БИОХИМИЯ, 2019, том 84, вып. 12, с. 1895–1906

УДК 577.214

Notch1-зависимый сигнальный путь контролируется Akt1-опосредованным фосфорилированием белка RBP-Jk

© 2019 М.-Е. Ким *, Ц.И. Парк, Х.-С. Парк *

School of Biological Sciences and Technology, Chonnam National University, 61186 Gwangju, Republic of Korea; E-mail: mykim31002@gmail.com, proteome@jnu.ac.kr

Поступила в редакцию 31.05.2019
После доработки 17.07.2019
Принята к публикации 17.07.2019

DOI: 10.1134/S0320972519120133

КЛЮЧЕВЫЕ СЛОВА: Notch1-зависимый сигнальный путь, Akt1, фосфорилирование.

Аннотация

Notch1-зависимый сигнальный путь играет ключевую роль в определении судьбы клеток, включая их рост и дифференцировку. В настоящей работе показано антагонистическое действие RTK-зависимого сигнального пути в отношении Notch1-зависимого пути передачи сигнала, осуществляемое с участием Ras-PI3K-Akt1. Обнаружено, что PI3K-Akt1-опосредованный сигнальный путь ингибирует Notch1-зависимый сигнальный путь в результате фосфорилирования белка RBP-Jk. Показано не только снижение уровня ассоциации Notch1 и RBP-Jk, но и подавление транскрипционной активности Notch1. Полученные результаты свидетельствуют в пользу того, что Akt1 функционирует как естественный ингибитор Notch1-зависимого сигнального пути, осуществляя фосфорилирование белка RBP-Jk.

Сноски

* Адресат для корреспонденции.

Финансирование

Выполнение работы проходило при финансовой поддержке Программы базовых научных исследований (Basic Science Research Program) Государственного фонда поддержки науки Республики Корея (National Research Foundation of Korea (NRF), финансируемого Министерством науки, ICT и планирования будущего (грант NRF-2014R1A4A1003642).

Благодарности

Авторы выражают благодарность R. Kopan (медицинский факультет Вашингтонского университета, Washington university school of medicine) за приготовление конструкций Notch1.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических норм

Данная работа не содержит исследований, использующих в качестве объектов людей или животных.

Список литературы

1. Artavanis-Tsakonas, S., Rand, M.D., and Lake, R.J. (1999) Notch signaling: cell fate control and signal integration in development, Science, 284, 770–776.

2. Schweisguth, F. (2004) Regulation of notch signaling activity, Curr. Biol., CB 14, 129–138.

3. Artavanis-Tsakonas, S., Matsuno, K., and Fortini, M.E. (1995) Notch signaling, Science, 268, 225–232.

4. Ohtsuka, T., Ishibashi, M., Gradwohl, G., Nakanishi, S., Guillemot, F., and Kageyama, R. (1999) Hes1 and Hes5 as notch effectors in mammalian neuronal differentiation, EMBO J., 18, 2196–2207.

5. Bray, S.J. (2016) Notch signalling in context. Nat. Rev. Mol. Cell Biol., 17, 722–735.

6. Kopan, R., and Ilagan, M.X. (2009) The canonical Notch signaling pathway: unfolding the activation mechanism, Cell, 137, 216–233.

7. Oswald, F., Winkler, M., Cao, Y., Astrahantseff, K., Bourteele, S., Knochel, W., and Borggrefe, T. (2005) RBP-Jkappa/SHARP recruits CtIP/CtBP corepressors to silence Notch target genes, Mol. Cell. Biol., 25, 10379–10390.

8. Luo, J., Manning, B.D., and Cantley, L.C. (2003) Targeting the PI3K-Akt pathway in human cancer: rationale and promise, Cancer Cell, 4, 257–262.

9. Vanhaesebroeck, B., and Alessi, D.R. (2000) The PI3K-PDK1 connection: more than just a road to PKB, Biochem. J., 346, 561–576.

10. Chan, T.O., Rittenhouse, S.E., and Tsichlis, P.N. (1999) AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation, Ann. Rev. Biochem., 68, 965–1014.

11. Toker, A., and Newton, A.C. (2000) Cellular signaling: pivoting around PDK-1, Cell, 103, 185–188.

12. Burgering, B.M., and Medema, R.H. (2003) Decisions on life and death: FOXO Forkhead transcription factors are in command when PKB/Akt is off duty, J. Leukocyte Biol., 73, 689–701.

13. Ozes, O.N., Mayo, L.D., Gustin, J.A., Pfeffer, S.R., Pfeffer, L.M., and Donner, D.B. (1999) NF-kappa B activation by tumour necrosis factor requires the Akt serinethreonine kinase, Nature, 401, 82–85.

14. Diehl, J.A., Cheng, M., Roussel, M.F., and Sherr, C.J. (1998) Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization, Genes Dev., 12, 3499–3511.

15. Zimmermann, S., and Moelling, K. (1999) Phosphorylation and regulation of Raf by Akt (protein kinase B), Science, 286, 1741–1744.

16. Rommel, C., Clarke, B.A., Zimmermann, S., Nunez, L., Rossman, R., Reid, K., Moelling, K., Yancopoulos, G.D., and Glass, D.J. (1999) Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt, Science, 286, 1738–1741.

17. Manning, B.D., and Cantley, L.C. (2007) AKT/PKB signaling: navigating downstream, Cell, 129, 1261–1274.

18. Lawlor, M.A., and Alessi, D.R. (2001) PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J. Cell Sci., 114, 2903–2910.

19. Palomero, T., Sulis, M.L., Cortina, M., Real, P.J., Barnes, K., Ciofani, M., Caparros, E., Buteau, J., Brown, K., Perkins, S.L., Bhagat, G., Agarwal, A.M., Basso, G., Castillo, M., Nagase, S., Cordon-Cardo, C., Parsons, R., Zuniga-Pflucker, J.C., Dominguez, M., and Ferrando, A.A. (2007) Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia, Nature Med., 13, 1203–1210.

20. Wang, H., Cheng, H., Shao, Q., Dong, Z., Xie, Q., Zhao, L., Wang, Q., Kong, B., and Qu, X. (2014) Leptin-promoted human extravillous trophoblast invasion is MMP14 dependent and requires the cross talk between Notch1 and PI3K/Akt signaling, Biol. Reprod., 90, 78.

21. Bansal, K., and Balaji, K.N. (2011) Intracellular pathogen sensor NOD2 programs macrophages to trigger Notch1 activation, J. Biol. Chem., 286, 5823–5835.

22. Maliekal, T.T., Bajaj, J., Giri, V., Subramanyam, D., and Krishna, S. (2008) The role of Notch signaling in human cervical cancer: implications for solid tumors, Oncogene, 27, 5110–5114.

23. Hurlbut, G.D., Kankel, M.W., and Artavanis-Tsakonas, S. (2009) Nodal points and complexity of Notch-Ras signal integration, Proc. Nat. Acad. Sci. USA, 106, 2218–2223.

24. Hurlbut, G.D., Kankel, M.W., Lake, R.J., and Artavanis-Tsakonas, S. (2007) Crossing paths with Notch in the hyper-network, Curr. Opin. Cell. Biol., 19, 166–175.

25. Sundaram, M.V. (2005) The love-hate relationship between Ras and Notch, Genes Dev., 19, 1825–1839.

26. Doroquez, D.B., and Rebay, I. (2006) Signal integration during development: mechanisms of EGFR and Notch pathway function and cross-talk, Crit. Rev. Biochem. Mol. Biol., 41, 339–385.

27. Kim, M.Y., Ann, E.J., Mo, J.S., Dajas-Bailador, F., Seo, M.S., Hong, J.A., Jung, J., Choi, Y.H., Yoon, J.H., Kim, S.M., Choi, E.J., Hoe, H.S., Whitmarsh, A.J., and Park, H.S. (2010) JIP1 binding to RBP-Jk mediates cross-talk between the Notch1 and JIP1-JNK signaling pathway, Cell Death Differ., 17, 1728–1738.

28. Yoon, J.H., Mo, J.S., Ann, E.J., Ahn, J.S., Jo, E.H., Lee, H.J., Hong, S.H., Kim, M.Y., Kim, E.G., Lee, K., and Park, H.S. (2016) Notch1 intracellular domain negatively regulates PAK1 signaling pathway through direct interaction, Biochim. Biophys. Acta, 1863, 179–188.

29. Fan, H., Ma, L., Fan, B., Wu, J., Yang, Z., and Wang, L. (2014) Role of PDGFR-beta/PI3K/AKT signaling pathway in PDGF-BB induced myocardial fibrosis in rats, Am. J. Transl. Res., 6, 714–723.

30. Kim, E.K., Tucker, D.F., Yun, S.J., Do, K.H., Kim, M.S., Kim, J.H., Kim, C.D., Birnbaum, M.J., and Bae, S.S. (2008) Linker region of Akt1/protein kinase Balpha mediates platelet-derived growth factor-induced translocation and cell migration, Cell. Signal., 20, 2030–2037.

31. Nurminskaya, M., Beazley, K.E., Smith, E.P., and Belkin, A.M. (2014) Transglutaminase 2 promotes PDGF-mediated activation of PDGFR/Akt1 and beta-catenin signaling in vascular smooth muscle cells and supports neointima formation, J. Vasc. Res., 51, 418–428.

32. Miele, L. (2011) Transcription factor RBPJ/CSL: a genome-wide look at transcriptional regulation, Proc. Natl. Acad. Sci. USA, 108, 14715–14716.

33. Berset, T., Hoier, E.F., Battu, G., Canevascini, S., and Hajnal, A. (2001) Notch inhibition of RAS signaling through MAP kinase phosphatase LIP-1 during C. elegans vulval development, Science, 291, 1055–1058.

34. Alessi, D.R., Caudwell, F.B., Andjelkovic, M., Hemmings, B.A., and Cohen, P. (1996) Molecular basis for the substrate specificity of protein kinase B; comparison with MAPKAP kinase-1 and p70-S6 kinase, FEBS Lett., 399, 333–338.

35. Ann, E.J., Kim, H.Y., Choi, Y.H., Kim, M.Y., Mo, J.S., Jung, J., Yoon, J.H., Kim, S.M., Moon, J.S., Seo, M.S., Hong, J.A., Jang, W.G., Shore, P., Komori, T., Koh, J.T., and Park, H.S. (2011) Inhibition of Notch1 signaling by Runx2 during osteoblast differentiation, J. Bone Miner. Res., 26, 317–330.

36. Tani, S., Kurooka, H., Aoki, T., Hashimoto, N., and Honjo, T. (2001) The N- and C-terminal regions of RBP-J interact with the ankyrin repeats of Notch1 RAMIC to activate transcription, Nucleic Acids Res., 29, 1373–1380.

37. Privalsky, M.L. (2001) Regulation of SMRT and N-CoR corepressor function, Curr. Top. Microbiol. Immunol., 254, 117–136.

38. Brou, C., Logeat, F., Lecourtois, M., Vandekerckhove, J., Kourilsky, P., Schweisguth, F., and Israel, A. (1994) Inhibition of the DNA-binding activity of Drosophila suppressor of hairless and of its human homolog, KBF2/RBP-J kappa, by direct protein-protein interaction with Drosophila hairless, Genes Dev., 8, 2491–2503.

39. Gao, D., Inuzuka, H., Tseng, A., Chin, R.Y., Toker, A., and Wei, W. (2009) Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction, Nature Cell Biol., 11, 397–408.

40. Safdari, Y., Khalili, M., Ebrahimzadeh, M.A., Yazdani, Y., and Farajnia, S. (2015) Natural inhibitors of PI3K/AKT signaling in breast cancer: emphasis on newly-discovered molecular mechanisms of action, Pharmacol. Res., 93, 1–10.

41. Toker, A., and Yoeli-Lerner, M. (2006) Akt signaling and cancer: surviving but not moving on, Cancer Res., 66, 3963–3966.

42. Riggio, M., Perrone, M.C., Polo, M.L., Rodriguez, M.J., May, M., Abba, M., Lanari, C., and Novaro, V. (2017) AKT1 and AKT2 isoforms play distinct roles during breast cancer progression through the regulation of specific downstream proteins, Sci. Rep., 7, 44244.

43. Kozlova, N.I., Morozevich, G.E., Ushakova, N.A., and Berman, A.E. (2018) Implication of integrin alpha2beta1 in proliferation and invasion of human breast carcinoma and melanoma cells: noncanonical function of Akt protein kinase, Biochemistry (Moscow), 83, 738–745.