Nat. Rev. Mol. Cell Biol., 2, 504–513, doi: 10.1038/35080071.

42. Alonso, R., Mazzeo, C., Rodriguez, M.C., Marsh, M., Fraile-Ramos, A., Calvo, V., Avila-Flores, A., Merida, I., and Izquierdo, M. (2011) Diacylglycerol kinase α regulates the formation and polarisation of mature multivesicular bodies involved in the secretion of Fas ligand-containing exosomes in T lymphocytes, Cell Death Differ., 18, 1161–1173, doi: 10.1038/cdd.2010.184.

43. Laulagnier, K., Grand, D., Dujardin, A., Hamdi, S., Vincent-Schneider, H., Lankar, D., Salles, J.P., Bonnerot, C., Perret, B., and Record, M. (2004) PLD2 is enriched on exosomes and its activity is correlated to the release of exosomes, FEBS Lett., 572, 11–14, doi: 10.1016/j.febslet.2004.06.082.

44. Simons, K., and Toomre, D. (2000) Lipid rafts and signal transduction, Nature Rev. Mol. Cell Biol., 1, 31–39, doi: 10.1038/35036052.

45. Levental, I., Grzybek, M., and Simons, K. (2010) Greasing their way: lipid modifications determine protein association with membrane rafts, Biochemistry, 49, 6305–6316, doi: 10.1021/bi100882y.

46. Tulodziecka, K., Diaz-Rohrer, B.B., Farley, M.M., Chan, R.B., Di Paolo, G., Levental, K.R., Waxham, M., and Levental, I. (2016) Remodeling of the postsynaptic plasma membrane during neural development, Mol. Biol. Cell, 27, 3480–3489, doi: 10.1091/mbc.E16-06-0420.

47. Staubach, S., and Hanisch, F.G. (2011) Lipid rafts: signaling and sorting platforms of cells and their roles in cancer, Expert Rev. Prot., 8, 263–277, doi: 10.1586/epr.11.2.

48. Yanez-Mo, M., Barreiro, O., Gordon-Alonso, M., Sala-Valdes, M., and Sanchez-Madrid, F. (2009) Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes, Trends Cell Biol., 19, 434–446, doi: 10.1016/j.tcb.2009.06.004.

49. Perez-Hernandez, D., Gutiérrez-Vázquez, C., Jorge, I., López-Martin, S., Ursa, A., Sánchez-Madrid, F., Vázquez, J., and Yañez-Mó, M. (2013) The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes, J. Biol. Chem., 288, 11649–11661, doi: 10.1074/jbc.M112.445304.

50. Buschow, S.I., Nolte-’t Hoen, E.N.M., van Niel, G., Pols, M.S., ten Broeke, T., Lauwen, M., Ossendorp, F., Melief, C.J.M., Raposo, G., Wubbolts, R., Wauben, M.H.M., and Stoorvogel, W. (2009) MHC II In dendritic cells is targeted to lysosomes or t cell-induced exosomes via distinct multivesicular body pathways, Traffic, 10, 1528–1542, doi: 10.1111/j.1600-0854.2009.00963.x.

51. Mazurov, D., Barbashova, L., and Filatov, A. (2013) Tetraspanin protein CD9 interacts with metalloprotease CD10 and enhances its release via exosomes, FEBS J., 280, 1200–1213, doi: 10.1111/febs.12110.

52. Lajoie, P., and Nabi, I.R. (2010) Lipid rafts, caveolae, and their endocytosis, Intern.Rev. Cell Mol. Biol., 282, 135–163, doi: 10.1016/S1937-6448(10)82003-9.

53. Meister, M., and Tikkanen, R. (2014) Endocytic trafficking of membrane-bound cargo: a flotillin point of view, Membranes, 4, 356–371, doi: 10.3390/membranes4030356.

54. El-Sayed, A., and Harashima, H. (2013) Endocytosis of gene delivery vectors: From clathrin-dependent to lipid raft-mediated endocytosis, Mol. Therapy, 21, 1118–1130, doi: 10.1038/mt.2013.54.

55. Huber, T.B., Schermer, B., Müller, R.U., Höhne, M., Bartram, M., Calixto, A., Hagmann, H., Reinhardt, C., Koos, F., Kunzelmann, K., Shirokova, E., Krautwurst, D., Harteneck, C., Simons, M., Pavenstädt, H., Kerjaschki, D., Thiele, C., Walz, G., Chalfie, M., and Benzing, T. (2006) Podocin and MEC-2 bind cholesterol to regulate the activity of associated ion channels, Proc. Nat. Acad. Sci. USA, 103, 17079–17086, doi: 10.1073/pnas.0607465103.

56. Nijtmans, L.G.J. (2000) Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins, EMBO J., 19, 2444–2451, doi: 10.1093/emboj/19.11.2444.

57. Steglich, G., Neupert, W., and Langer, T. (1999) Prohibitins regulate membrane protein degradation by the m-AAA protease in mitochondria, Mol. Cell Biol., 19, 3435–3442, doi: 10.1128/mcb.19.5.3435.

58. Browman, D.T., Resek, M.E., Zajchowski, L.D., and Robbins, S.M. (2006) Erlin-1 and erlin-2 are novel members of the prohibitin family of proteins that define lipid-raft-like domains of the ER, J. Cell Sci., 119, 3149–3160, doi: 10.1242/jcs.03060.

59. Jang, S.C., Crescitelli, R., Cvjetkovic, A., Belgrano, V., Bagge, R.O., Hoog, J.L., Sundfeldt, K., Ochiya, T., Kalluri, R., and Lotvall, J. (2017) A subgroup of mitochondrial extracellular vesicles discovered in human melanoma tissues are detectable in patient blood, BioRxiv, doi: 10.1101/174193.

60. Solis, G.P., Hoegg, M., Munderloh, C., Schrock, Y., Malaga-Trillo, E., Rivera-Milla, E., and Stuermer, C.A.O. (2007) Reggie/flotillin proteins are organized into stable tetramers in membrane microdomains, Biochem. J., 403, 313–322, doi: 10.1042/BJ20061686.

61. Browman, D.T., Hoegg, M.B., and Robbins, S.M. (2007) The SPFH domain-containing proteins: more than lipid raft markers, Trends Cell Biol., 17, 394–402, doi: 10.1016/j.tcb.2007.06.005.

62. Otto, G.P., and Nichols, B.J. (2011) The roles of flotillin microdomains–endocytosis and beyond, J. Cell Sci., 124, 3933–3940, doi: 10.1242/jcs.092015.

63. Зборовская И.Б., Галецкий С.А., Комельков А.В. (2016) Белки мембранных микродоменов и их участие в онкогенезе, Успехи мол. онкологии, 3, 16–29, doi: 10.17650/2313-805X-2016-3-3-16-29.

64. Glebov, O.O., Bright, N.A., and Nichols, B.J. (2006) Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells, Nat. Cell Biol., 8, 46–54, doi: 10.1038/ncb1342.

65. Frick, M., Bright, N.A., Riento, K., Bray, A., Merrified, C., and Nichols, B.J. (2007) Coassembly of flotillins induces formation of membrane microdomains, membrane curvature, and vesicle budding, Curr. Biol., 17, 1151–1156, doi: 10.1016/j.cub.2007.05.078.

66. Théry, C., Amigorena, S., Raposo, G., and Clayton, A. (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids, Curr. Protoc. Cell Biol., 30, 3.22.1–3.22.29, doi: 10.1002/0471143030.cb0322s30.

67. Skryabin, G., Komelkov, A., Galetsky, S., Akselrod, M., and Tchevkina, E. (2018) Analysis of SPFH proteins in exosomes produced by non-small cell lung cancer cells, 22 international charles heidelberger symposium on cancer research, Tomsk, Russia, pp. 99–101.

68. Langhorst, M.F., Reuter, A., Luxenhofer, G., Boneberg, E.-M., Legler, D.F., Plattner, H., and Stuermer, C.A.O. (2006) Preformed reggie/flotillin caps: stable priming platforms for macrodomain assembly in T cells, FASEB J., 20, 711–713, doi: 10.1096/fj.05-4760fje.

69. Babuke, T., Ruonala, M., Meister, M., Amaddii, M., Genzler, C., Esposito, A., and Tikkanen, R. (2009) Hetero-oligomerization of reggie-1/flotillin-2 and reggie-2/flotillin-1 is required for their endocytosis, Cell. Signalling, 21, 1287–1297, doi: 10.1016/j.cellsig.2009.03.012.

70. Rungaldier, S., Umlauf, E., Mairhofer, M., Salzer, U., Thiele, C., and Prohaska, R. (2017) Structure-function analysis of human stomatin: a mutation study, PLoS One, 12, 1–24, doi: 10.1371/journal.pone.0178646.

71. Salzer, U., and Prohaska, R. (2001) Stomatin, flotillin-1, and flotillin-2 are major integral proteins of erythrocyte lipid rafts, Blood, 97, 1141–1143.

72. Lee, J.H., Hsieh, C.F., Liu, H.W., Chen, C.Y., Wu, S.C., Chen, T.W., Hsu, C.S., Liao, Y.H., Yang, C.Y., Shyu, J.F., Fischer, W.B., and Lin, C.H. (2017) Lipid raft-associated stomatin enhances cell fusion, FASEB J., 31, 47–59, doi: 10.1096/fj.201600643R.

73. Salzer, U., Hinterdorfer, P., Hunger, U., Borken, C., and Prohaska, R. (2002) Ca++-dependent vesicle release from erythrocytes involves stomatin-specific lipid rafts, synexin (annexin VII), and sorcin, Blood, 99, 2569–2577, doi: 10.1182/blood.V99.7.2569.

74. De Gassart, A., Geminard, C., Fevrier, B., Raposo, G., and Vidal, M. (2003) Lipid raft-associated protein sorting in exosomes, Blood, 102, 4336–4344, doi: 10.1182/blood-2003-03-0871.

75. Feuk-Lagerstedt, E., Samuelsson, M., Movitz, C., Rosqvist, Å., Karlsson, A., Bergström, J., Larsson, T., Mosgoeller, W., Steiner, M., and Prohaska, R. (2002) The presence of stomatin in detergent-insoluble domains of neutrophil granule membranes, J. Leukocyte Biol., 72, 970–977, doi: 10.1189/jlb.72.5.970.

76. Salzer, U., Zhu, R., Luten, M., Isobe, H., Pastushenko, V., Perkmann, T., Hinterdorfer, P., and Bosman, G.J.C.G.M. (2008) Vesicles generated during storage of red cells are rich in the lipid raft marker stomatin, Transfusion, 48, 451–462, doi: 10.1111/j.1537-2995.2007.01549.x.

77. Скрябин Г.О., Комельков А.В., Евтушенко Е.Г., Багров Д.В., Галецкий С.A., Аксельрод М.Е., Чевкина Е.М. (2018) Анализ экзосомальных белковых маркеров в различных фракциях экстраклеточных везикул, секретируемых клетками немелкоклеточного рака легкого. Успехи молекулярной онкологии, 5, Приложение, c. 57–58.

78. Smart, E.J., Graf, G.A., McNiven, M.A., Sessa, W.C., Engelman, J.A., Scherer, P.E., Okamoto, T., and Lisanti, M.P. (1999) Caveolins, liquid-ordered domains, and signal transduction, Mol. Cell Biol., 19, 7289–7304, doi: 10.1128/mcb.19.11.7289.

79. Brown, D.A., and Rose, J.K. (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface, Cell, 68, 533–544, doi: 10.1016/0092-8674(92)90189-J.

80. Fu, P., Chen, F., Pan, Q., Zhao, X., Zhao, C., Cho, W.C.-S., and Chen, H. (2017) The different functions and clinical significances of caveolin-1 in human adenocarcinoma and squamous cell carcinoma, Onco Targets Ther., 10, 819–835, doi: 10.2147/OTT.S123912.

81. Senetta, R., Stella, G., Pozzi, E., Sturli, N., Massi, D., and Cassoni, P. (2013) Caveolin-1 as a promoter of tumour spreading: when, how, where and why, J. Cell. Mol. Med., 17, 325–336, doi: 10.1111/jcmm.12030.

82. Murata, M., Peränen, J., Schreiner, R., Wieland, F., Kurzchalia, T.V., and Simons, K. (1995) VIP21/caveolin is a cholesterol-binding protein, Proc. Nat. Acad. Sci. USA, 92, 10339–10343.

83. Drab, M., Verkade, P., Elger, M., Kasper, M., Lohn, M., Lauterbach, B., Menne, J., Lindschau, C., Mende, F., Luft, F.C., Schedl, A., Hailer, H., and Kurzchalia, T.V. (2001) Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice, Science, 293, 2449–2452, doi: 10.1126/science.1062688.

84. Pelkmans, L., and Zerial, M. (2005) Kinase-regulated quantal assemblies and kiss-and-run recycling of caveolae, Nature, 436, 128–133, doi: 10.1038/nature03866.

85. Parton, R.G., and Simons, K. (2007) The multiple faces of caveolae, Nat. Rev. Mol. Cell Biol., 8, 185–194, doi: 10.1038/nrm2122.

86. Rothberg, K.G., Heuser, J.E., Donzell, W.C., Ying, Y.S., Glenney, J.R., and Anderson, R.G.W. (1992) Caveolin, a protein component of caveolae membrane coats, Cell, 68, 673–682, doi: 10.1016/0092-8674(92)90143-Z.

87. Hill, M.M., Bastiani, M., Luetterforst, R., Kirkham, M., Kirkham, A., Nixon, S.J., Walser, P., Abankwa, D., Oorschot, V.M.J., Martin, S., Hancock, J.F., and Parton, R.G. (2008) PTRF-cavin, a conserved cytoplasmic protein required for caveola formation and function, Cell, 132, 113–124, doi: 10.1016/j.cell.2007.11.042.

88. Liu, L., and Pilch, P.F. (2008) A critical role of cavin (polymerase I and transcript release factor) in caveolae formation and organizatio, J. Biol. Chem., 283, 4314–4322, doi: 10.1074/jbc.M707890200.

89. Lajoie, P., Goetz, J.G., Dennis, J.W., and Nabi, I.R. (2009) Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane, J. Cell Biol., 185, 381–385, doi: 10.1083/jcb.200811059.

90. Sandvig, K., Kavaliauskiene, S., and Skotland, T. (2018) Clathrin-independent endocytosis: an increasing degree of complexity, Histochem. Cell Biol., 150, 107–118, doi: 10.1007/s00418-018-1678-5.

91. Kojic, L.D., Joshi, B., Lajoie, P., Le, P.U., Cox, M.E., Turbin, D.A., Wiseman, S.M., and Nabi, I.R. (2007) Raft-dependent endocytosis of autocrine motility factor is phosphatidylinositol 3-kinase-dependent in breast carcinoma cells, J. Biol. Chem., 282, 29305–29313, doi: 10.1074/jbc.M704069200.

92. Vassilieva, E.V., Gerner-Smidt, K., Ivanov, A.I., and Nusrat, A. (2008) Lipid rafts mediate internalization of β1-integrin in migrating intestinal epithelial cells, Am. J. Physiol. Gastrointest. Liver Physiol., 295, doi: 10.1152/ajpgi.00082.2008.

93. Nwosu, Z.C., Ebert, M.P., Dooley, S., and Meyer, C. (2016) Caveolin-1 in the regulation of cell metabolism: a cancer perspective, Mol. Cancer, 15, doi: 10.1186/s12943-016-0558-7.

94. Wu, P., Qi, B., Zhu, H., Zheng, Y., Li, F., and Chen, J. (2007) Suppression of staurosporine-mediated apoptosis in Hs578T breast cells through inhibition of neutral-sphingomyelinase by caveolin-1, Cancer Lett., 256, 64–72, doi: 10.1016/j.canlet.2007.05.007.

95. Veldman, R.J., Maestre, N., Aduib, O.M., Medin, J.A., Salvayre, R., and Levade, T. (2001) A neutral sphingo-myelinase resides in sphingolipid-enriched microdomains and is inhibited by the caveolin-scaffolding domain: potential implications in tumour necrosis factor signalling, Biochem. J., 355, 859–868, doi: 10.1042/bj3550859.

96. Logozzi, M., De Milito, A., Lugini, L., Borghi, M., Calabrò, L., Spada, M., Perdicchio, M., Marino, M.L., Federici, C., and Iessi, E. (2009) High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients, PLoS One, 4, doi: 10.1371/journal.pone.0005219.

97. Lazar, I., Clement, E., Ducoux-Petit, M., Denat, L., Soldan, V., Dauvillier, S., Balor, S., Burlet-Schiltz, O., Larue, L., Muller, C., and Nieto, L. (2015) Proteome characterization of melanoma exosomes reveals a specific signature for metastatic cell lines, Pigment Cell Melanoma Res., 28, 464–475, doi: 10.1111/pcmr.12380.

98. Llorente, A., de Marco, M.C., and Alonso, M. (2004) Caveolin-1 and MAL are located on prostasomes secreted by the prostate cancer PC-3 cell line, J.Cell Sci., 117, 5343–5351, doi: 10.1242/jcs.01420.

99. He, M., Qin, H., Poon, T.C.W., Sze, S.C., Ding, X., Co, N.N., Ngai, S.M., Chan, T.F., and Wong, N. (2015) Hepatocellular carcinoma-derived exosomes promote motility of immortalized hepatocyte through transfer of oncogenic proteins and RNAs, Carcinogenesis, 36, 1008–1018, doi: 10.1093/carcin/bgv081.

100. Mirzapoiazova, T., Lennon, F.E., Mambetsariev, B., Allen, M., Riehm, J., Poroyko, V.A., and Singleton, P.A. (2015) Extracellular vesicles from caveolin-enriched micro-domains regulate hyaluronan-mediated sustained vascular integrity, Intern. J. Cell Biol., 481493, doi: 10.1155/2015/481493.

101. Svensson, K.J., Christianson, H.C., Wittrup, A., Bourseau-Guilmain, E., Lindqvist, E., Svensson, L.M., Mörgelin, M., and Belting, M. (2013) Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid raft-mediated endocytosis negatively regulated by caveolin-1, J. Biol. Chem., 288, 17713–17724, doi: 10.1074/jbc.M112.445403.

102. Campos, A., Salomon, C., Bustos, R., Diaz, J., Martinez, S., Silva, V., Reyes, C., Diaz-Valdivia, N., Varas-Godoy, M., Lobos-González, L., and Quest, A.F. (2018) Caveolin-1-containing extracellular vesicles transport adhesion proteins and promote malignancy in breast cancer cell lines, Nanomedicine, 13, doi: 10.2217/nnm-2018-0094.

103. Huang, K., Fang, C., Yi, K., Liu, X., Qi, H., Tan, Y., Zhou, J., Li, Y., Liu, M., Zhang, Y., Yang, J., Zhang, J., Li, M., and Kang, C. (2018) The role of PTRF/Cavin 1 as a biomarker in both glioma and serum exosomes, Theranostics, 8, 1540–1557, doi: 10.7150/thno.22952.