БИОХИМИЯ, 2020, том 85, вып. 2, с. 165–173
УДК 577.21
Протеогеномика единичных клеток – ближайшая перспектива
Обзор
1 Российский национальный исследовательский медицинский университет им. Н.И. Пирогова, 117997 Москва, Россия; электронная почта: smosh@mail.ru
2 Научно-исследовательский институт биомедицинской химии им. В.Н. Ореховича, 119121 Москва, Россия
3 Институт энергетических проблем химической физики им. В.Л. Тальрозе, Федеральный исследовательский центр химической физики им. Н.Н. Семенова РАН, 119334 Москва, Россия
Поступила в редакцию 15.10.2019
После доработки 11.11.2019
Принята к публикации 11.11.2019
DOI: 10.31857/S0320972520020025
КЛЮЧЕВЫЕ СЛОВА: протеомика, транскриптомика, протеогеномика, анализ единичных клеток, таргетная массовая метка (TMT), масс-спектрометрия.
Аннотация
Технические достижения в области геномных технологий последних лет привели к взрывному росту исследований живых систем на уровне единичных клеток в масштабах целых транскриптомов. В обзоре представлено как вслед за транскриптомикой свой путь в анализе единичных клеток начинает протеомика. Уже появились первые работы по использованию хроматомасс-спектрометрического анализа полных протеомов на отдельных клетках. Разделение клеток в них осуществляют по аналогии с транскриптомным анализом, например, методом клеточного сортинга, а масс-спектрометрический анализ проводят с помощью модифицированного метода тандемных массовых меток. Объединение результатов транскриптомного и протеомного анализа в рамках протеогеномного подхода к молекулярному профилированию анализируемых клеток улучшит понимание механизмов клеточного взаимодействия как при развитии организмов, так и в различных патологиях.
Текст статьи
Сноски
* Адресат для корреспонденции.
Финансирование
Работа выполнена при финансовой поддержке РНФ (грант 17-15-01229).
Конфликт интересов
Авторы заявляют об отсутствии конфликта интересов.
Соблюдение этических норм
Настоящая работа не содержит описания исследований, выполненных с участием людей или использованием животных в качестве объектов.
Список литературы
1. Horgan, R.P., and Kenny, L.C. (2011) “Omic” technologies: genomics, transcriptomics, proteomics and metabolomics, Obstet. Gynaecol., 13, 189–195, doi: 10.1576/toag.13.3.189.27672.
2. Geyer, P.E., Voytik, E., Treit, P. V, Doll, S., Kleinhempel, A., Niu, L., Müller, J.B., Buchholtz, M., Bader, J.M., Teupser, D., Holdt, L.M., and Mann, M. (2019) Plasma proteome profiling to detect and avoid sample-related biases in biomarker studies, EMBO Mol. Med., doi: 10.15252/emmm.201910427.
3. Banfalvi, G. (2011) Overview of cell synchronization, Methods Mol. Biol., 761, 1–23, doi: 10.1007/978-1-61779-182-6_1.
4. Emmert-Buck, M.R., Bonner, R.F., Smith, P.D., Chuaqui, R.F., Zhuang, Z., Goldstein, S.R., Weiss, R.A., and Liotta, L.A. (1996) Laser capture microdissection, Science, 274, 998–1001, doi: 10.1126/science.274.5289.998.
5. Ziegenhain, C., Vieth, B., Parekh, S., Reinius, B., Guillaumet-Adkins, A., Smets, M., Leonhardt, H., Heyn, H., Hellmann, I., and Enard, W. (2017) Compara-tive analysis of single-cell RNA sequencing methods, Mol. Cell, 65, 631–643, doi: 10.1016/j.molcel.2017.01.023.
6. Lee, J.H., Daugharthy, E.R., Scheiman, J., Kalhor, R., Yang, J.L., Ferrante, T.C., Terry, R., Jeanty, S.S.F., Li, C., Amamoto, R., Peters, D.T., Turczyk, B.M., Marblestone, A.H., Inverso, S.A., Bernard, A., Mali, P., Rios, X., Aach, J., and Church, G.M. (2014) Highly multiplexed subcellular RNA sequencing in situ, Science, 343, 1360–1363, doi: 10.1126/science.1250212.
7. Lee, J.H., Daugharthy, E.R., Scheiman, J., Kalhor, R., Ferrante, T.C., Terry, R., Turczyk, B.M., Yang, J.L., Lee, H.S., Aach, J., Zhang, K., and Church, G.M. (2015) Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues, Nat. Protoc., 10, 442–458, doi: 10.1038/nprot.2014.191.
8. Picelli, S., Faridani, O.R., Björklund, Å.K., Winberg, G., Sagasser, S., and Sandberg, R. (2014) Full-length RNA-seq from single cells using Smart-seq2, Nat. Protoc., 9, 171–181, doi: 10.1038/nprot.2014.006.
9. Valihrach, L., Androvic, P., and Kubista, M. (2018) Platforms for single-cell collection and analysis, Int. J. Mol. Sci., 19, 807, doi: 10.3390/ijms19030807.
10. Zheng, G.X.Y., Terry, J.M., Belgrader, P., Ryvkin, P., Bent, Z.W., Wilson, R., Ziraldo, S.B., Wheeler, T.D., McDermott, G.P., Zhu, J., Gregory, M.T., Shuga, J., Montesclaros, L., Underwood, J.G., Masquelier, D.A., Nishimura, S.Y., Schnall-Levin, M., Wyatt, P.W., Hindson, C.M., Bharadwaj, R., Wong, A., Ness, K.D., Beppu, L.W., Deeg, H.J., McFarland, C., Loeb, K.R., Valente, W.J., Ericson, N.G., Stevens, E.A., Radich, J.P., Mikkelsen, T.S., Hindson, B.J., and Bielas, J.H. (2017) Massively parallel digital transcriptional profiling of single cells, Nat. Commun., 8, 14049, doi: 10.1038/ncomms14049.
11. Islam, S., Zeisel, A., Joost, S., La Manno, G., Zajac, P., Kasper, M., Lönnerberg, P., and Linnarsson, S. (2014) Quantitative single-cell RNA-seq with unique molecular identifiers, Nat. Methods, 11, 163–166, doi: 10.1038/nmeth.2772.
12. Zhang, X., Li, T., Liu, F., Chen, Y., Yao, J., Li, Z., Huang, Y., and Wang, J. (2019) Comparative analysis of droplet-based ultra-high-throughput single-cell RNA-seq systems, Mol. Cell, 73, 130–142, doi: 10.1016/j.molcel.2018.10.020.
13. Soldatov, R., Kaucka, M., Kastriti, M.E., Petersen, J., Chontorotzea, T., Englmaier, L., Akkuratova, N., Yang, Y., Häring, M., Dyachuk, V., Bock, C., Farlik, M., Piacentino, M.L., Boismoreau, F., Hilscher, M.M., Yokota, C., Qian, X., Nilsson, M., Bronner, M.E., Croci, L., Hsiao, W.-Y., Guertin, D.A., Brunet, J.-F., Consalez, G.G., Ernfors, P., Fried, K., Kharchenko, P.V., and Adameyko, I. (2019) Spatiotemporal structure of cell fate decisions in murine neural crest, Science, 364, 9536, doi: 10.1126/science.aas9536.
14. La Manno, G., Soldatov, R., Zeisel, A., Braun, E., Hochgerner, H., Petukhov, V., Lidschreiber, K., Kastriti, M.E., Lönnerberg, P., Furlan, A., Fan, J., Borm, L.E., Liu, Z., van Bruggen, D., Guo, J., He, X., Barker, R., Sundström, E., Castelo-Branco, G., Cramer, P., Adameyko, I., Linnarsson, S., and Kharchenko, P.V. (2018) RNA velocity of single cells, Nature, 560, 494–498, doi: 10.1038/s41586-018-0414-6.
15. Burgess, D.J. (2018) Full speed ahead for single-cell analysis, Nat. Rev. Genet., 19, 668–669, doi: 10.1038/s41576-018-0049-3.
16. Hodge, R.D., Bakken, T.E., Miller, J.A., Smith, K.A., Barkan, E.R., Graybuck, L.T., Close, J.L., Long, B., Johansen, N., Penn, O., Yao, Z., Eggermont, J., Höllt, T., Levi, B.P., Shehata, S.I., Aevermann, B., Beller, A., Bertagnolli, D., Brouner, K., Casper, T., Cobbs, C., Dalley, R., Dee, N., Ding, S.-L., Ellenbogen, R.G., Fong, O., Garren, E., Goldy, J., Gwinn, R.P., Hirschstein, D., Keene, C.D., Keshk, M., Ko, A.L., Lathia, K., Mahfouz, A., Maltzer, Z., McGraw, M., Nguyen, T.N., Nyhus, J., Ojemann, J.G., Oldre, A., Parry, S., Reynolds, S., Rimorin, C., Shapovalova, N. V, Somasundaram, S., Szafer, A., Thomsen, E.R., Tieu, M., Quon, G., Scheuermann, R.H., Yuste, R., Sunkin, S.M., Lelieveldt, B., Feng, D., Ng, L., Bernard, A., Hawrylycz, M., Phillips, J.W., Tasic, B., Zeng, H., Jones, A.R., Koch, C., and Lein, E.S. (2019) Conserved cell types with divergent features in human versus mouse cortex, Nature, 573, 61–68, doi: 10.1038/s41586-019-1506-7.
17. Khrameeva, E., Kurochkin, I., Han, D., Guijarro, P., Kanton, S., Santel, M., Qian, Z., Rong, S., Mazin, P., Bulat, M., Efimova, O., Tkachev, A., Guo, S., Sherwood, C.C., Camp, J.G., Paabo, S., Treutlein, B., and Khaitovich, P. (2019) Single-cell-resolution transcriptome map of human, chimpanzee, bonobo, and macaque brains, bioRxiv, 764936, doi: 10.1101/764936.
18. Shekhar, K., and Menon, V. (2019) Identification of cell types from single-cell transcriptomic data, Methods Mol. Biol., 1935, 45–77, doi: 10.1007/978-1-4939-9057-3_4.
19. Archakov, A., Ivanov, Y., Lisitsa, A., and Zgoda, V. (2009) Biospecific irreversible fishing coupled with atomic force microscopy for detection of extremely low-abundant proteins, Proteomics, 9, 1326–1343, doi: 10.1002/pmic.200800598.
20. Aymoz, D., Wosika, V., Durandau, E., and Pelet, S. (2016) Real-time quantification of protein expression at the single-cell level via dynamic protein synthesis translocation reporters, Nat. Commun., 7, 11304, doi: 10.1038/ncomms11304.
21. Fulwyler, M.J. (1965) Electronic separation of biological cells by volume, Science, 150, 910–911, doi: 10.1126/science.150.3698.910.
22. Picot, J., Guerin, C.L., Le Van Kim, C., and Boulanger, C.M. (2012) Flow cytometry: retrospective, fundamentals and recent instrumentation, Cytotechnology, 64, 109–130, doi: 10.1007/s10616-011-9415-0.
23. Hughes, A.J., Spelke, D.P., Xu, Z., Kang, C.-C., Schaffer, D. V, and Herr, A.E. (2014) Single-cell western blotting, Nat. Methods, 11, 749–755, doi: 10.1038/nmeth.2992.
24. Bendall, S.C., Simonds, E.F., Qiu, P., Amir, El-ad D., Krutzik, P.O., Finck, R., Bruggner, R. V., Melamed, R., Trejo, A., Ornatsky, O.I., Balderas, R.S., Plevritis, S.K., Sachs, K., Pe’er, D., Tanner, S.D., and Nolan, G.P. (2011) Single-cell mass cytometry of differential immune and drug responses across human hematopoietic continuum, Science, 332, 687–696, doi: 10.1126/science.1198704.
25. Palii, C.G., Cheng, Q., Gillespie, M.A., Shannon, P., Mazurczyk, M., Napolitani, G., Price, N.D., Ranish, J.A., Morrissey, E., Higgs, D.R., and Brand, M. (2019) Single-cell proteomics reveal that quantitative changes in co-expressed lineage-specific transcription factors determine cell fate, Cell Stem Cell, 24, 812–820, doi: 10.1016/j.stem.2019.02.006.
26. Marcon, E., Jain, H., Bhattacharya, A., Guo, H., Phanse, S., Pu, S., Byram, G., Collins, B.C., Dowdell, E., Fenner, M., Guo, X., Hutchinson, A., Kennedy, J.J., Krastins, B., Larsen, B., Lin, Z.-Y., Lopez, M.F., Loppnau, P., Miersch, S., Nguyen, T., Olsen, J.B., Paduch, M., Ravichandran, M., Seitova, A., Vadali, G., Vogelsang, M.S., Whiteaker, J.R., Zhong, G., Zhong, N., Zhao, L., Aebersold, R., Arrowsmith, C.H., Emili, A., Frappier, L., Gingras, A.-C., Gstaiger, M., Paulovich, A.G., Koide, S., Kossiakoff, A.A., Sidhu, S.S., Wodak, S.J., Gräslund, S., Greenblatt, J.F., and Edwards, A.M. (2015) Assessment of a method to characterize antibody selectivity and specificity for use in immunoprecipitation, Nat. Methods, 12, 725–731, doi: 10.1038/nmeth.3472.
27. Coscia, F., Watters, K.M., Curtis, M., Eckert, M.A., Chiang, C.Y., Tyanova, S., Montag, A., Lastra, R.R., Lengyel, E., and Mann, M. (2016) Integrative proteomic profiling of ovarian cancer cell lines reveals precursor cell associated proteins and functional status, Nat. Commun., 7, 12645, doi: 10.1038/ncomms12645.
28. Kaur, P., and O’Connor, P.B. (2007) Quantitative determination of isotope ratios from experimental isotopic distributions, Anal. Chem., 79, 1198–1204, doi: 10.1021/ac061535z.
29. Ho, B., Baryshnikova, A., and Brown, G.W. (2018) Unification of protein abundance datasets yields a quantitative Saccharomyces cerevisiae proteome, Cell Syst., 6, 192–205, doi: 10.1016/j.cels.2017.12.004.
30. Siwiak, M., and Zielenkiewicz, P. (2013) Transimulation – protein biosynthesis web service, PLoS One, 8, e73943, doi: 10.1371/journal.pone.0073943.
31. Virant-Klun, I., Leicht, S., Hughes, C., and Krijgsveld, J. (2016) Identification of maturation-specific proteins by single-cell proteomics of human oocytes, Mol. Cell. Proteomics, 15, 2616–2627, doi: 10.1074/mcp.M115.056887.
32. Sun, L., Dubiak, K.M., Peuchen, E.H., Zhang, Z., Zhu, G., Huber, P.W., and Dovichi, N.J. (2016) Single cell proteomics using frog ( Xenopus laevis ) blastomeres isolated from early stage embryos, which form a geometric progression in protein content, Anal. Chem., 88, 6653–665, doi: 10.1021/acs.analchem.6b01921.
33. Moroz, L.L. (2018) Neurosystematics and periodic system of neurons: model vs reference species at single-cell resolution, ACS Chem. Neurosci., 9, 1884–1903, doi: 10.1021/acschemneuro.8b00100.
34. Chesnokova, E., Zuzina, A., Bal, N., Vinarskaya, A., Roshchin, M., Artyuhov, A., Dashinimaev, E., Aseyev, N., Balaban, P., and Kolosov, P. (2019) Experiments with snails add to our knowledge about the role of aPKC subfamily kinases in learning, Int. J. Mol. Sci., 20, 2117, doi: 10.3390/ijms20092117.
35. Thompson, A., Schäfer, J., Kuhn, K., Kienle, S., Schwarz, J., Schmidt, G., Neumann, T., Johnstone, R., Mohammed, A.K.A., and Hamon, C. (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS, Anal. Chem., 75, 1895–904, doi: 10.1021/ac0262560.
36. Budnik, B., Levy, E., Harmange, G., and Slavov, N. (2018) SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation, Genome Biol., 19, 161, doi: 10.1186/s13059-018-1547-5.
37. Huffman, R.G., Chen, A., Specht, H., and Slavov, N. (2019) DO-MS: data-driven optimization of mass spectrometry methods. J. Proteome Res., 18, 2493–2500, doi: 10.1021/acs.jproteome.9b00039.
38. Chen, A.T., Franks, A., and Slavov, N. (2019) DART-ID increases single-cell proteome coverage, PLOS Comput. Biol., 15, e1007082, doi: 10.1371/journal.pcbi.1007082.
39. Specht, H., Emmott, E., Perlman, D.H., Koller, A., and Slavov, N. (2019) High-throughput single-cell proteomics quantifies the emergence of macrophage heterogeneity, bioRxiv, 665307, doi: 10.1101/665307.
40. Dou, M., Clair, G., Tsai, C.-F., Xu, K., Chrisler, W.B., Sontag, R.L., Zhao, R., Moore, R.J., Liu, T., Pasa-Tolic, L., Smith, R.D., Shi, T., Adkins, J.N., Qian, W.-J., Kelly, R.T., Ansong, C., and Zhu, Y. (2019) High-throughput single cell proteomics enabled by multiplex isobaric labeling in a nanodroplet sample preparation platform, Anal. Chem., 9b03349, doi: 10.1021/acs.analchem.9b03349.
41. Zhu, Y., Piehowski, P.D., Zhao, R., Chen, J., Shen, Y., Moore, R.J., Shukla, A.K., Petyuk, V.A., Campbell-Thompson, M., Mathews, C.E., Smith, R.D., Qian, W.-J., and Kelly, R.T. (2018) Nanodroplet processing platform for deep and quantitative proteome profiling of 10–100 mammalian cells, Nat. Commun., 9, 882, doi: 10.1038/s41467-018-03367-w.
42. Schoof, E.M., Rapin, N., Savickas, S., Gentil, C., Lechman, E., Haile, J.S., auf dem Keller, U., Dick, J.E., and Porse, B.T. (2019) A quantitative single-cell proteomics approach to characterize an acute myeloid leukemia hierarchy, bioRxiv, 745679, doi: 10.1101/745679.
43. Johansson, H.J., Socciarelli, F., Vacanti, N.M., Haugen, M.H., Zhu, Y., Siavelis, I., Fernandez-Woodbridge, A., Aure, M.R., Sennblad, B., Vesterlund, M., Branca, R.M., Orre, L.M., Huss, M., Fredlund, E., Beraki, E., Garred, Ø., Boekel, J., Sauer, T., Zhao, W., Nord, S., Höglander, E.K., Jans, D.C., Brismar, H., Haukaas, T.H., Bathen, T.F., Schlichting, E., Naume, B., Luders, T., Borgen, E., Kristensen, V.N., Russnes, H.G., Lingjaerde, O.C., Mills, G.B., Sahlberg, K.K., Børresen-Dale, A.-L., and Lehtiö, J. (2019) Breast cancer quantitative proteome and proteogenomic landscape, Nat. Commun., 10, 1600, doi: 10.1038/s41467-019-09018-y.
44. Dimitrakopoulos, L., Prassas, I., Diamandis, E.P., Nesvizhskii, A., Kislinger, T., Jaffe, J., and Drabovich, A. (2016) Proteogenomics: opportunities and caveats, Clin. Chem., 62, 551–557, doi: 10.1373/clinchem.2015.247858.
45. Smith, L.M., and Kelleher, N.L. (2013) Proteoform: a single term describing protein complexity. Nat. Methods, 10, 186–187, doi: 10.1038/nmeth.2369.
46. Simões, A.E., Pereira, D.M., Amaral, J.D., Nunes, A.F., Gomes, S.E., Rodrigues, P.M., Lo, A.C., D’Hooge, R., Steer, C.J., Thibodeau, S.N., Borralho, P.M., and Rodrigues, C.M. (2013) Efficient recovery of proteins from multiple source samples after trizol(®) or trizol(®)LS RNA extraction and long-term storage, BMC Genomics, 14, 181, doi: 10.1186/1471-2164-14-181.
47. Mun, D.-G., Bhin, J., Kim, S., Kim, H., Jung, J.H., Jung, Y., Jang, Y.E., Park, J.M., Kim, H., Jung, Y., Lee, H., Bae, J., Back, S., Kim, S.-J., Kim, J., Park, H., Li, H., Hwang, K.-B., Park, Y.S., Yook, J.H., Kim, B.S., Kwon, S.Y., Ryu, S.W., Park, D.Y., Jeon, T.Y., Kim, D.H., Lee, J.-H., Han, S.-U., Song, K.S., Park, D., Park, J.W., Rodriguez, H., Kim, J., Lee, H., Kim, K.P., Yang, E.G., Kim, H.K., Paek, E., Lee, S., Lee, S.-W., and Hwang, D. (2019) Proteogenomic characterization of human early-onset gastric cancer, Cancer Cell, 35, 111–124, doi: 10.1016/j.ccell.2018.12.003.
48. Poirion, O., Zhu, X., Ching, T., and Garmire, L.X. (2018) Using single nucleotide variations in single-cell RNA-seq to identify subpopulations and genotype-phenotype linkage, Nat. Commun., 9, 4892, doi: 10.1038/s41467-018-07170-5.
49. Levitsky, L.I., Kliuchnikova, A.A., Kuznetsova, K.G., Karpov, D.S., Ivanov, M.V., Pyatnitskiy, M.A., Kalinina, O.V., Gorshkov, M.V., and Moshkovskii, S.A. (2019) Adenosine-to-inosine RNA editing in mouse and human brain proteomes, Proteomics, 1900195, doi: 10.1002/pmic.201900195.
50. Ximerakis, M., Lipnick, S.L., Innes, B.T., Simmons, S.K., Adiconis, X., Dionne, D., Mayweather, B.A., Nguyen, L., Niziolek, Z., Ozek, C., Butty, V.L., Isserlin, R., Buchanan, S.M., Levine, S.S., Regev, A., Bader, G.D., Levin, J.Z., and Rubin, L.L. (2019) Single-cell transcriptomic profiling of the aging mouse brain, Nat. Neurosci., 22, 1696–1708, doi: 10.1038/s41593-019-0491-3.