БИОХИМИЯ, 2019, том 84, вып. 11, с. 1701–1717

УДК 57.083.138

Кондиционная среда мезенхимальных стромальных клеток: новый класс терапевтических средств

Обзор

© 2019 Н.В. Богачева 1*,**, М.Э. Колман 2

Division of Pulmonary and Critical Care, Department of Medicine, Indiana University School of Medicine, IUPUI, Indianapolis, IN 46202, USA; E-mail: nbogatch@iu.edu

Theratome Bio, Inc., Indianapolis, IN 46202, USA; E-mail: mcoleman@theratomebio.com

Поступила в редакцию 02.06.2019
После доработки 17.07.2019
Принята к публикации 17.07.2019

DOI: 10.1134/S0320972519110125

КЛЮЧЕВЫЕ СЛОВА: MSC, секретом, кондиционная среда, внеклеточные везикулы, экзосомы.

Аннотация

Мезенхимальные стромальные клетки (MSC — mesenchymal stromal cell) активно разрабатываются как класс биологических препаратов с перспективой применения в качестве иммуномодулирующих, заживляющих и регенерационных терапевтических средств. Наряду с клеточной терапией также активно развивается бесклеточная терапия, в основе которой лежат секретируемые MSC биоактивные факторы. MSC секретируют различные белки и пептиды, РНК и липиды, которые могут быть сконцентрированы, заморожены или даже лиофилизированы без потери активности, что дает определенное преимущество перед клетками, требующими хранения в жидком азоте и специальной инфраструктуры для размораживания. В настоящем обзоре: 1) описаны недавно проведенные клинические испытания бесклеточных продуктов, содержащих секретом MSC; 2) обобщены основные подходы, используемые для получения и характеризации концентратов кондиционной среды и препаратов внеклеточных везикул (EV); 3) проведен анализ доклинических исследований, в которых показана эффективность применения секретомных продуктов и 4) суммированы данные о биоактивных компонентах секретома, полученные с помощью анализа моделей in vivo.

Текст статьи

Пожалуйста, введите код, чтобы получить PDF файл с полным текстом статьи:

captcha

Сноски

* Адресат для корреспонденции.

** Автор является выпускником кафедры биохимии биологического факультета МГУ им. М.В. Ломоносова.

Финансирование

Данная работа была выполнена при частичной поддержке Национального института изучения диабета, болезней пищеварительной системы и почек (грант № R41 1R41DK115317) (доктор Колман).

Конфликт интересов

У доктора Богачевой имеется патент, позволяющий применять ASC-CM для лечения синдрома острого дыхательного дистресса. Доктор Колман является главным исполнительным директором Theratome Bio Inc, биотехнологической стартап-компании, разрабатывающей продукты на основе ASC-CM для клинических испытаний.

Соблюдение этических норм

В данной статье не содержатся описания исследований, выполненных авторами с участием людей или использования животных в качестве объектов исследования.

Список литературы

1. Squillaro, T., Peluso, G., and Galderisi, U. (2016) Clinical trials with mesenchymal stem cells: an update, Cell Transplant., 25, 829–848, doi: 10.3727/096368915×689622.

2. Galipeau, J., and Sensebe, L. (2018) Mesenchymal stromal cells: clinical challenges and therapeutic opportunities, Cell Stem Cell, 22, 824–833, doi: 10.1016/j.stem.2018.05.004.

3. Olsen, T.R., Ng, K.S., Lock, L.T., Ahsan, T., and Rowley, J.A. (2018) Peak MSC-are we there yet? Front. Med. (Lausanne), 5, 178, doi: 10.3389/fmed.2018.00178.

4. Kuzmina, L.A., Petinati, N.A., Parovichnikova, E.N., Lubimova, L.S., Gribanova, E.O., Gaponova, T.V., Shipounova, I.N., Zhironkina, O.A., Bigildeev, A.E., Svinareva, D.A., Drize, N.J., and Savchenko, V.G. (2012) Multipotent mesenchymal stromal cells for the prophylaxis of acute graft-versus-host disease-a phase II study, Stem Cells Int., 2012, 968213, doi: 10.1155/2012/968213.

5. Kuzmina, L.A., Petinati, N.A., Shipounova, I.N., Sats, N.V., Bigildeev, A.E., Zezina, E.A., Popova, M.D., Drize, N.J., Parovichnikova, E.N., and Savchenko, V.G. (2016) Analysis of multipotent mesenchymal stromal cells used for acute graft-versus-host disease prophylaxis, Eur. J. Haematol., 96, 425–434, doi: 10.1111/ejh.12613.

6. Kuzmina, L.A., Petinati, N.A., Sats, N.V., Drize, N.J., Risinskaya, N.V., Sudarikov, A.B., Vasilieva, V.A., Drokov, M.Y., Michalzova, E.D., Parovichnikova, E.N., and Savchenko, V.G. (2016) Long-term survival of donor bone marrow multipotent mesenchymal stromal cells implanted into the periosteum of patients with allogeneic graft failure, Int. J. Hematol., 104, 403–407, doi: 10.1007/s12185-016-2014-2.

7. Petinati, N., Drize, N., Sats, N., Risinskaya, N., Sudarikov, A., Drokov, M., Dubniak, D., Kraizman, A., Nareyko, M., Popova, N., Firsova, M., Kuzmina, L., Parovichnikova, E., and Savchenko, V. (2018) Recovery of donor hematopoiesis after graft failure and second hematopoietic stem cell transplantation with intraosseous administration of mesenchymal stromal cells, Stem Cells Int., 2018, 6495018, doi: 10.1155/2018/6495018.

8. Caplan, A.I. (2017) Mesenchymal stem cells: time to change the name- Stem Cells Transl. Med., 6, 1445–1451, doi: 10.1002/sctm.17-0051.

9. Gnecchi, M., Zhang, Z., Ni, A., and Dzau, V.J. (2008) Paracrine mechanisms in adult stem cell signaling and therapy, Circ. Res., 103, 1204–1219, doi: 10.1161/circresaha.108.176826.

10. Rehman, J., Traktuev, D., Li, J., Merfeld-Clauss, S., Temm-Grove, C.J., Bovenkerk, J.E., Pell, C.L., Johnstone, B.H., Considine, R.V., and March, K.L. (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells, Circulation, 109, 1292–1298, doi: 10.1161/01.CIR.0000121425.42966.F1.

11. Chang, M.G., Tung, L., Sekar, R.B., Chang, C.Y., Cysyk, J., Dong, P., Marban, E., and Abraham, M.R. (2006) Proarrhythmic potential of mesenchymal stem cell transplantation revealed in an in vitro coculture model, Circulation, 113, 1832–1841, doi: 10.1161/circulationaha.105.593038.

12. Breitbach, M., Bostani, T., Roell, W., Xia, Y., Dewald, O., Nygren, J.M., Fries, J.W., Tiemann, K., Bohlen, H., Hescheler, J., Welz, A., Bloch, W., Jacobsen, S.E., and Fleischmann, B.K. (2007) Potential risks of bone marrow cell transplantation into infarcted hearts, Blood, 110, 1362–1369, doi: 10.1182/blood-2006-12-063412.

13. Moll, G., Alm, J.J., Davies, L.C., von Bahr, L., Heldring, N., Stenbeck-Funke, L., Hamad, O.A., Hinsch, R., Ignatowicz, L., Locke, M., Lonnies, H., Lambris, J.D., Teramura, Y., Nilsson-Ekdahl, K., Nilsson, B., and Le Blanc, K. (2014) Do cryopreserved mesenchymal stromal cells display impaired immunomodulatory and therapeutic properties? Stem Cells, 32, 2430–2442, doi: 10.1002/stem.1729.

14. Bruno, S., Collino, F., Deregibus, M.C., Grange, C., Tetta, C., and Camussi, G. (2013) Microvesicles derived from human bone marrow mesenchymal stem cells inhibit tumor growth, Stem Cells Dev., 22, 758–771, doi: 10.1089/scd.2012.0304.

15. Wu, S., Ju, G.Q., Du, T., Zhu, Y.J., and Liu, G.H. (2013) Microvesicles derived from human umbilical cord Wharton’s jelly mesenchymal stem cells attenuate bladder tumor cell growth in vitro and in vivo, PLoS One, 8, e61366, doi: 10.1371/journal.pone.0061366.

16. Qi, J., Zhou, Y., Jiao, Z., Wang, X., Zhao, Y., Li, Y., Chen, H., Yang, L., Zhu, H., and Li, Y. (2017) Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth through hedgehog signaling pathway, Cell. Physiol. Biochem., 42, 2242–2254, doi: 10.1159/000479998.

17. Vallabhaneni, K.C., Penfornis, P., Dhule, S., Guillonneau, F., Adams, K.V., Mo, Y.Y., Xu, R., Liu, Y., Watabe, K., Vemuri, M.C., and Pochampally, R. (2015) Extracellular vesicles from bone marrow mesenchymal stem/stromal cells transport tumor regulatory microRNA, proteins, and metabolites, Oncotarget, 6, 4953–4967, doi: 10.18632/oncotarget.3211.

18. Yang, Y., Bucan, V., Baehre, H., von der Ohe, J., Otte, A., and Hass, R. (2015) Acquisition of new tumor cell properties by MSC-derived exosomes, Int. J. Oncol., 47, 244–252, doi: 10.3892/ijo.2015.3001.

19. Pascucci, L., Cocce, V., Bonomi, A., Ami, D., Ceccarelli, P., Ciusani, E., Vigano, L., Locatelli, A., Sisto, F., Doglia, S.M., Parati, E., Bernardo, M.E., Muraca, M., Alessandri, G., Bondiolotti, G., and Pessina, A. (2014) Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery, J. Control. Release, 192, 262–270, doi: 10.1016/j.jconrel.2014.07.042.

20. Vakhshiteh, F., Atyabi, F., and Ostad, S.N. (2019) Mesenchymal stem cell exosomes: a two-edged sword in cancer therapy, Int. J. Nanomedicine, 14, 2847–2859, doi: 10.2147/ijn.S200036.

21. Deng, H., Sun, C., Sun, Y., Li, H., Yang, L., Wu, D., Gao, Q., and Jiang, X. (2018) Lipid, protein, and microRNA composition within mesenchymal stem cell-derived exosomes, Cell. Reprogram., 20, 178–186, doi: 10.1089/cell.2017.0047.

22. Dahbour, S., Jamali, F., Alhattab, D., Al-Radaideh, A., Ababneh, O., Al-Ryalat, N., Al-Bdour, M., Hourani, B., Msallam, M., Rasheed, M., Huneiti, A., Bahou, Y., Tarawneh, E., and Awidi, A. (2017) Mesenchymal stem cells and conditioned media in the treatment of multiple sclerosis patients: clinical, ophthalmological and radiological assessments of safety and efficacy, CNS Neurosci. Ther., 23, 866–874, doi: 10.1111/cns.12759.

23. Kordelas, L., Rebmann, V., Ludwig, A.K., Radtke, S., Ruesing, J., Doeppner, T.R., Epple, M., Horn, P. A., Beelen, D.W., and Giebel, B. (2014) MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease, Leukemia, 28, 970–973, doi: 10.1038/leu.2014.41.

24. Nassar, W., El-Ansary, M., Sabry, D., Mostafa, M.A., Fayad, T., Kotb, E., Temraz, M., Saad, A.N., Essa, W., and Adel, H. (2016) Umbilical cord mesenchymal stem cells derived extracellular vesicles can safely ameliorate the progression of chronic kidney diseases, Biomater. Res., 20, 21, doi: 10.1186/s40824-016-0068-0.

25. Zhou, B.R., Xu, Y., Guo, S.L., Xu, Y., Wang, Y., Zhu, F., Permatasari, F., Wu, D., Yin, Z.Q., and Luo, D. (2013) The effect of conditioned media of adipose-derived stem cells on wound healing after ablative fractional carbon dioxide laser resurfacing, Biomed. Res. Int., 2013, 519126, doi: 10.1155/2013/519126.

26. Fukuoka, H., Narita, K., and Suga, H. (2017) Hair regeneration therapy: application of adipose-derived stem cells, Curr. Stem Cell Res. Ther., 12, 531–534, doi: 10.2174/1574888×12666170522114307.

27. Shin, H., Won, C.H., Chung, W.K., and Park, B.S. (2017) Up-to-date clinical trials of hair regeneration using conditioned media of adipose-derived stem cells in male and female pattern hair loss, Curr. Stem Cell Res. Ther., 12, 524–530, doi: 10.2174/1574888×12666170504120244.

28. Katagiri, W., Watanabe, J., Toyama, N., Osugi, M., Sakaguchi, K., and Hibi, H. (2017) Clinical study of bone regeneration by conditioned medium from mesenchymal stem cells after maxillary sinus floor elevation, Implant Dent., 26, 607–612, doi: 10.1097/id.0000000000000618.

29. Fujita, Y., Kadota, T., Araya, J., Ochiya, T., and Kuwano, K. (2018) Clinical application of mesenchymal stem cell-derived extracellular vesicle-based therapeutics for inflammatory lung diseases, J. Clin. Med., 7, doi: 10.3390/jcm7100355.

30. Balducci, L., Blasi, A., Saldarelli, M., Soleti, A., Pessina, A., Bonomi, A., Cocce, V., Dossena, M., Tosetti, V., Ceserani, V., Navone, S.E., Falchetti, M.L., Parati, E.A., and Alessandri, G. (2014) Immortalization of human adipose-derived stromal cells: production of cell lines with high growth rate, mesenchymal marker expression and capability to secrete high levels of angiogenic factors, Stem Cell Res. Ther., 5, 63, doi: 10.1186/scrt452.

31. Gnecchi, M., He, H., Noiseux, N., Liang, O.D., Zhang, L., Morello, F., Mu, H., Melo, L. G., Pratt, R.E., Ingwall, J.S., and Dzau, V.J. (2006) Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement, FASEB J., 20, 661–669, doi: 10.1096/fj.05-5211com.

32. Wang, X., Chen, Y., Zhao, Z., Meng, Q., Yu, Y., Sun, J., Yang, Z., Chen, Y., Li, J., Ma, T., Liu, H., Li, Z., Yang, J., and Shen, Z. (2018) Engineered exosomes with ischemic myocardium-targeting peptide for targeted therapy in myocardial infarction, J. Am. Heart Assoc., 7, e008737, doi: 10.1161/jaha.118.008737.

33. Bhang, S.H., Lee, S., Shin, J.Y., Lee, T.J., Jang, H.K., and Kim, B.S. (2014) Efficacious and clinically relevant conditioned medium of human adipose-derived stem cells for therapeutic angiogenesis, Mol. Ther., 22, 862–872, doi: 10.1038/mt.2013.301.

34. Kwon, S.H., Bhang, S.H., Jang, H.K., Rhim, T., and Kim, B.S. (2015) Conditioned medium of adipose-derived stromal cell culture in three-dimensional bioreactors for enhanced wound healing, J. Surg. Res., 194, 8–17, doi: 10.1016/j.jss.2014.10.053.

35. Xin, H., Katakowski, M., Wang, F., Qian, J.Y., Liu, X.S., Ali, M.M., Buller, B., Zhang, Z.G., and Chopp, M. (2017) MicroRNA cluster miR-17-92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats, Stroke, 48, 747–753, doi: 10.1161/strokeaha.116.015204.

36. Yu, B., Kim, H.W., Gong, M., Wang, J., Millard, R.W., Wang, Y., Ashraf, M., and Xu, M. (2015) Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection, Int. J. Cardiol., 182, 349–360, doi: 10.1016/j.ijcard.2014.12.043.

37. Li, H., Liu, D., Li, C., Zhou, S., Tian, D., Xiao, D., Zhang, H., Gao, F., and Huang, J. (2017) Exosomes secreted from mutant-HIF-1alpha-modified bone-marrow-derived mesenchymal stem cells attenuate early steroid-induced avascular necrosis of femoral head in rabbit, Cell Biol. Int., 41, 1379–1390, doi: 10.1002/cbin.10869.

38. Bruno, S., Tapparo, M., Collino, F., Chiabotto, G., Deregibus, M.C., Soares Lindoso, R., Neri, F., Kholia, S., Giunti, S., Wen, S., Quesenberry, P., and Camussi, G. (2017) Renal regenerative potential of different extracellular vesicle populations derived from bone marrow mesenchymal stromal cells, Tissue Eng. Part A, 23, 1262–1273, doi: 10.1089/ten.TEA.2017.0069.

39. Wen, S., Dooner, M., Cheng, Y., Papa, E., Del Tatto, M., Pereira, M., Deng, Y., Goldberg, L., Aliotta, J., Chatterjee, D., Stewart, C., Carpanetto, A., Collino, F., Bruno, S., Camussi, G., and Quesenberry, P. (2016) Mesenchymal stromal cell-derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells, Leukemia, 30, 2221–2231, doi: 10.1038/leu.2016.107.

40. Haga, H., Yan, I. K., Takahashi, K., Matsuda, A., and Patel, T. (2017) Extracellular vesicles from bone marrow-derived mesenchymal stem cells improve survival from lethal hepatic failure in mice, Stem Cells Transl. Med., 6, 1262–1272, doi: 10.1002/sctm.16-0226.

41. Lu, H., Poirier, C., Cook, T., Traktuev, D.O., Merfeld-Clauss, S., Lease, B., Petrache, I., March, K.L., and Bogatcheva, N.V. (2015) Conditioned media from adipose stromal cells limit lipopolysaccharide-induced lung injury, endothelial hyperpermeability and apoptosis, J. Transl. Med., 13, 67, doi: 10.1186/s12967-015-0422-3.

42. Devaney, J., Horie, S., Masterson, C., Elliman, S., Barry, F., O’Brien, T., Curley, G.F., O’Toole, D., and Laffey, J.G. (2015) Human mesenchymal stromal cells decrease the severity of acute lung injury induced by E. coli in the rat, Thorax, 70, 625–635, doi: 10.1136/thoraxjnl-2015-206813.

43. Monsel, A., Zhu, Y.G., Gennai, S., Hao, Q., Hu, S., Rouby, J.J., Rosenzwajg, M., Matthay, M.A., and Lee, J.W. (2015) Therapeutic effects of human mesenchymal stem cell-derived microvesicles in severe Pneumonia in mice, Am. J. Respir. Crit. Care Med., 192, 324–336, doi: 10.1164/rccm.201410-1765OC.

44. Ahn, S.Y., Park, W.S., Kim, Y.E., Sung, D.K., Sung, S.I., Ahn, J.Y., and Chang, Y.S. (2018) Vascular endothelial growth factor mediates the therapeutic efficacy of mesenchymal stem cell-derived extracellular vesicles against neonatal hyperoxic lung injury, Exp. Mol. Med., 50, 26, doi: 10.1038/s12276-018-0055-8.

45. Chaubey, S., Thueson, S., Ponnalagu, D., Alam, M.A., Gheorghe, C.P., Aghai, Z., Singh, H., and Bhandari, V. (2018) Early gestational mesenchymal stem cell secretome attenuates experimental bronchopulmonary dysplasia in part via exosome-associated factor TSG-6, Stem Cell Res. Ther., 9, 173, doi: 10.1186/s13287-018-0903-4.

46. Eirin, A., Zhu, X.Y., Jonnada, S., Lerman, A., van Wijnen, A.J., and Lerman, L.O. (2018) Mesenchymal stem cell-derived extracellular vesicles improve the renal microvasculature in metabolic renovascular disease in swine, Cell Transplant., 27, 1080–1095, doi: 10.1177/0963689718780942.

47. Meng, Y., Eirin, A., Zhu, X.Y., O’Brien, D.R., Lerman, A., van Wijnen, A.J., and Lerman, L.O. (2018) The metabolic syndrome modifies the mRNA expression profile of extra-cellular vesicles derived from porcine mesenchymal stem cells, Diabet. Metab. Syndr., 10, 58, doi: 10.1186/s13098-018-0359-9.

48. Reis, L.A., Borges, F.T., Simoes, M.J., Borges, A.A., Sinigaglia-Coimbra, R., and Schor, N. (2012) Bone marrow-derived mesenchymal stem cells repaired but did not prevent gentamicin-induced acute kidney injury through paracrine effects in rats, PLoS One, 7, e44092, doi: 10.1371/journal.pone.0044092.

49. Zisa, D., Shabbir, A., Suzuki, G., and Lee, T. (2009) Vascular endothelial growth factor (VEGF) as a key therapeutic trophic factor in bone marrow mesenchymal stem cell-mediated cardiac repair, Biochem. Biophys. Res. Commun., 390, 834–838, doi: 10.1016/j.bbrc.2009.10.058.

50. Katsuda, T., Tsuchiya, R., Kosaka, N., Yoshioka, Y., Takagaki, K., Oki, K., Takeshita, F., Sakai, Y., Kuroda, M., and Ochiya, T. (2013) Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes, Sci. Rep., 3, 1197, doi: 10.1038/srep01197.

51. Zhang, B., Wang, M., Gong, A., Zhang, X., Wu, X., Zhu, Y., Shi, H., Wu, L., Zhu, W., Qian, H., and Xu, W. (2015) HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing, Stem Cells, 33, 2158–2168, doi: 10.1002/stem.1771.

52. Zhang, B., Wu, X., Zhang, X., Sun, Y., Yan, Y., Shi, H., Zhu, Y., Wu, L., Pan, Z., Zhu, W., Qian, H., and Xu, W. (2015) Human umbilical cord mesenchymal stem cell exosomes enhance angiogenesis through the Wnt4/beta-catenin pathway, Stem Cells Transl. Med., 4, 513–522, doi: 10.5966/sctm.2014-0267.

53. Yan, Y., Jiang, W., Tan, Y., Zou, S., Zhang, H., Mao, F., Gong, A., Qian, H., and Xu, W. (2017) hucMSC exosome-derived GPX1 is required for the recovery of hepatic oxidant injury, Mol. Ther., 25, 465–479, doi: 10.1016/j.ymthe.2016.11.019.

54. Souza, B.S.F., da Silva, K.N., Silva, D.N., Rocha, V.P.C., Paredes, B.D., Azevedo, C.M., Nonaka, C.K., Carvalho, G.B., Vasconcelos, J.F., Dos Santos, R.R., and Soares, M.B.P. (2017) Galectin-3 knockdown impairs survival, migration, and immunomodulatory actions of mesenchymal stromal cells in a mouse model of chagas disease cardiomyopathy, Stem Cells Int., 2017, 3282656, doi: 10.1155/2017/3282656.

55. Sioud, M., Mobergslien, A., Boudabous, A., and Floisand, Y. (2011) Mesenchymal stem cell-mediated T cell suppression occurs through secreted galectins, Int. J. Oncol., 38, 385–390, doi: 10.3892/ijo.2010.869.

56. He, Y., Zhou, S., Liu, H., Shen, B., Zhao, H., Peng, K., and Wu, X. (2015) Indoleamine 2, 3-Dioxgenase transfected mesenchymal stem cells induce kidney allograft tolerance by increasing the production and function of regulatory T Cells, Transplantation, 99, 1829–1838, doi: 10.1097/tp.0000000000000856.

57. Zhang, Q., Fu, L., Liang, Y., Guo, Z., Wang, L., Ma, C., and Wang, H. (2018) Exosomes originating from MSCs stimulated with TGF-beta and IFN-gamma promote Treg differentiation, J. Cell. Physiol., 233, 6832–6840, doi: 10.1002/jcp.26436.

58. Bruno, S., Grange, C., Deregibus, M.C., Calogero, R.A., Saviozzi, S., Collino, F., Morando, L., Busca, A., Falda, M., Bussolati, B., Tetta, C., and Camussi, G. (2009) Mesenchymal stem cell-derived microvesicles protect against acute tubular injury, J. Am. Soc. Nephrol., 20, 1053–1067, doi: 10.1681/asn.2008070798.

59. Gatti, S., Bruno, S., Deregibus, M.C., Sordi, A., Cantaluppi, V., Tetta, C., and Camussi, G. (2011) Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury, Nephrol. Dial. Transpl., 26, 1474–1483, doi: 10.1093/ndt/gfr015.

60. Harting, M.T., Srivastava, A.K., Zhaorigetu, S., Bair, H., Prabhakara, K.S., Toledano Furman, N.E., Vykoukal, J.V., Ruppert, K.A., Cox, C.S. Jr., and Olson, S.D. (2018) Inflammation-stimulated mesenchymal stromal cell-derived extracellular vesicles attenuate inflammation, Stem Cells, 36, 79–90, doi: 10.1002/stem.2730.

61. Collino, F., Bruno, S., Incarnato, D., Dettori, D., Neri, F., Provero, P., Pomatto, M., Oliviero, S., Tetta, C., Quesenberry, P.J., and Camussi, G. (2015) AKI recovery induced by mesenchymal stromal cell-derived extracellular vesicles carrying microRNAs, J. Am. Soc. Nephrol., 26, 2349–2360, doi: 10.1681/asn.2014070710.

62. Qiu, G., Zheng, G., Ge, M., Wang, J., Huang, R., Shu, Q., and Xu, J. (2018) Mesenchymal stem cell-derived extracellular vesicles affect disease outcomes via transfer of microRNAs, Stem Cell Res. Ther., 9, 320, doi: 10.1186/s13287-018-1069-9.

63. Xin, H., Li, Y., Liu, Z., Wang, X., Shang, X., Cui, Y., Zhang, Z. G., and Chopp, M. (2013) MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles, Stem Cells, 31, 2737–2746, doi: 10.1002/stem.1409.

64. Gu, D., Zou, X., Ju, G., Zhang, G., Bao, E., and Zhu, Y. (2016) Mesenchymal stromal cells derived extracellular vesicles ameliorate acute renal ischemia reperfusion injury by inhibition of mitochondrial fission through miR-30, Stem Cells Int., 2016, 2093940, doi: 10.1155/2016/2093940.

65. Feng, Y., Huang, W., Wani, M., Yu, X., and Ashraf, M. (2014) Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22, PLoS One, 9, e88685, doi: 10.1371/journal.pone.0088685.

66. Wang, X., Gu, H., Qin, D., Yang, L., Huang, W., Essandoh, K., Wang, Y., Caldwell, C.C., Peng, T., Zingarelli, B., and Fan, G.C. (2015) Exosomal miR-223 contributes to mesenchymal stem cell-elicited cardioprotection in polymicrobial sepsis, Sci. Rep., 5, 13721, doi: 10.1038/srep13721.

67. Chen, L., Lu, F.B., Chen, D.Z., Wu, J.L., Hu, E.D., Xu, L.M., Zheng, M.H., Li, H., Huang, Y., Jin, X.Y., Gong, Y.W., Lin, Z., Wang, X.D., and Chen, Y.P. (2018) BMSCs-derived miR-223-containing exosomes contribute to liver protection in experimental autoimmune hepatitis, Mol. Immunol., 93, 38–46, doi: 10.1016/j.molimm.2017.11.008.

68. Fernandez-Messina, L., Gutierrez-Vazquez, C., Rivas-Garcia, E., Sanchez-Madrid, F., and de la Fuente, H. (2015) Immunomodulatory role of microRNAs transferred by extracellular vesicles, Biol. Cell, 107, 61–77, doi: 10.1111/boc.201400081.

69. Hyun, J., Wang, S., Kim, J., Kim, G.J., and Jung, Y. (2015) MicroRNA125b-mediated Hedgehog signaling influences liver regeneration by chorionic plate-derived mesenchymal stem cells, Sci. Rep., 5, 14135, doi: 10.1038/srep14135.

70. Wang, B., Yao, K., Huuskes, B.M., Shen, H.H., Zhuang, J., Godson, C., Brennan, E.P., Wilkinson-Berka, J.L., Wise, A.F., and Ricardo, S.D. (2016) Mesenchymal stem cells deliver exogenous microRNA-let7c via exosomes to attenuate renal fibrosis, Mol. Ther., 24, 1290–1301, doi: 10.1038/mt.2016.90.

71. Lou, G., Yang, Y., Liu, F., Ye, B., Chen, Z., Zheng, M., and Liu, Y. (2017) MiR-122 modification enhances the therapeutic efficacy of adipose tissue-derived mesenchymal stem cells against liver fibrosis, J. Cell. Mol. Med., 21, 2963–2973, doi: 10.1111/jcmm.13208.

72. Fatima, F., Ekstrom, K., Nazarenko, I., Maugeri, M., Valadi, H., Hill, A.F., Camussi, G., and Nawaz, M. (2017) Non-coding RNAs in mesenchymal stem cell-derived extracellular vesicles: deciphering regulatory roles in stem cell potency, inflammatory resolve, and tissue regeneration, Front. Genet., 8, 161, doi: 10.3389/fgene.2017.00161.

73. Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J.J., and Lotvall, J.O. (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells, Nat. Cell Biol., 9, 654–659, doi: 10.1038/ncb1596.

74. Zhu, Y.G., Feng, X.M., Abbott, J., Fang, X.H., Hao, Q., Monsel, A., Qu, J.M., Matthay, M.A., and Lee, J.W. (2014) Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice, Stem Cells, 32, 116–125, doi: 10.1002/stem.1504.

75. Kota, D.J., Prabhakara, K.S., Toledano-Furman, N., Bhattarai, D., Chen, Q., DiCarlo, B., Smith, P., Triolo, F., Wenzel, P.L., Cox, C.S., Jr., and Olson, S.D. (2017) Prostaglandin E2 indicates therapeutic efficacy of mesenchymal stem cells in experimental traumatic brain injury, Stem Cells, 35, 1416–1430, doi: 10.1002/stem.2603.

76. Ozcan, S., Alessio, N., Acar, M.B., Mert, E., Omerli, F., Peluso, G., and Galderisi, U. (2016) Unbiased analysis of senescence associated secretory phenotype (SASP) to identify common components following different genotoxic stresses, Aging, 8, 1316–1329, doi: 10.18632/aging.100971.

77. Sarkar, P., Redondo, J., Kemp, K., Ginty, M., Wilkins, A., Scolding, N.J., and Rice, C.M. (2018) Reduced neuroprotective potential of the mesenchymal stromal cell secretome with ex vivo expansion, age and progressive multiple sclerosis, Cytotherapy, 20, 21–28, doi: 10.1016/j.jcyt.2017.08.007.

78. Romanov, Y.A., Volgina, N.E., Dugina, T.N., Kabaeva, N.V., and Sukhikh, G.T. (2019) Effect of storage conditions on the integrity of human umbilical cord mesenchymal stromal cell-derived microvesicles, Bull. Exp. Biol. Med., 167, 131–135, doi: 10.1007/s10517-019-04476-2.

79. Charoenviriyakul, C., Takahashi, Y., Nishikawa, M., and Takakura, Y. (2018) Preservation of exosomes at room temperature using lyophilization, Int. J. Pharm., 553, 1–7, doi: 10.1016/j.ijpharm.2018.10.032.

80. Ionescu, L., Byrne, R.N., van Haaften, T., Vadivel, A., Alphonse, R.S., Rey-Parra, G.J., Weissmann, G., Hall, A., Eaton, F., and Thebaud, B. (2012) Stem cell conditioned medium improves acute lung injury in mice: in vivo evidence for stem cell paracrine action, Am. J. Physiol. Lung Cell. Mol. Physiol., 303, L967–L977, doi: 10.1152/ajplung.00144.2011.

81. Rathinasabapathy, A., Bruce, E., Espejo, A., Horowitz, A., Sudhan, D.R., Nair, A., Guzzo, D., Francis, J., Raizada, M.K., Shenoy, V., and Katovich, M.J. (2016) Therapeutic potential of adipose stem cell-derived conditioned medium against pulmonary hypertension and lung fibrosis, Br. J. Pharmacol., 173, 2859–2879, doi: 10.1111/bph.13562.

82. Ahmadi, M., Rahbarghazi, R., Aslani, M.R., Shahbazfar, A.A., Kazemi, M., and Keyhanmanesh, R. (2017) Bone marrow mesenchymal stem cells and their conditioned media could potentially ameliorate ovalbumin-induced asthmatic changes, Biomed. Pharmacother., 85, 28–40, doi: 10.1016/j.biopha.2016.11.127.

83. Parekkadan, B., van Poll, D., Suganuma, K., Carter, E.A., Berthiaume, F., Tilles, A.W., and Yarmush, M.L. (2007) Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure, PLoS One, 2, e941, doi: 10.1371/journal.pone.0000941.

84. Bi, B., Schmitt, R., Israilova, M., Nishio, H., and Cantley, L. G. (2007) Stromal cells protect against acute tubular injury via an endocrine effect, J. Am. Soc. Nephrol., 18, 2486–2496, doi: 10.1681/asn.2007020140.

85. Kay, A.G., Long, G., Tyler, G., Stefan, A., Broadfoot, S.J., Piccinini, A.M., Middleton, J., and Kehoe, O. (2017) Mesenchymal stem cell-conditioned medium reduces disease severity and immune responses in inflammatory arthritis, Sci. Rep., 7, 18019, doi: 10.1038/s41598-017-18144-w.

86. Linero, I., and Chaparro, O. (2014) Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration, PLoS One, 9, e107001, doi: 10.1371/journal.pone.0107001.

87. Fontanilla, C.V., Gu, H., Liu, Q., Zhu, T.Z., Zhou, C., Johnstone, B.H., March, K.L., Pascuzzi, R.M., Farlow, M.R., and Du, Y. (2015) Adipose-derived stem cell conditioned media extends survival time of a mouse model of amyotrophic lateral sclerosis, Sci. Rep., 5, 16953, doi: 10.1038/srep16953.

88. Yamagata, M., Yamamoto, A., Kako, E., Kaneko, N., Matsubara, K., Sakai, K., Sawamoto, K., and Ueda, M. (2013) Human dental pulp-derived stem cells protect against hypoxic-ischemic brain injury in neonatal mice, Stroke, 44, 551–554, doi: 10.1161/strokeaha.112.676759.

89. Bai, L., Lennon, D.P., Caplan, A.I., DeChant, A., Hecker, J., Kranso, J., Zaremba, A., and Miller, R.H. (2012) Hepatocyte growth factor mediates mesenchymal stem cell-induced recovery in multiple sclerosis models, Nat. Neurosci., 15, 862–870, doi: 10.1038/nn.3109.

90. Suto, N., Mieda, T., Iizuka, A., Nakamura, K., and Hirai, H. (2016) Morphological and functional attenuation of degeneration of peripheral neurons by mesenchymal stem cell-conditioned medium in spinocerebellar ataxia type 1-knock-in mice, CNS Neurosci. Ther., 22, 670–676, doi: 10.1111/cns.12560.

91. Sun, J., Zhang, Y., Song, X., Zhu, J., and Zhu, Q. (2019) The healing effects of conditioned medium derived from mesenchymal stem cells on radiation-induced skin wounds in rats, Cell Transplant., 28, 105–115, doi: 10.1177/0963689718807410.

92. Lai, R.C., Arslan, F., Lee, M.M., Sze, N.S., Choo, A., Chen, T.S., Salto-Tellez, M., Timmers, L., Lee, C.N., El Oakley, R.M., Pasterkamp, G., de Kleijn, D.P., and Lim, S.K. (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury, Stem Cell Res., 4, 214–222, doi: 10.1016/j.scr.2009.12.003.

93. Gangadaran, P., Rajendran, R.L., Lee, H.W., Kalimuthu, S., Hong, C.M., Jeong, S.Y., Lee, S.W., Lee, J., and Ahn, B.C. (2017) Extracellular vesicles from mesenchymal stem cells activates VEGF receptors and accelerates recovery of hindlimb ischemia, J. Control. Release, 264, 112–126, doi: 10.1016/j.jconrel.2017.08.022.

94. Cosenza, S., Ruiz, M., Toupet, K., Jorgensen, C., and Noel, D. (2017) Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis, Sci. Rep., 7, 16214, doi: 10.1038/s41598-017-15376-8.

95. Doeppner, T.R., Herz, J., Gorgens, A., Schlechter, J., Ludwig, A. K., Radtke, S., de Miroschedji, K., Horn, P.A., Giebel, B., and Hermann, D.M. (2015) Extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression, Stem Cells Transl. Med., 4, 1131–1143, doi: 10.5966/sctm.2015-0078.

96. Wang, S.S., Jia, J., and Wang, Z. (2018) Mesenchymal stem cell-derived extracellular vesicles suppresses iNOS expression and ameliorates neural impairment in Alzheimer’s disease mice, J. Alzheimer’s Dis., 61, 1005–1013, doi: 10.3233/jad-170848.

97. Zhang, Y., Chopp, M., Meng, Y., Katakowski, M., Xin, H., Mahmood, A., and Xiong, Y. (2015) Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury, J. Neurosur., 122, 856–867, doi: 10.3171/2014.11.Jns14770.

98. Perets, N., Hertz, S., London, M., and Offen, D. (2018) Intranasal administration of exosomes derived from mesenchymal stem cells ameliorates autistic-like behaviors of BTBR mice, Mol. Autism, 9, 57, doi: 10.1186/s13229-018-0240-6.

99. Huang, J.H., Yin, X.M., Xu, Y., Xu, C.C., Lin, X., Ye, F.B., Cao, Y., and Lin, F.Y. (2017) Systemic administration of exosomes released from mesenchymal stromal cells attenuates apoptosis, inflammation, and promotes angiogenesis after spinal cord injury in rats, J. Neurotrauma, 34, 3388–3396, doi: 10.1089/neu.2017.5063.

100. Curley, G.F., Ansari, B., Hayes, M., Devaney, J., Masterson, C., Ryan, A., Barry, F., O’Brien, T., Toole, D.O., and Laffey, J.G. (2013) Effects of intratracheal mesenchymal stromal cell therapy during recovery and resolution after ventilator-induced lung injury, Anesthesiology, 118, 924–932, doi: 10.1097/ALN.0b013e318287ba08.

101. Hayes, M., Curley, G.F., Masterson, C., Devaney, J., O’Toole, D., and Laffey, J.G. (2015) Mesenchymal stromal cells are more effective than the MSC secretome in diminishing injury and enhancing recovery following ventilator-induced lung injury, Intens. Care Med. Exp., 3, 29, doi: 10.1186/s40635-015-0065-y.