БИОХИМИЯ, 2020, том 85, вып. 2, с. 197–207

УДК 577.1

Тимохинон как потенциальный нейропротектор при острых и хронических формах церебральной патологии

Обзор

© 2020 Н.К. Исаев 1,2*, Н.С. Четвериков 2, Е.В. Стельмашук 1, Е.Е. Генрихс 1, Л.Г. Хаспеков 1*, С.Н. Иллариошкин 1

Научный центр неврологии, 125367 Москва, Россия; электронная почта: nisaev61@mail.ru, khaspekleon@mail.ru

Московский государственный университет им. М.В. Ломоносова, биологический факультет, 119991 Москва, Россия

Поступила в редакцию 16.07.2019
После доработки 12.11.2019
Принята к публикации 28.11.2019

DOI: 10.31857/S0320972520020049

КЛЮЧЕВЫЕ СЛОВА: тимохинон, ишемия, болезнь Альцгеймера, болезнь Паркинсона, черепно-мозговая травма, митохондриально-адресованные антиоксиданты, нейропротекция.

Аннотация

Тимохинон является одним из основных биологически активных компонентов эфирного масла, получаемого из семян растения черного тмина (Nigella sativa). По современным данным, это вещество обладает широким спектром фармакологической активности, в том числе, и нейропротекторным действием, которое было продемонстрировано при экспериментальном моделировании ишемии/реперфузии головного мозга, болезней Альцгеймера и Паркинсона, черепно-мозговой травмы. Нейропротекторное действие тимохинона опосредуется ингибированием перекисного окисления липидов, снижением уровня провоспалительных цитокинов, поддержанием мембранного потенциала митохондрий, а также предотвращением апоптоза за счёт ингибирования каспаз 3, 8 и 9. Митохондриально-адресованные антиоксиданты, созданные на основе тимохинона, способны накапливаться в митохондриях и проявлять нейропротекторные свойства в наномолярных концентрациях. Имеющиеся в настоящее время данные показывают, что тимохинон является эффективным средством для снижения негативных последствий острых и хронических форм церебральной патологии. Поэтому необходимо более детальное исследование механизмов фармакологического действия тимохинона и его химических производных. В данной работе описана возможность использования для терапии целого ряда нейродегенеративных заболеваний как самого тимохинона, так и создаваемых на его основе препаратов направленного действия.

Сноски

* Адресат для корреспонденции.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических норм

В настоящей работе отсутствуют исследования, в которых использовали людей или животных в качестве объектов.

Список литературы

1. Ahmad, N., Ahmad, R., Alam, M.A., Samim, M., Iqbal, Z., and Ahmad, F.J. (2016) Quantification and evaluation of thymoquinone loaded mucoadhesive nanoemulsion for treatment of cerebral ischemia, Int. J. Biol. Macromol., 88, 320–332, doi: 10.1016/j.ijbiomac.2016.03.019.

2. Goyal, S.N., Prajapati, C.P., Gore, P.R., Patil, C.R., Mahajan, U.B., Sharma, C., Talla, S.P., and Ojha, S.K. (2017) Therapeutic potential and pharmaceutical development of thymoquinone: a multitargeted molecule of natural origin, Front. Pharmacol., 8, 656, doi: 10.3389/fphar.2017.00656.

3. Myers, A.L., Zhang, Y.P., Kramer, M.A., Bornmann, W.G., Kaseb, A., Yang, P., and Tran, H.T. (2012) A practical synthesis and X-ray crystallographic analysis of dithymoquinone, a photodimer of thymoquinone, Lett. Org. Chem., 9, 762–766, doi: 10.2174/157017812803901890.

4. Ragheb, A., Attia, A., Eldin, W.S., Elbarbry, F., Gazarin, S., and Shoker, A. (2009) The protective effect of thymoquinone, an anti-oxidant and anti-inflammatory agent, against renal injury: a review, Saudi J. Kidney Dis. Transpl., 20 741–752.

5. Jaarin, K., Foong, W.D., Yeoh, M.H., Kamarul, Z.Y., Qodriyah, H.M., Azman, A., Zuhair, J.S., Juliana, A.H., and Kamisah, Y. (2015) Mechanisms of the antihypertensive effects of Nigella sativa oil in L-NAME-induced hypertensive rats, Clinics (Sao Paulo), 70, 751–757, doi: 10.6061/clinics/2015(11)07.

6. Keyhanmanesh, R., Boskabady, M.H., Khamneh, S., and Doostar, Y. (2010) Effect of thymoquinone on the lung pathology and cytokine levels of ovalbumin-sensitized guinea pigs, Pharmacol. Rep., 62, 910–916.

7. Bamosa, A.O., Kaatabi, H., Lebdaa, F.M., Elq, A.M., and Al-Sultanb, A. (2010) Effect of Nigella sativa seeds on the glycemic control of patients with type 2 diabetes mellitus, Indian J. Physiol. Pharmacol., 54, 344–354.

8. Kaseb, A.O., Chinnakannu, K., Chen, D., Sivanandam, A., Tejwani, S., Menon, M., Dou, Q.P., and Reddy, G.P. (2007) Androgen receptor and E2F-1 targeted thymoquinone therapy for hormone-refractory prostate cancer, Cancer Res., 67, 7782–7788, doi: 10.1158/0008-5472.CAN-07-1483.

9. Darakhshan, S., Bidmeshki Pour, A., Hosseinzadeh Colagar, A., and Sisakhtnezhad, S. (2015) Thymoquinone and its therapeutic potentials, Pharmacol. Res., 95, 138–158, doi: 10.1016/j.phrs.2015.03.011.

10. Gholamnezhad, Z., Havakhah, S., and Boskabady, M.H. (2016) Preclinical and clinical effects of Nigella sativa and its constituent, thymoquinone: a review, J.Ethnopharmacol., 190, 372–386, doi: 10.1016/j.jep.2016.06.061.

11. Farkhondeh, T., Samarghandian, S., Shahri, A.M.P., and Samini, F. (2018) The neuroprotective effects of thymoquinone: a review, Dose Response, 16, doi: 10.1177/1559325818761455.

12. Beheshti, F., Hosseini, M., Vafaee, F., Shafei, M.N., and Soukhtanloo, M. (2015) Feeding of Nigella sativa during neonatal and juvenile growth improves learning and memory of rats, J. Tradit. Complement. Med., 6, 146–152, doi: 10.1016/j.jtcme.2014.11.039.

13. Sahak, M.K., Kabir, N., Abbas, G., Draman, S., Hashim, N.H., and Hasan Adli, D.S. (2016) The role of Nigella sativa and its active constituents in learning and memory, Evid. Based Complement. Alternat. Med., 2016, 6075679, doi: 10.1155/2016/6075679.

14. Shao, Y.Y., Li, B., Huang, Y.M., Luo, Q., Xie, Y.M., and Chen, Y.H. (2017) Thymoquinone attenuates brain injury via an anti-oxidative pathway in a status epilepticus rat model, Transl. Neurosci., 8, 9–14, doi: 10.1515/tnsci-2017-0003.

15. Ullah, I., Ullah, N., Naseer, M.I., Lee, H.Y., and Kim, M.O. (2012) Neuroprotection with metformin and thymoquinone against ethanol-induced apoptotic neurodegeneration in prenatal rat cortical neurons, BMC Neurosci., 13, 11, doi: 10.1186/1471-2202-13-11.

16. Hamdan, A.M., Al-Gayyar, M.M., Shams, M.E.E., Alshaman, U.S., Prabahar, K., Bagalagel, A., Diri, R., Noor, A.O., and Almasri, D. (2019) Thymoquinone therapy remediates elevated brain tissue inflammatory mediators induced by chronic administration of food preservatives, Sci. Rep., 9, 7026, doi: 10.1038/s41598-019-43568-x.

17. Kassab, R.B., and El-Hennamy, R.E. (2017) The role of thymoquinone as a potent antioxidant in ameliorating the neurotoxic effect of sodium arsenate in female rat, Egypt J. Basic Apl. Neurosci., 4, 160–167, doi: 10.1016/j.ejbas.2017.07.002.

18. Firdaus, F., Zafeer, M.F., Waseem, M., Ullah, R., Ahmad, M., and Afzal, M. (2018) Thymoquinone alleviates arsenic induced hippocampal toxicity and mitochondrial dysfunction by modulating mPTP in Wistar rats, Biomed. Pharmacother., 102, 1152–1160, doi: 10.1016/j.biopha.2018.03.159.

19. Firdaus, F., Zafeer, M.F., Anis, E., Ahmad, F., Hossain, M.M., Ali, A., and Afzal, M. (2019) Evaluation of phyto-medicinal efficacy of thymoquinone against arsenic induced mitochondrial dysfunction and cytotoxicity in SH-SY5Y cells, Phytomedicine, 54, 224–230, doi: 10.1016/j.phymed.2018.09.197.

20. Mehri, S., Shahi, M., Razavi, B.M., Hassani, F.V., and Hosseinzadeh, H. (2014) Neuroprotective effect of thymoquinone in acrylamide-induced neurotoxicity in Wistar rats, Iran. J. Basic Med. Sci., 17, 1007–1011.

21. Tabeshpour, J., Mehri, S., Abnous, K., and Hosseinzadeh, H. (2019) Neuroprotective effects of thymoquinone in acrylamide-induced peripheral nervous system toxicity through MAPKinase and apoptosis pathways in rat, Neurochem. Res., 44, 1101–1112, doi: 10.1007/s11064-019-02741-4.

22. Kanter, M. (2008) Nigella sativa and derived thymoquinone prevents hippocampal neurodegeneration after chronic toluene exposure in rats, Neurochem. Res., 33, 579–588, doi: 10.1007/s11064-007-9481-z.

23. Kanter, M. (2011) Protective effects of thymoquinone on the neuronal injury in frontal cortex after chronic toluene exposure, J. Mol. Hist., 42, 39–46, doi: 10.1007/s10735-010-9305-3.

24. Samarghandian, S., Farkhondeh, T., and Samini, F. (2018) A review on possible therapeutic effect of Nigella sativa and thymoquinone in neurodegenerative diseases, CNS Neurol. Disord. Drug. Targets, 17, 412–420, doi: 10.2174/1871527317666180702101455.

25. Severina, I.I., Severin, F.F., Korshunova, G.A., Sumbatyan, N.V., Ilyasova, T.M., Simonyan, R.A., Rogov, A.G., Trendeleva, T.A., Zvyagilskaya, R.A., Dugina, V.B., Domnina, L.V., Fetisova, E.K., Lyamzaev, K.G., Vyssokikh, M.Y., Chernyak, B.V., Skulachev, M.V., Skulachev, V.P., and Sadovnichii, V.A. (2013) In search of novel highly active mitochondria-targeted antioxidants: thymoquinone and its cationic derivatives, FEBS Lett., 587, 2018–2024, doi: 10.1016/j.febslet.2013.04.043.

26. Dewan, M.C., Rattani, A., Gupta, S., Baticulon, R.E., Hung, Y.C., Punchak, M., Agrawal, A., Adeleye, A.O., Shrime, M.G., Rubiano, A.M., Rosenfeld, J.V., and Park, K.B. (2017) Estimating the global incidence of traumatic brain injury, J. Neurosurg., 1, 1–18, doi: 10.3171/2017.10.JNS17352.

27. Juurlink, B.H., and Paterson, P.G. (1998) Review of oxidative stress in brain and spinal cord injury: suggestions for pharmacological and nutritional management strategies, J. Spinal Cord Med., 21, 309–334.

28. Pointer, C.B., and Klegeris, A. (2017) Cardiolipin in central nervous system physiology and pathology, Cell. Mol. Neurobiol., 37, 1161–1172, doi: 10.1007/s10571-016-0458-9.

29. Niizuma, K., Yoshioka, H., Chen, H., Kim, G.S., Jung, J.E., Katsu, M., Okami, N., and Chan, P.H. (2010) Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia, Biochim. Biophys. Acta, 1802, 92–99, doi: 10.1016/j.bbadis.2009.09.002.

30. Gupta, R., and Sen, N. (2016) Traumatic brain injury: a risk factor for neurodegenerative diseases, Rev. Neurosci., 27, 93–100, doi: 10.1515/revneuro-2015-0017.

31. Shively, S., Scher, A.I., Perl, D.P., and Diaz-Arrastia, R. (2012) Dementia resulting from traumatic brain injury: what is the pathology? Arch. Neurol., 69, 1245–1251, doi: 10.1001/archneurol.2011.3747.

32. Walker, K.R., Kang, E.L., Whalen, M.J., Shen, Y., and Tesco, G. (2012). Depletion of GGA1 and GGA3 mediates post injury elevation of BACE1, J. Neurosci., 32, 10423–10437, doi: 10.1523/JNEUROSCI.5491-11.2012.

33. Gülşen, İ., Ak, H., Çölçimen, N., Alp, H.H., Akyol, M.E., Demir, İ., Atalay, T., Balahroğlu, R., and Rağbetli, M.Ç. (2016) Neuroprotective effects of thymoquinone on the hippocampus in a rat model of traumatic brain injury, World Neurosurg., 86, 243–249, doi: 10.1016/j.wneu.2015.09.052.

34. Üstün, N., Aras, M., Ozgur, T., Bayraktar, H.S., Sefil, F., Ozden, R., and Yagiz, A.E. (2014) Thymoquinone attenuates trauma induced spinal cord damage in an animal model, Ulus. Travma Acil. Cerrahi Derg., 20, 328–332, doi: 10.5505/tjtes.2014.05021.

35. Oskouei, Z., Akaberi, M., and Hosseinzadeh, H. (2018) A glance at black cumin (Nigella sativa) and its active constituent, thymoquinone, in ischemia: a review, Iran. J. Basic. Med. Sci., 21, 1200–1209, doi: 10.22038/ijbms.2018.31703.7630.

36. Donnan, G.A., Fisher, M., Macleod, M., and Davis, S.M. (2008) Stroke, Lancet, 371, 1612–1623, doi: 10.1016/S0140-6736(08)60694-7.

37. Корчагин В.И., Миронов К.О., Дрибноходова О.П., Максимова М.Ю., Иллариошкин С.Н., Танашян М.М., Платонов, А.Е., Шипулин Г.А., Раскуражев А.А., Пирадов М.А. (2016) Роль генетических факторов в формировании индивидуальной предрасположенности к ишемическому инсульту, Анналы клин. эксп. неврологии, 10, 65–75.

38. Стельмашук Е.В. (2012) Механизмы повреждения и защита нейронов головного мозга при экспериментальном моделировании ишемии. Диc. докт. биол. наук, ГУ НИИ морфологии человека РАМН, Моcква.

39. Al-Majed, A.A., Al-Omar, F.A., and Nagi, M.N. (2006) Neuroprotective effects of thymoquinone against transient forebrain ischemia in the rat hippocampus, Eur. J. Pharmacol., 543, 40–47, doi: 10.1016/j.ejphar.2006.05.046.

40. Hosseinzadeh, H., Parvardeh, S., Asl, M.N., Sadeghnia, H.R., and Ziaee, T. (2007) Effect of thymoquinone and Nigella sativa seeds oil on lipid peroxidation level during global cerebral ischemia-reperfusion injury in rat hippocampus, Phytomedicine, 14, 621–627, doi: 10.1016/j.phymed.2006.12.005.

41. Xiao, X.Y., Zhu, Y.X., Bu, J.Y., Li, G.W., Zhou, J.H., and Zhou, S.P. (2016) Evaluation of neuroprotective effect of thymoquinone nanoformulation in the rodent cerebral ischemia-reperfusion model, Biomed. Res. Int., 2016, 2571060, doi: 10.1155/2016/2571060.

42. Ramachandran, S., and Thangarajan, S. (2018) Thymoquinone loaded solid lipid nanoparticles counteracts 3-nitropropionic acid induced motor impairments and neuroinflammation in rat model of Huntington’s disease, Metab. Brain Dis., 33, 1459–1470, doi: 10.1007/s11011-018-0252-0.

43. Jakaria, M., Cho, D.Y., Ezazul Haque, M., Karthivashan, G., Kim, I.S., Ganesan, P., and Choi, D.K. (2018) Neuropharmacological potential and delivery prospects of thymoquinone for neurological disorders, Oxid. Med. Cell. Longev., 2018, 1209801, doi: 10.1155/2018/1209801.

44. Gökce, E.C., Kahveci, R., Gökce, A., Cemil, B., Aksoy, N., Sargon, M.F., Kisa, Ü., Erdoğan, B., Güvenç, Y., Alagöz, F., and Kahveci, O. (2016) Neuroprotective effects of thymoquinone against spinal cord ischemia-reperfusion injury by attenuation of inflammation, oxidative stress, and apoptosis, J. Neurosurg. Spine, 24, 949–959, doi: 10.3171/2015.10.SPINE15612.

45. Иллариошкин С.Н., Власенко А.Г., Федотова Е.Ю. (2013) Современные возможности идентификации латентной стадии нейродегенеративного процесса, Анналы клин. эксп. неврологии, 7, 39–50.

46. Bonin-Guillaume, S., Zekry, D., Giacobini, E., Gold, G., and Michel, J.P. (2005) The economical impact of dementia, Presse Med., 34, 35–41.

47. Стельмашук Е.В., Исаев Н.К., Генрихс Е.Е., Амелькина Г.А., Хаспеков Л.Г., Скребицкий В.Г., Иллариошкин С.Н. (2014) Роль ионов цинка и меди в механизмах патогенеза болезней Альцгеймера и Паркинсона, Биохимия, 79, 501–508, doi: 10.1134/S0006297914050022.

48. Selkoe, D.J. (2002) Alzheimer’s disease is a synaptic failure, Science, 298, 789–791, doi: 10.1126/science.1074069.

49. Kimura, M., Akasofu, S., Ogura, H., and Sawada, K. (2005) Protective effect of donepezil against Abeta(1-40) neurotoxicity in rat septal neurons, Brain Res., 1047, 72–84, doi: 10.1016/j.brainres.2005.04.014.

50. Капай Н.А., Исаев Н.К., Стельмашук Е.В., Попова О.В., Зоров Д.Б., Скребицкий В.Г., Скулачев В.П. (2011) Митохондриально-адресованное производное пластохинона, антиоксидант SKQR1, введенный in vivo, предотвращает нарушение длительной потенциации, вызванное β-амилоидом в срезах гиппокампа, Биохимия, 76, 1695–1699, doi: 10.1134/S0006297911120108.

51. Skulachev, V.P., Isaev, N.K., Kapay, N.A., Popova, O.V., Stelmashook, E.V., Lyamzaev, K.G., Scharonova, I.N., Zorov, D.B., and Skrebitsky, V.G. (2014) Mitochondria-targeted antioxidants and Alzheimer’s disease, in Aging. Oxidative Stress and Dietary Antioxidants. (V. R. Preedy, ed.) Academic Press, N.Y., pp. 195–201, doi: 10.1016/B978-0-12-405933-7.00019-6.

52. Cascella, M., Bimonte, S., Barbieri, A., Del Vecchio, V., Muzio, M.R., Vitale, A., Benincasa, G., Ferriello, A.B., Azzariti, A., Arra, C., and Cuomo, A. (2018) Dissecting the potential roles of Nigella sativa and its constituent thymoquinone on the prevention and on the progression of Alzheimer’s disease, Front. Aging Neurosci., 10,16, doi: 10.3389/fnagi.2018.00016.

53. Khan, A., Vaibhav, K., Javed, H., Khan, M.M., Tabassum, R., Ahmed, M.E., Srivastava, P., Khuwaja, G., Islam, F., Siddiqui, M.S., and Shafi, M.M. (2012) Attenuation of Aβ-induced neurotoxicity by thymoquinone via inhibition of mitochondrial dysfunction and oxidative stress, Mol. Cell. Biochem., 369, 55–65, doi: 10.1007/s11010-012-1557-7.

54. Kennedy, K., Tucci, M.A., and Benghuzzi, H.A. (2014) Comparison of potential preventive therapeutic agents green tea, thymoquinone, and dilinoleoylphosphatidylcholine on human neuroblastoma cells, Biomed. Sci. Instrum., 50, 132–139.

55. Alhebshi, A.H., Gotoh, M., and Suzuki, I. (2013) Thymoquinone protects cultured rat primary neurons against amyloid β-induced neurotoxicity, Biochem. Biophys. Res. Commun., 433, 362–367, doi: 10.1016/j.bbrc.2012.11.139.

56. Alhebshi, A.H., Odawara, A., Gotoh, M., and Suzuki, I. (2014) Thymoquinone protects cultured hippocampal and human induced pluripotent stem cells-derived neurons against α-synuclein-induced synapse damage, Neurosci. Lett., 570, 126–131, doi: 10.1016/j.neulet.2013.09.049.

57. Ismail, N., Ismail, M., Mazlan, M., Latiff, L.A., Imam, M.U., Iqbal, S., Azmi, N.H., Ghafar, S.A., and Chan, K.W. (2013) Thymoquinone prevents β-amyloid neurotoxicity in primary cultured cerebellar granule neurons, Cell. Mol. Neurobiol., 33, 1159–1169, doi: 10.1007/s10571-013-9982-z.

58. Ismail, N., Ismail, M., Shahid, I., and Latiff, L.A. (2013) Anti-aggregation effects of thymoquinone against Alzheimer’s β-amyloid in vitro, J. Med. Plants Res., 7, 2280–2288, doi: 10.5897/JMPR10.852.

59. Alhibshi, A.H., Odawara, A., and Suzuki, I. (2019) Neuroprotective efficacy of thymoquinone against amyloid beta-induced neurotoxicity in human induced pluripotent stem cell-derived cholinergic neurons, Biochem. Biophys. Rep., 17, 122–126, doi: 10.1016/j.bbrep.2018.12.005.

60. Dalli, T., Beker, M., Terzioglu-Usak, S., Akbas, F., and Elibol, B. (2018) Thymoquinone activates MAPK pathway in hippocampus of streptozotocin-treated rat model, Biomed. Pharmacother., 99, 391–401, doi: 10.1016/j.biopha.2018.01.047.

61. Bargi, R., Asgharzadeh, F., Beheshti, F., Hosseini, M., Sadeghnia, H.R., and Khazaei, M. (2017) The effects of thymoquinone on hippocampal cytokine level, brain oxidative stress status and memory deficits induced by lipopolysaccharide in rats, Cytokine, 96, 173–184, doi: 10.1016/j.cyto.2017.04.015.

62. Poorgholam, P., Yaghmaei, P., and Hajebrahimi, Z. (2018) Thymoquinone recovers learning function in a rat model of Alzheimer’s disease, Avicenna J. Phytomed., 8, 188–197, doi: 10.22038/ajp.2018.21828.1820.

63. Mosley, R.L., Benner, E.J., Kadiu, I., Thomas, M., Boska, M.D., Hasan, K., Laurie, C., and Gendelman, H.E. (2006) Neuroinflammation, oxidative stress and the pathogenesis of Parkinson’s disease, Clin. Neurosci. Res., 6, 261–281, doi: 10.1016/j.cnr.2006.09.006.

64. Venda, L.L., Cragg, S.J., Buchman, V.L., and Wade-Martins, R. (2010) α-Synuclein and dopamine at the crossroads of Parkinson’s disease, Trends Neurosci., 33, 559–568, doi: 10.1016/j.tins.2010.09.004.

65. Davie, C.A. (2008) A review of Parkinson’s disease, British Med. Bull., 86, 109–127, doi: 10.1093/bmb/ldn013.

66. Хаспеков Л.Г. (2018) Клеточные модели заболеваний нервной системы, Анналы клин. эксп. неврологии, 12, 70–78, doi: 10.25692/ACEN.2018.5.9.

67. Radad, K.S., Al-Shraim, M.M., Moustafa, M.F., and Rausch, W.D. (2015) Neuroprotective role of thymoquinone against 1-methyl-4-phenylpyridinium-induced dopaminergic cell death in primary mesencephalic cell culture, Neurosciences (Riyadh), 20, 10–16.

68. Zhang, Y., Fan, Y., Huang, S., Wang, G., Han, R., Lei, F., Luo, A., Jing, X., Zhao, L., Gu, S., and Zhao, X. (2018) Thymoquinone inhibits the metastasis of renal cell cancer cells by inducing autophagy via AMPK/mTOR signaling pathway, Cancer Sci., 109, 3865–3873, doi: 10.1111/cas.13808.

69. Racoma, I.O., Meisen, W.H., Wang, Q.E., Kaur, B., and Wani, A.A. (2013) Thymoquinone inhibits autophagy and induces cathepsin-mediated, caspase-independent cell death in glioblastoma cells, PLoS One, 8, e72882, doi: 10.1371/journal.pone.0072882.

70. Stelmashook, E.V., Chetverikov, N.S., Golyshev, S.A., Genrikhs, E.E., and Isaev, N.K. (2020) Thymoquinone induces mitochondrial impairment and death of cerebellar granule neurons, Biochemistry (Moscow), 85, 239–247, doi: 10.31857/S0320972520020074.

71. Radad, K., Moldzio, R., Taha, M., and Rausch, W.D. (2009) Thymoquinone protects dopaminergic neurons against MPP+ and rotenone, Phytother. Res., 23, 696–700, doi: 10.1002/ptr.2708.

72. Ardah, M.T., Merghani, M.M., and Haque, M.E. (2019) Thymoquinone prevents neurodegeneration against MPTP in vivo and modulates α-synuclein aggregation in vitro, Neurochem. Int., 128, 115–126, doi: 10.1016/j.neuint.2019.04.014.

73. Ebrahimi, S.S., Oryan, S., Izadpanah, E., and Hassanzadeh, K. (2017) Thymoquinone exerts neuroprotective effect in animal model of Parkinson’s disease, Toxicol. Lett., 276, 108–114, doi: 10.1016/j.toxlet.2017.05.018.

74. Sedaghat, R., Roghani, M., and Khalili, M. (2014) Neuroprotective effect of thymoquinone, the nigella sativa bioactive compound, in 6-hydroxydopamine-induced hemi-parkinsonian rat model, Iran. J. Pharm. Res., 13, 227–234.

75. Коршунова Г.А., Шишкина А.В., Скулачев М.В. (2017) Дизайн, синтез и некоторые аспекты биологической активности митохондриально-направленных антиоксидантов, Биохимия, 82, 998–1017, doi: 10.1134/S0006297917070021.

76. Liberman, E.A., Topaly, V.P., Tsofina, L.M., Jasaitis, A.A., and Skulachev, V.P. (1969) Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria, Nature, 222, 1076–1078, doi: 10.1038/2221076a0.

77. Skulachev, V.P., Antonenko, Y.N., Cherepanov, D.A., Chernyak, B.V., Izyumov, D.S., Khailova, L.S., Klishin, S.S., Korshunova, G.A., Lyamzaev, K.G., Pletjushkina, O.Y., Roginsky, V.A., Rokitskaya, T.I., Severin, F.F., Severina, I.I., Simonyan, R.A., Skulachev, M.V., Sumbatyan, N.V., Sukhanova, E.I., Tashlitsky, V.N., Trendeleva, T.A., Vyssokikh, M.Y., and Zvyagilskaya, R.A. (2010) Prevention of cardiolipin oxidation and fatty acid cycling as two antioxidant mechanisms of cationic derivatives of plastoquinone (SkQs), Biochim. Biophys. Acta, 1797, 878–889, doi: 10.1016/j.bbabio.2010.03.015.

78. Goleva, T.N., Rogov, A.G., Korshunova, G.A., Trendeleva, T.A., Mamaev, D.V., Aliverdieva, D.A., and Zvyagilskaya, R.A. (2019) SkQThy, a novel and promising mitochondria-targeted antioxidant, Mitochondrion, 49, 206–216, doi: 10.1016/j.mito.2019.09.001.

79. Silachev, D.N., Isaev, N.K., Pevzner, I.B., Zorova, L.D., Stelmashook, E.V., Novikova, S.V., Plotnikov, E.Y., Skulachev, V.P., and Zorov, D.B. (2012) The mitochondria-targeted antioxidants and remote kidney preconditioning ameliorate brain damage through kidney-to-brain cross-talk, PLoS One, 7, 12, e51553, doi: 10.1371/journal.pone.0051553.

80. Genrikhs, E.E., Stelmashook, E.V., Popova, O.V., Kapay, N.A., Korshunova, G.A., Sumbatyan, N.V., Skrebitsky, V.G., Skulachev, V.P., and Isaev, N.K. (2015) Mitochondria-targeted antioxidant SkQT1 decreases trauma-induced neurological deficit in rat and prevents amyloid-β-induced impairment of long-term potentiation in rat hippocampal slices, J. Drug Target., 23, 347–352, doi: 10.3109/1061186X.2014.997736.

81. Silachev, D.N., Plotnikov, E.Y., Zorova, L.D., Pevzner, I.B., Sumbatyan, N.V., Korshunova, G.A., Gulyaev, M.V., Pirogov, Y.A., Skulachev, V.P., and Zorov, D.B. (2015) Neuroprotective effects of mitochondria-targeted plastoquinone and thymoquinone in a rat model of brain ischemia/reperfusion injury, Molecules, 20, 14487–14503, doi: 10.3390/molecules200814487.

82. Isaev, N.K., Stelmashook, E.V., Genrikhs, E.E., Korshunova, G.A., Sumbatyan, N.V., Kapkaeva, M.R., and Skulachev, V.P. (2016) Neuroprotective properties of mitochondria-targeted antioxidants of the SkQ-type, Rev. Neurosci., 27, 849–855, doi: 10.1515/revneuro-2016-0036.

83. Stelmashook, E.V., Isaev, N.K., Genrikhs, E.E., and Novikova, S.V. (2019) Mitochondria-targeted antioxidants as potential therapy for the treatment of traumatic brain injury, Antioxidants (Basel), 8, 5,124, doi: 10.3390/antiox8050124.

84. Ma, T., Hoeffer, C.A., Wong, H., Massaad, C.A., Zhou, P., Iadecola, C., Murphy, M.P., Pautler, R.G., and Klann, E. (2011) Amyloid β-induced impairments in hippocampal synaptic plasticity are rescued by decreasing mitochondrial superoxide, J. Neurosci., 31, 5589–5595, doi: 10.1523/JNEUROSCI.6566-10.2011.