БИОХИМИЯ, 2020, том 85, вып. 1, с. 64–79

УДК 577.218

Транскрипционный фактор KLF2 и его роль в регуляции воспалительных процессов

Обзор

© 2020 К.Т. Турпаев

Центр теоретических проблем физико-химической фармакологии РАН, 119991 Москва, Россия; электронная почта: kyril.turpaev@yahoo.com

Поступила в редакцию 11.05.2019
После доработки 02.08.2019
Принята к публикации 07.10.2019

DOI: 10.31857/S0320972520010054

КЛЮЧЕВЫЕ СЛОВА: KLF2, цинковые пальцы, регуляция транскрипции, про-воспалительные цитокины, эндотелий.

Аннотация

KLF2 входит в семейство Krüppel-подобных факторов транскрипции из обширной группы ДНК-связывающих белков с консервативными доменами, известными как цинковые пальцы. KLF2 участвует в дифференцировке и регуляции функциональной активности моноцитов и T-лимфоцитов, адипоцитов и клеток сосудистого эндотелия. Активность KLF2 контролирует несколько регуляторных систем: MAP-киназный каскад MEKK2,3/MEK5/ERK5/MEF2, G-белки семейства Rho, гистонацетилтрансферазы CBP и p300 и гистондеацетилазы HDAC 4 и HDAC 5. Активация KLF2 в эндотелиальных клетках вызывает индукцию eNOS и имеет вазодилатационный эффект. Действие многих зависимых от KLF2 генов направлено на подавление коагуляции крови, агрегации T-клеток и макрофагов с сосудистым эндотелием, что препятствует развитию атеросклероза. Активация KLF2 оказывает двоякое воздействие на спектр экспрессируемых генов. KLF2 индуцирует значительное число генов и подавляет транскрипцию генов зависимых от NF-κB. Транскрипционные факторы KLF2 и NF-κB проявляют себя как взаимные антагонисты. KLF2 снижает активность NF-κB, тогда как NF-κB подавляет транскрипцию гена KLF2. Зависимое от KLF2 подавление экспрессии контролируемых NF-κB генов ослабляет ответ клеток на про-воспалительные цитокины IL-1β и TNFα и развитие воспалительных процессов.

Финансирование

Работа была выполнена в рамках Государственного задания № АААА-А18-118012390247-0.

Конфликт интересов

Автор заявляет об отсутствии конфликта интересов.

Соблюдение этических норм

Настоящая статья не содержит каких-либо исследований с участием людей или использованием животных в качестве объектов исследований.

Список литературы

1. Miller, I.J., and Bieker, J.J. (1993) A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Krüppel family of nuclear proteins, Mol. Cell. Biol., 13, 2776–2786.

2. Pei, J., and Grishin N.V. (2015) C2H2 zinc finger proteins of the SP/KLF, Wilms tumor, EGR, Huckebein, and Klumpfuss families in metazoans and beyond, Gene, 573, 91–99.

3. Pollak, N.M., Hoffman, M., Goldberg, I.J., and Drosatos, K. (2018) Krüppel-like factors: crippling and un-crippling metabolic pathways, JACC Basic Transl. Sci., 3, 132–156.

4. Lomberk, G., and Urrutia, R. (2005) The family feud: turning off Sp1 by Sp1-like KLF proteins, Biochem. J., 392, 1–11.

5. Stubbs, L., Sun, Y., and Caetano-Anolles, D. (2011) Function and evolution of C2H2 zinc finger arrays, Subcell. Biochem., 52, 75–94.

6. Bialkowska, A.B., Yang, V.W., and Mallipattu, S.K. (2017) Krüppel-like factors in mammalian stem cells and development, Development, 144, 737–754.

7. Pearson, R., Fleetwood, J., Eaton, S., Crossley, M., and Bao, S. (2008) Krüppel-like transcription factors: a functional family, Int. J. Biochem. Cell Biol., 40, 1996–2001.

8. Kaczynski, J., Cook, T., and Urrutia, R. (2003) Sp1- and Krüppel-like transcription factors, Genome Biol., 4, 206.

9. Wu, Z., and Wang, S. (2013) Role of Krüppel-like transcription factors in adipogenesis, Dev. Biol., 373, 235–243.

10. Zhang, P., Basu, P., Redmond, L.C., Morris, P.E., Rupon, J.W., Ginder, G.D., and Lloyd, J.A. (2005) A functional screen for Krüppel-like factors that regulate the human gamma-globin gene through the CACCC promoter element, Blood Cells Mol. Dis., 35, 227–235.

11. Huang, B., Ahn, Y.T., McPherson, L., Clayberger, C., and Krensky, A.M. (2007) Interaction of PRP4 with Kruppel-like factor 13 regulates CCL5 transcription, J. Immunol., 178, 7081–7087.

12. Kaczynski, J.A., Conley, A.A., Fernandez Zapico, M., Delgado, S.M., Zhang, J.S., and Urrutia, R. (2002) Functional analysis of basic transcription element (BTE)-binding protein (BTEB) 3 and BTEB4, a novel Sp1-like protein, reveals a subfamily of transcriptional repressors for the BTE site of the cytochrome P4501A1 gene promoter, Biochem. J., 366, 873–882.

13. Mas, C., Lussier-Price, M., Soni, S., Morse, T., Arseneault, G., Di Lello, P., Lafrance-Vanasse, J., Bieker, J.J., and Omichinski, J.G. (2011) Structural and functional characterization of an atypical activation domain in erythroid Kruppel-like factor (EKLF), Proc. Natl. Acad. Sci. USA, 108, 10484–10489.

14. Presnell, J.S., Schnitzler, C.E., and Browne, W.E. (2015) KLF/SP Transcription factor family evolution: expansion, diversification, and innovation in eukaryotes, Genome Biol. Evol., 7, 2289–2309.

15. Schmitz, M.L., and de la Vega, L. (2015) New insight into the role of histone deacetylases as coactivators of inflammatory gene expression, Antioxid. Redox Signal., 23, 85–98.

16. Wagner, T., Brand, P., Heinzel, T., and Krämer, O.H. (2014) Histone deacetylase 2 controls p53 and is a critical factor in tumorigenesis, Biochim. Biophys. Acta, 1846, 524–538.

17. Anderson, K.P., Kern, C.B., Crable, S.C., and Lingrel, J.B. (1995) Isolation of a gene encoding a functional zinc finger protein homologous to erythroid Krüppel-like factor: identification of a new multigene family, Mol. Cell. Biol., 15, 5957–5965.

18. Novodvorsky, P., and Chico, T.J. (2014) The role of the transcription factor KLF2 in vascular development and disease, Prog. Mol. Biol. Transl. Sci., 124, 155–188.

19. Jha, P., and Das, H. (2017) KLF2 in regulation of NF-κB-mediated immune cell function and inflammation, Int. J. Mol. Sci., 18, E2383.

20. Ghaleb, A.M., and Yang, V.W. (2017) Krüppel-like factor 4 (KLF4): what we currently know, Gene, 611, 27–37.

21. Chestkov, I.V., Khomyakova, E.A., Vasilieva, E.A., Lagarkova, M.A., and Kiselev, S.L. (2014) Molecular barriers to processes of genetic reprogramming and cell transformation, Biochemistry (Moscow), 79, 1297–1307.

22. Kunes, P., Holubcová, Z., and Krejsek, J. (2009) Occurrence and significance of the nuclear transcription factor Krüppel-like factor 4 (KLF4) in the vessel wall, Acta Medica (Hradec Kralove), 52, 135–139.

23. Villarreal, G. Jr., Zhang, Y., Larman, H.B., Gracia-Sancho, J., Koo, A., and Garcia-Cardeña, G. (2010) Defining the regulation of KLF4 expression and its downstream transcriptional targets in vascular endothelial cells, Biochem. Biophys. Res. Commun., 391, 984–989.

24. Zhao, Y., and Sun, Y. (2013) The FBW7-KLF2 axis regulates endothelial functions, Cell Res., 23, 741–743.

25. Zhang, X., Srinivasan, S.V., and Lingrel, J.B. (2004) WWP1-dependent ubiquitination and degradation of the lung Krüppel-like factor, KLF2, Biochem. Biophys. Res. Commun., 316, 139–148.

26. Sohn, S.J., Li, D., Lee, L.K., and Winoto, A. (2005) Transcriptional regulation of tissue-specific genes by the ERK5 mitogen-activated protein kinase, Mol. Cell. Biol., 25, 8553–8566.

27. Chen, X., Gao, B., Ponnusamy, M., Lin, Z., and Liu, J. (2017) MEF2 signaling and human diseases, Oncotarget, 8, 112152–112165.

28. Roberts, O.L., Holmes, K., Müller, J., Cross, D.A., and Cross, M.J. (2009) ERK5 and the regulation of endothelial cell function, Biochem. Soc. Trans., 37, 1254–1259.

29. Drew, B.A., Burow, M.E., and Beckman, B.S. (2012) MEK5/ERK5 pathway: the first fifteen years, Biochim. Biophys. Acta, 1825, 37–48.

30. Nakajima, H., and Mochizuki, N. (2017) Flow pattern-dependent endothelial cell responses through transcriptional regulation, Cell Cycle, 16, 1893–1901.

31. Nigro, P., Abe, J., and Berk, B.C. (2011) Flow shear stress and atherosclerosis: a matter of site specificity, Antioxid. Redox Signal., 15, 1405–1414.

32. Simmons, R.D., Kumar, S., and Jo, H. (2016) The role of endothelial mechanosensitive genes in atherosclerosis and omics approaches, Arch. Biochem. Biophys., 591, 111–131.

33. Lu, L., Huang, W., Hu, W., Jiang, L., Li, Y., Wu, X., Yuan, D., and Li, M. (2019) Kruppel-like factor 2 mediated anti-proliferative and anti-metastasis effects of simvastatin in p53 mutant colon cancer, Biochem. Biophys. Res. Commun., 511, 772–779.

34. Heo, K.S., Berk, B.C., and Abe, J. (2016) Disturbed flow-induced endothelial proatherogenic signaling via regulating post-translational modifications and epigenetic events, Antioxid. Redox Signal., 25, 435–450.

35. Ballermann, B.J., Dardik, A., Eng, E., and Liu, A. (1998) Shear stress and the endothelium, Kidney Int. Suppl., 67, S100–108.

36. Givens, C., and Tzima, E. (2016) Endothelial mechanosignaling: does one sensor fit all? Antioxid. Redox Signal., 25, 373–388.

37. Liu, H.B., Zhang, J., Xin, S.Y., Liu, C., Wang, C.Y., Zhao, D., and Zhang, Z.R. (2013) Mechanosensitive properties in the endothelium and their roles in the regulation of endothelial function, J. Cardiovasc. Pharmacol., 61, 461–470.

38. Ando, J., and Yamamoto, K. (2013) Flow detection and calcium signalling in vascular endothelial cells, Cardiovasc. Res., 99, 260–268.

39. Snyder, J.L., McBeath, E., Thomas, T.N., Chiu, Y.J., Clark, R.L., and Fujiwara, K. (2017) Mechanotransduction properties of the cytoplasmic tail of PECAM-1, Biol. Cell, 109, 312–321.

40. Conway, D.E., Coon, B.G., Budatha, M., Arsenovic, P.T., Orsenigo, F., Wessel, F., Zhang, J., Zhuang, Z., Dejana, E., Vestweber, D., and Schwartz, M.A. (2017) VE-cadherin phosphorylation regulates endothelial fluid shear stress responses through the polarity protein LGN, Curr. Biol., 27, 2219–2225.

41. Kwon, I.S., Wang, W., Xu, S., and Jin, Z.G. (2014) Histone deacetylase 5 interacts with Krüppel-like factor 2 and inhibits its transcriptional activity in endothelium, Cardiovasc. Res., 104, 127–137.

42. McSweeney, S.R., Warabi, E., and Siow, R.C. (2016) Nrf2 as an endothelial mechanosensitive transcription factor: going with the flow, Hypertension, 67, 20–29.

43. Takabe, W., Warabi, E., and Noguchi, N. (2011) Anti-atherogenic effect of laminar shear stress via Nrf2 activation, Antioxid. Redox Signal., 15, 1415–1426.

44. Turpaev, K.T. (2013) Keap1-Nrf2 signaling pathway: mechanisms of regulation and role in protection of cells against toxicity caused by xenobiotics and electrophiles, Biochemistry (Moscow), 78, 111–126.

45. Wardyn, J.D., Ponsford, A.H., and Sanderson, C.M. (2015) Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways, Biochem. Soc. Trans., 43, 621–626.

46. Kumar, A., Lin, Z., SenBanerjee, S., and Jain, M.K. (2005) Tumor necrosis factor alpha-mediated reduction of KLF2 is due to inhibition of MEF2 by NF-kappaB and histone deacetylases, Mol. Cell. Biol., 25, 5893–5903.

47. Lee, H.Y., Youn, S.W., Cho, H.J., Kwon, Y.W., Lee, S.W., Kim, S.J., Park, Y.B., Oh, B.H., and Kim, H.S. (2013) FOXO1 impairs whereas statin protects endothelial function in diabetes through reciprocal regulation of Kruppel-like factor 2, Cardiovasc. Res., 97, 143–152.

48. Kumar, A., Kim, C.S., Hoffman, T.A., Naqvi, A., Dericco, J., Jung, S.B., Lin, Z., Jain, M.K., and Irani, K. (2011) p53 Impairs endothelial function by transcriptionally repressing Kruppel-like factor 2, Arterioscler. Thromb. Vasc. Biol., 31, 133–141.

49. Wu, W., Xiao, H., Laguna-Fernandez, A., Villarreal, G., Wang, K.C., Geary, G.G., Zhang, Y., Wang, W.C., Huang, H.D., Zhou, J., Li, Y.S., Chien, S., Garcia-Cardena, G., and Shyy, J.Y. (2011) Flow-dependent regulation of Kruppel-like factor 2 is mediated by microRNA-92a, Circulation, 124, 633–641.

50. Xin, Y., Zhang, H., Jia, Z., Ding, X., Sun, Y., Wang, Q., and Xu, T. (2018) Resveratrol improves uric acid-induced pancreatic β-cells injury and dysfunction through regulation of miR-126, Biomed. Pharmacother., 102, 1120–1126.

51. Manoharan, P., Basford, J.E., Pilcher-Roberts, R., Neumann, J., Hui, D.Y., and Lingrel, J.B. (2014) Reduced levels of microRNAs miR-124a and miR-150 are associated with increased proinflammatory mediator expression in Krüppel-like factor 2 (KLF2)-deficient macrophages, J. Biol. Chem., 289, 31638–31646.

52. Marin, T., Gongol, B., Chen, Z., Woo, B., Subramaniam, S., Chien, S., and Shyy, J.Y. (2013) Mechanosensitive microRNAs-role in endothelial responses to shear stress and redox state, Free Radic. Biol. Med., 64, 61–68.

53. Chu, U.B., Duellman, T., Weaver, S.J., Tao, Y., and Yang, J. (2015) Endothelial protective genes induced by statin are mimicked by ERK5 activation as triggered by a drug combination of FTI-277 and GGTI-298, Biochim. Biophys. Acta, 1850, 1415–1425.

54. Zhao, J., Natarajan, S.K., Chronos, N., and Singh, J.P. (2015) Cerivastatin represses atherogenic gene expression through the induction of KLF2 via isoprenoid metabolic pathways, Cell. Mol. Biol. Lett., 20, 825–839.

55. Jeong, A., Suazo, K.F., Wood, W.G., Distefano, M.D., and Li, L. (2018) Isoprenoids and protein prenylation: implications in the pathogenesis and therapeutic intervention of Alzheimer’s disease, Crit. Rev. Biochem. Mol. Biol., 53, 279–310.

56. Turpaev, K., Glatigny, A., Bignon, J., Delacroix, H., and Drapier, J.C. (2010) Variation in gene expression profiles of human monocytic U937 cells exposed to various fluxes of nitric oxide, Free Radic. Biol. Med., 48, 298–305.

57. Xu, Q., Luan, T., Fu, S., Yang, J., Jiang, C., and Xia, F. (2014) Effects of pitavastatin on the expression of VCAM-1 and its target gene miR-126 in cultured human umbilical vein endothelial cells, Cardiovasc. Ther., 32, 193–197.

58. Arefieva, T.I., Filatova, A.Y., Potekhina, A.V., and Shchinova, A.M. (2018) Immunotropic effects and proposed mechanism of action for 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors (statins), Biochemistry (Moscow), 83, 874–889.

59. Davies, J.T., Delfino, S.F., Feinberg, C.E., Johnson, M.F., Nappi, V.L., Olinger, J.T., Schwab, A.P., and Swanson, H.I. (2016) Current and emerging uses of statins in clinical therapeutics: a review, Lipid Insights, 9, 13–29.

60. Ebert, R., Zeck, S., Meissner-Weigl, J., Klotz, B., Rachner, T.D., Benad, P., Klein-Hitpass, L., Rudert, M., Hofbauer, L.C., and Jakob, F. (2012) Krüppel-like factors KLF2 and 6 and Ki-67 are direct targets of zoledronic acid in MCF-7 cells, Bone, 50, 723–732.

61. Rogers, M.J., Crockett, J.C., Coxon, F.P., and Mönkkönen, J. (2011) Biochemical and molecular mechanisms of action of bisphosphonates, Bone, 49, 34–41.

62. Chu, H., Li, H., Guan, X., Yan, H., Zhang, X., Cui, X., Li, X., and Cheng, M. (2018) Resveratrol protects late endothelial progenitor cells from TNF-α-induced inflammatory damage by upregulating Krüppel-like factor-2, Mol. Med. Rep., 17, 5708–5715.

63. Bai, X., Yao, L., Ma, X., and Xu, X. (2018) Small molecules as SIRT modulators, Mini Rev. Med. Chem., 18, 1151–1157.

64. Santos, J.C., Gotardo, E.M., Brianti, M.T., Piraee, M., Gambero, A., and Ribeiro, M.L. (2014) Effects of yerba maté, a plant extract formulation (“YGD”) and resveratrol in 3T3-L1 adipogenesis, Molecules, 19, 16909–16924.

65. Xu, Y., Liu, P., Xu, S., Koroleva, M., Zhang, S., Si, S., and Jin, Z.G. (2017) Tannic acid as a plant-derived polyphenol exerts vasoprotection via enhancing KLF2 expression in endothelial cells, Sci. Rep., 27, 6686.

66. Arçari, D.P., Santos, J.C., Gambero, A., and Ribeiro, M.L. (2013) The in vitro and in vivo effects of yerba mate (Ilex paraguariensis) extract on adipogenesis, Food Chem., 141, 809–815.

67. Jeon, H.J., Choi, H.S., Lee, Y.J., Hwang, J.H., Lee, O.H., Seo, M.J., Kim, K.J., and Lee, B.Y. (2015) Seapolynol extracted from Ecklonia cava inhibits adipocyte differentiation in vitro and decreases fat accumulation in vivo, Molecules, 20, 21715–21731.

68. Lee, J.E., and Ge, K. (2014) Transcriptional and epigenetic regulation of PPARgamma expression during adipogenesis, Cell Biosci., 4, 29.

69. Kim, S.J., Xiao, J., Wan, J., Cohen, P., and Yen, K. (2017) Mitochondrially derived peptides as novel regulators of metabolism, J. Physiol., 595, 6613–6621.

70. Wang, X., Wu, Z., He, Y., Zhang, H., Tian, L., Zheng, C., Shang, T., Zhu, Q., Li, D., and He, Y. (2018) Humanin prevents high glucose-induced monocyte adhesion to endothelial cells by targeting KLF2, Mol. Immunol., 101, 245–250.

71. Wang, D., Song, Y., Zhang, J., Pang, W., Wang, X., Zhu, Y., and Li, X. (2017) AMPK-KLF2 signaling pathway mediates the proangiogenic effect of erythropoietin in endothelial colony-forming cells, Am. J. Physiol. Cell Physiol., 313, C674–C685.

72. Sako, K., Fukuhara, S., Minami, T., Hamakubo, T., Song, H., Kodama, T., Fukamizu, A., Gutkind, J.S., Koh, G.Y., and Mochizuki, N. (2009) Angiopoietin-1 induces Kruppel-like factor 2 expression through a phosphoinositide 3-kinase/AKT-dependent activation of myocyte enhancer factor 2, J. Biol. Chem., 284, 5592–5601.

73. Турпаев К.Т. (2017) Гены и регуляторные системы клеток, зависимые от NO и модификации рецепторных тиольных групп, Автореф. дисс. докт. наук, Институт молекулярной биологии РАН, Москва.

74. Tian, R., Li, R., Liu, Y., Liu, J., Pan, T., Zhang, R., Liu, B., Chen, E., Tang, Y., and Qu, H. (2019) Metformin ameliorates endotoxemia-induced endothelial pro-inflammatory responses via AMPK-dependent mediation of HDAC5 and KLF2, Biochim. Biophys. Acta Mol. Basis Dis., 1865, 1701–1712.

75. Triggle, C.R., and Ding, H. (2016) Metformin is not just an antihyperglycaemic drug but also has protective effects on the vascular endothelium, Acta Physiol. (Oxf.), 219, 138–151.

76. Chistiakov, D.A., Orekhov, A.N., and Bobryshev, Y.V. (2017) Treatment of cardiovascular pathology with epigenetically active agents: focus on natural and synthetic inhibitors of DNA methylation and histone deacetylation, Int. J. Cardiol., 227, 66–82.

77. Xu, Y., Xu, S., Liu, P., Koroleva, M., Zhang, S., Si, S., and Jin, Z.G. (2017) Suberanilohydroxamic acid as a pharmacological Kruppel-like factor 2 activator that represses vascular inflammation and atherosclerosis, J. Am. Heart Assoc., 6, e007134.

78. Das, M., Laha, D., Kanji, S., Joseph, M., Aggarwal, R., Iwenofu, O.H., Pompili, V.J., Jain, M.K., and Das, H. (2019) Induction of Krüppel-like factor 2 reduces K/BxN serum-induced arthritis, J. Cell. Mol. Med., 23, 1386–1395.

79. Hadden, M.J., and Advani, A. (2018) Histone deacetylase inhibitors and diabetic kidney disease, Int. J. Mol. Sci., 19, E2630.

80. Yoon, S., and Eom, G.H. (2016) HDAC and HDAC inhibitor: from cancer to cardiovascular diseases, Chonnam. Med. J., 52, 1–11.

81. Dekker, R.J., van Thienen, J.V., Rohlena, J., de Jager, S.C., Elderkamp, Y.W., Seppen, J., de Vries, C.J., Biessen, E.A., van Berkel, T.J., Pannekoek, H., and Horrevoets, A.J. (2005) Endothelial KLF2 links local arterial shear stress levels to the expression of vascular tone-regulating genes, Am. J. Pathol., 167, 609–618.

82. Das, M., Lu, J., Joseph, M., Aggarwal, R., Kanji, S., McMichael, B.K., Lee, B.S., Agarwal, S., Ray-Chaudhury, A., Iwenofu, O.H., Kuppusamy, P., Pompili, V.J., Jain, M.K., and Das, H. (2012) Kruppel-like factor 2 (KLF2) regulates monocyte differentiation and functions in mBSA and IL-1β-induced arthritis, Curr. Mol. Med., 12, 113–125.

83. Zhong, F., Lee, K., and He, J.C. (2018) Role of Krüppel-like factor-2 in kidney disease, Nephrology (Carlton), 23, Suppl. 4, 53–56.

84. Winkelmann, R., Sandrock, L., Kirberg, J., Jäck, H.M., and Schuh, W. (2014) KLF2 – a negative regulator of pre-B cell clonal expansion and B cell activation, PLoS One, 29, e97953.

85. Nayak, L., Goduni, L., Takami, Y., Sharma, N., Kapil, P., Jain, M.K., and Mahabeleshwar, G.H. (2013) Kruppel-like factor 2 is a transcriptional regulator of chronic and acute inflammation, Am. J. Pathol., 182, 1696–1704.

86. Pabbisetty, S.K., Rabacal, W., Volanakis, E.J., Parekh, V.V., Olivares-Villagómez, D., Cendron, D., Boyd, K.L., Van Kaer, L., and Sebzda, E. (2016) Peripheral tolerance can be modified by altering KLF2-regulated Treg migration, Proc. Natl. Acad. Sci. USA, 113, E4662–E4670.

87. Li, M., Wang, X., Fu, W., He, S., Li, D., and Ke, Q. (2011) CD4+CD25+Foxp3+ regulatory T cells protect endothelial function impaired by oxidized low density lipoprotein via the KLF-2 transcription factor, Cell. Physiol. Biochem., 28, 639–648.

88. Pabbisetty, S.K., Rabacal, W., Maseda, D., Cendron, D., Collins, P.L., Hoek, K.L., Parekh, V.V., Aune, T.M., and Sebzda, E. (2014) KLF2 is a rate-limiting transcription factor that can be targeted to enhance regulatory T-cell production, Proc. Natl. Acad. Sci. USA, 111, 9579–9584.

89. Pisanti, S., Picardi, P., Ciaglia, E., D’Alessandro, A., and Bifulco, M. (2014) Novel prospects of statins as therapeutic agents in cancer, Pharmacol. Res., 88, 84–98.

90. Fullerton, M.D. (2016) AMP-activated protein kinase and its multifaceted regulation of hepatic metabolism, Curr. Opin. Lipidol., 27, 172–80.

91. Marcelo, K.L., Means, A.R., and York, B, (2016) The Ca(2+)/calmodulin/CaMKK2 axis: nature’s metabolic CaMshaft, Trends Endocrinol. Metab., 27, 706–718.