БИОХИМИЯ, 2019, том 84, вып. 11, с. 1668–1682

УДК 577.151

Нейтральная эндопептидаза (неприлизин) в терапии и диагностике: «инь и ян»

Обзор

© 2019 Е.Э. Фейгина 1,2 *,**, А.Г. Катруха 1,3 **, А.Г. Семенов 1,2 **

HyTest Ltd., Турку, Финляндия; электронная почта: Evgeniya.Feygina@hytest.fi

НИИ физико-химической биологии им. А.Н. Белозерского, Московский государственный университет им. М.В. Ломоносова, 119991 Москва, Россия

Московский государственный университет им. М.В. Ломоносова, биологический факультет, 119991 Москва, Россия

Поступила в редакцию 07.06.2019
После доработки 02.08.2019
Принята к публикации 19.08.2019

DOI: 10.1134/S0320972519110101

КЛЮЧЕВЫЕ СЛОВА: неприлизин, натрийуретические пептиды, АРНи, сердечная недостаточность, болезнь Альцгеймера, биомаркеры, иммунохимический анализ.

Аннотация

Неприлизин (neprilysin, NEP) — это цинк-зависимая мембраносвязанная эндопептидаза, представленная в организме в трансмембранной и растворимой формах. Фермент имеет широкий спектр субстратов, вовлеченных в регуляцию сердечно-сосудистой, нервной и других систем организма. В данном обзоре мы останавливаемся на некоторых биохимических функциях NEP и на его физиологической роли. В центре внимания данной работы находится использование NEP как терапевтической мишени: история и разнообразные физиологические аспекты применения ингибиторов NEP для лечения сердечной недостаточности, попытки увеличения активности NEP для лечения болезни Альцгеймера с использованием подходов генной и клеточной терапии. Другим важным вопросом, который мы рассматриваем в данном обзоре, является роль NEP как потенциального маркера для предсказания риска осложнений при сердечно-сосудистых заболеваниях. Приведены данные исследований предсказательной силы растворимой формы NEP при различных типах сердечной недостаточности. Мы также обсуждаем измерение активности NEP для прогностических и диагностических целей, методы и подходы, которые могут быть использованы для этого, а также возможную новую роль натрийуретических  — субстратов NEP — в области сердечно-сосудистой диагностики.

Текст статьи

Пожалуйста, введите код, чтобы получить PDF файл с полным текстом статьи:

captcha

Сноски

* Адресат для корреспонденции.

** Автор является выпускником кафедры биохимии биологического факультета МГУ им. М.В. Ломоносова.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических норм

Настоящая статья не содержит каких-либо исследований с использованием животных в качестве объектов. Настоящая статья не содержит каких-либо исследований с участием людей в качестве объектов.

Список литературы

1. McMurray, J.J., Packer, M., Desai, A.S., Gong, J., Lefkowitz, M.P., Rizkala, A.R., Rouleau, J., Shi, V.C., Solomon, S.D., Swedberg, K., Zile, M.R., and PARADIGM-HF Committees and Investigators (2013) Dual angiotensin receptor and neprilysin inhibition as an alternative to angiotensin-converting enzyme inhibition in patients with chronic systolic heart failure: rationale for and design of the Prospective comparison of ARNI with ACEI to Determine Impact on Global Mortality and morbidity in Heart Failure trial (PARADIGM-HF), Eur. J. Heart Fail., 15, 1062–1073.

2. George, S.G., and Kenny, J. (1973) Studies on the enzymology of purified preparations of brush border from rabbit kidney, Biochem. J., 134, 43–57.

3. Malfroy, B., and Guyon, A. (1978) High-affinity degrading peptidase in brain is increased after morphine, Nature, 276, 523–526.

4. Roques, B.P., Fournie-Zaluski, M.C., Soroca, E., Lecomte, J.M., Malfroy, B., Llorens, C., and Schwartz, J.C. (1980) The enkephalinase inhibitor thiorphan shows antinociceptive activity in mice, Nature., 288, 286–288.

5. Letarte, M., Vera, S., Tran, R., Addis, J.B., Onizuka, R.J., Quackenbush, E.J., Jongeneel, C.V., and McInnes, R.R. (1988) Common acute lymphocytic leukemia antigen is identical to neutral endopeptidase, J. Exp. Med., 168, 1247–1253.

6. Fulcher, I.S., and Kenny, A.J. (1983) Proteins of the kidney microvillar membrane. The amphipathic forms of endopeptidase purified from pig kidneys, Biochem. J., 211, 743–753.

7. Oefner, C., D’Arcy, A., Hennig, M., Winkler, F.K., and Dale, G.E. (2000) Structure of human neutral endopeptidase (Neprilysin) complexed with phosphoramidon, J. Mol. Biol., 296, 341–349.

8. Beaumont, A., Le Moual, H., Boileau, G., Crine, P., and Roques, B.P. (1991) Evidence that both arginine 102 and arginine 747 are involved in substrate binding to neutral endopeptidase (EC 3.4.24.11), J. Biol. Chem., 266, 214–220.

9. Erdos, E.G., and Skidgel, R.A. (1989) Neutral endopeptidase 24.11 (enkephalinase) and related regulators of peptide hormones, FASEB J., 3, 145–151.

10. Ronco, P., Pollard, H., Galceran, M., Delauche, M., Schwartz, J.C., and Verroust, P. (1988) Distribution of enkephalinase (membrane metalloendopeptidase, E.C. 3.4.24.11) in rat organs. Detection using a monoclonal antibody, Lab. Invest., 58, 210–217.

11. Mapp, P.I., Walsh, D.A., Kidd, B.L., Cruwys, S.C., Polak, J.M., and Blake, D.R. (1992) Localization of the enzyme neutral endopeptidase to the human synovium, J. Rheumatol., 19, 1838–1844.

12. Bowes, M.A., and Kenny, A.J. (1986) Endopeptidase-24.11 in pig lymph nodes. Purification and immunocyto-chemical localization in reticular cells, Biochem. J., 236, 801–810.

13. Connelly, J.C., Skidgel, R.A., Schulz, W.W., Johnson, A.R., and Erdos, E.G. (1985) Neutral endopeptidase 24.11 in human neutrophils: cleavage of chemotactic peptide, Proc. Natl. Acad. Sci. USA, 82, 8737–8741.

14. Kuruppu, S., Rajapakse, N.W., Minond, D., and Smith, A.I. (2014) Production of soluble Neprilysin by endothelial cells, Biochem. Biophys. Res. Commun., 446, 423–427.

15. Spillantini, M.G., Sicuteri, F., Salmon, S., and Malfroy, B. (1990) Characterization of endopeptidase 3.4.24.11 (“enkephalinase”) activity in human plasma and cerebrospinal fluid, Biochem. Pharmacol., 39, 1353–1356.

16. Yandle, T., Richards, M., Smith, M., Charles, C., Livesey, J., and Espiner, E. (1992) Assay of endopeptidase-24.11 activity in plasma applied to in vivo studies of endopeptidase inhibitors, Clin. Chem., 38, 1785–1791.

17. Whyteside, A.R., and Turner, A.J. (2008) Human neprilysin-2 (NEP2) and NEP display distinct subcellular localisations and substrate preferences, FEBS Lett., 582, 2382–2386.

18. Raharjo, S.B., Emoto, N., Ikeda, K., Sato, R., Yokoyama, M., and Matsuo, M. (2001) Alternative splicing regulates the endoplasmic reticulum localization or secretion of soluble secreted endopeptidase, J. Biol. Chem., 276, 25612–25620.

19. Pankow, K., Schwiebs, A., Becker, M., Siems, W.E., Krause, G., and Walther, T. (2009) Structural substrate conditions required for neutral endopeptidase-mediated natriuretic peptide degradation, J. Mol. Biol., 393, 496–503.

20. Shipp, M.A., Tarr, G.E., Chen, C.Y., Switzer, S.N., Hersh, L.B., Stein, H., Sunday, M.E., and Reinherz, E.L. (1991) CD10/neutral endopeptidase 24.11 hydrolyzes bombesin-like peptides and regulates the growth of small cell carcinomas of the lung, Proc. Natl. Acad. Sci. USA, 88, 10662–10666.

21. Kenny, A.J., Bourne, A., and Ingram, J. (1993) Hydrolysis of human and pig brain natriuretic peptides, urodilatin, C-type natriuretic peptide and some C-receptor ligands by endopeptidase-24.11, Biochem. J., 291, 83–88.

22. Watanabe, Y., Nakajima, K., Shimamori, Y., and Fujimoto, Y. (1997) Comparison of the hydrolysis of the three types of natriuretic peptides by human kidney neutral endopeptidase 24.11, Biochem. Mol. Med., 61, 47–51.

23. Bhoola, K.D., Figueroa, C.D., and Worthy, K. (1992) Bioregulation of kinins: kallikreins, kininogens, and kininases, Pharmacol. Rev., 44, 1–80.

24. Matsas, R., Rattray, M., Kenny, A.J., and Turner, A.J. (1985) The metabolism of neuropeptides. Endopeptidase-24.11 in human synaptic membrane preparations hydrolyses substance P, Biochem. J., 228, 487–492.

25. Wilkinson, I.B., McEniery, C.M., Bongaerts, K.H., MacCallum, H., Webb, D.J., and Cockcroft, J.R. (2001) Adrenomedullin (ADM) in the human forearm vascular bed: effect of neutral endopeptidase inhibition and comparison with proadrenomedullin NH2-terminal 20 peptide (PAMP), Br. J. Clin. Pharmacol., 52, 159–164.

26. McDowell, G., Coutie, W., Shaw, C., Buchanan, K.D., Struthers, A.D., and Nicholls, D.P. (1997) The effect of the neutral endopeptidase inhibitor drug, candoxatril, on circulating levels of two of the most potent vasoactive peptides, Br. J. Clin. Pharmacol., 43, 329–332.

27. Barnes, K., Doherty, S., and Turner, A.J. (1995) Endopeptidase-24.11 is the integral membrane peptidase initiating degradation of somatostatin in the hippocampus, J. Neurochem., 64, 1826–1832.

28. Nalivaeva, N.N., Belyaev, N.D., Zhuravin, I.A., and Turner, A.J. (2012) The Alzheimer’s amyloid-degrading peptidase, neprilysin: can we control it? Int. J. Alzheimers Dis., 2012, 383796.

29. Singh, J.S.S., Burrell, L.M., Cherif, M., Squire, I.B., Clark, A.L., and Lang, C.C. (2017) Sacubitril/valsartan: beyond natriuretic peptides, Heart, 103, 1569–1577.

30. Schulz, R., Sakane, Y., Berry, C., and Ghai, R. (1991) Characterisation of neutral endopeptidase 3.4.24.11 (NEP) in the kidney: comparison between normotensive, genetically hypertensive and experimentally hypertensive rats, J. Enzyme Inhib., 4, 347–358.

31. Koehn, J.A., Norman, J.A., Jones, B.N., LeSueur, L., Sakane, Y., and Ghai, R.D. (1987) Degradation of atrial natriuretic factor by kidney cortex membranes. Isolation and characterization of the primary proteolytic product, J. Biol. Chem., 262, 11623–11627.

32. Olins, G.M., Spear, K.L., Siegel, N.R., and Zurcher-Neely, H.A. (1987) Inactivation of atrial natriuretic factor by the renal brush border, Biochim. Biophys. Acta, 901, 97–100.

33. Nawarskas, J., Rajan, V., and Frishman, W.H. (2001) Vasopeptidase inhibitors, neutral endopeptidase inhibitors, and dual inhibitors of angiotensin-converting enzyme and neutral endopeptidase, Heart Dis., 3, 378–385.

34. Nishimura, K., and Hazato, T. (1993) Isolation and identification of an endogenous inhibitor of enkephalin-degrading enzymes from bovine spinal cord, Biochem. Biophys. Res. Commun., 194, 713–719.

35. Shen, R., Sumitomo, M., Dai, J., Harris, A., Kaminetzky, D., Gao, M., Burnstein, K.L., and Nanus, D.M. (2000) Androgen-induced growth inhibition of androgen receptor expressing androgen-independent prostate cancer cells is mediated by increased levels of neutral endopeptidase, Endocrinology, 141, 1699–1704.

36. Stephen, H.M., Khoury, R.J., Majmudar, P.R., Blaylock, T., Hawkins, K., Salama, M.S., Scott, M.D., Cosminsky, B., Utreja, N.K., Britt, J., and Conway, R.E. (2016) Epigenetic suppression of neprilysin regulates breast cancer invasion, Oncogenesis, 5, e207.

37. Jhund, P.S., and McMurray, J.J. (2016) The neprilysin pathway in heart failure: a review and guide on the use of sacubitril/valsartan, Heart, 102, 1342–1347.

38. Volpe, M., Carnovali, M., and Mastromarino, V. (2016) The natriuretic peptides system in the pathophysiology of heart failure: from molecular basis to treatment, Clin. Sci. (Lond.), 130, 57–77.

39. Potter, L.R., Yoder, A.R., Flora, D.R., Antos, L.K., and Dickey, D.M. (2009) Natriuretic peptides: their structures, receptors, physiologic functions and therapeutic applictions, Handb. Exp. Pharmacol., 191, 341–366.

40. Yamamoto, K., Chappell, M.C., Brosnihan, K.B., and Ferrario, C.M. (1992) In vivo metabolism of angiotensin I by neutral endopeptidase (EC 3.4.24.11) in spontaneously hypertensive rats, Hypertension, 19, 692–696.

41. Rossi, F., Mascolo, A., and Mollace, V. (2017) The pathophysiological role of natriuretic peptide-RAAS cross talk in heart failure, Int. J. Cardiol., 226, 121–125.

42. D’Elia, E., Iacovoni, A., Vaduganathan, M., Lorini, F.L., Perlini, S., and Senni, M. (2017) Neprilysin inhibition in heart failure: mechanisms and substrates beyond modulating natriuretic peptides, Eur. J. Heart Fail., 19, 710–717.

43. Sonnenberg, J.L., Sakane, Y., Jeng, A.Y., Koehn, J.A., Ansell, J.A., Wennogle, L.P., and Ghai, R.D. (1988) Identification of protease 3.4.24.11 as the major atrial natriuretic factor degrading enzyme in the rat kidney, Peptides, 9, 173–180.

44. Vanneste, Y., Michel, A., Dimaline, R., Najdovski, T., and Deschodt-Lanckman, M. (1988) Hydrolysis of alpha-human atrial natriuretic peptide in vitro by human kidney membranes and purified endopeptidase-24.11. Evidence for a novel cleavage site, Biochem. J., 254, 531–537.

45. Ralat, L.A., Guo, Q., Ren, M., Funke, T., Dickey, D.M., Potter, L.R., and Tang, W.J. (2011) Insulin-degrading enzyme modulates the natriuretic peptide-mediated signaling response, J. Biol. Chem., 286, 4670–4679.

46. Muller, D., Schulze, C., Baumeister, H., Buck, F., and Richter, D. (1992) Rat insulin-degrading enzyme: cleavage pattern of the natriuretic peptide hormones ANP, BNP, and CNP revealed by HPLC and mass spectrometry, Biochemistry, 31, 11138–11143.

47. Dickey, D.M., and Potter, L.R. (2010) Human B-type natriuretic peptide is not degraded by meprin A, Biochem. Pharmacol., 80, 1007–1011.

48. Norman, J.A., Little, D., Bolgar, M., and Di Donato, G. (1991) Degradation of brain natriuretic peptide by neutral endopeptidase: species specific sites of proteolysis determined by mass spectrometry, Biochem. Biophys. Res. Commun., 175, 22–30.

49. Semenov, A.G., and Katrukha, A.G. (2016) Different susceptibility of B-Type Natriuretic Peptide (BNP) and BNP Precursor (proBNP) to cleavage by neprilysin: the N-terminal part does matter, Clin. Chem., 62, 617–622.

50. Semenov, A.G., Feygina, E.E., Tamm, N.N., Serebryanaya, D.V., and Katrukha, A.G. (2017) Abstract 15828: Pro-Atrial Natriuretic Peptide (proANP) as a stable circulating ANP form that is not affected by neprilysin-mediated cleavage, Circulation, 136, A15828.

51. Yan, W., Wu, F., Morser, J., and Wu, Q. (2000) Corin, a transmembrane cardiac serine protease, acts as a pro-atrial natriuretic peptide-converting enzyme, Proc. Natl. Acad. Sci. USA, 97, 8525–8529.

52. Yan, W., Sheng, N., Seto, M., Morser, J., and Wu, Q. (1999) Corin, a mosaic transmembrane serine protease encoded by a novel cDNA from human heart, J. Biol. Chem., 274, 14926–14935.

53. Semenov, A.G., Tamm, N.N., Seferian, K.R., Postnikov, A.B., Karpova, N.S., Serebryanaya, D.V., Koshkina, E.V., Krasnoselsky, M.I., and Katrukha, A.G. (2010) Processing of pro-B-type natriuretic peptide: furin and corin as candidate convertases, Clin. Chem., 56, 1166–1176.

54. Semenov, A.G., Seferian, K.R., Tamm, N.N., Artem’eva, M.M., Postnikov, A.B., Bereznikova, A.V., Kara, A.N., Medvedeva, N.A., and Katrukha, A.G. (2011) Human pro-B-type natriuretic peptide is processed in the circulation in a rat model, Clin. Chem., 57, 883–890.

55. Yandle, T.G., Richards, A.M., Gilbert, A., Fisher, S., Holmes, S., and Espiner, E.A. (1993) Assay of brain natriuretic peptide (BNP) in human plasma: evidence for high molecular weight BNP as a major plasma component in heart failure, J. Clin. Endocrinol. Metab., 76, 832–838.

56. Seferian, K.R., Tamm, N.N., Semenov, A.G., Mukharyamova, K. S., Tolstaya, A.A., Koshkina, E.V., Kara, A.N., Krasnoselsky, M.I., Apple, F.S., Esakova, T.V., Filatov, V. L., and Katrukha, A.G. (2007) The brain natriuretic peptide (BNP) precursor is the major immunoreactive form of BNP in patients with heart failure, Clin. Chem., 53, 866–873.

57. Semenov, A.G., and Feygina, E.E. (2018) Standardization of BNP and NT-proBNP immunoassays in light of the diverse and complex nature of circulating BNP-related peptides, Adv. Clin. Chem., 85, 1–30.

58. Yandrapalli, S., Aronow, W.S., Mondal, P., and Chabbott, D.R. (2017) The evolution of natriuretic peptide augmentation in management of heart failure and the role of sacubitril/valsartan, Arch. Med. Sci., 13, 1207–1216.

59. Northridge, D.B., Jardine, A.G., Alabaster, C.T., Barclay, P.L., Connell, J.M., Dargie, H.J., Dilly, S.G., Findlay, I.N., Lever, A.F., and Samuels, G.M. (1989) Effects of UK 69 578: a novel atriopeptidase inhibitor, Lancet, 2, 591–593.

60. Gros, C., Souque, A., Schwartz, J.C., Duchier, J., Cournot, A., Baumer, P., and Lecomte, J.M. (1989) Protection of atrial natriuretic factor against degradation: diuretic and natriuretic responses after in vivo inhibition of enkephalinase (EC 3.4.24.11) by acetorphan, Proc. Natl. Acad. Sci. USA., 86, 7580–7584.

61. Bevan, E.G., Connell, J.M., Doyle, J., Carmichael, H.A., Davies, D.L., Lorimer, A.R., and McInnes, G.T. (1992) Candoxatril, a neutral endopeptidase inhibitor: efficacy and tolerability in essential hypertension, J. Hypertens., 10, 607–613.

62. Richards, A.M., Wittert, G.A., Espiner, E.A., Yandle, T.G., Ikram, H., and Frampton, C. (1992) Effect of inhibition of endopeptidase 24.11 on responses to angiotensin II in human volunteers, Circ. Res., 71, 1501–1507.

63. Ferro, C.J., Spratt, J.C., Haynes, W.G., and Webb, D.J. (1998) Inhibition of neutral endopeptidase causes vasocon-striction of human resistance vessels in vivo, Circulation, 97, 2323–2330.

64. CONSENSUS Trial Study Group (1987) Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS), N. Engl. J. Med., 316, 1429–1435.

65. SOLVD Investigators, Yusuf, S., Pitt, B., Davis, C.E., Hood, W.B., and Cohn, J.N. (1991) Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure, N. Engl. J. Med., 325, 293–302.

66. Trippodo, N.C., Robl, J.A., Asaad, M.M., Bird, J.E., Panchal, B.C., Schaeffer, T.R., Fox, M., Giancarli, M.R., and Cheung, H.S. (1995) Cardiovascular effects of the novel dual inhibitor of neutral endopeptidase and angiotensin-converting enzyme BMS-182657 in experimental hypertension and heart failure, J. Pharmacol. Exp. Ther., 275, 745–752.

67. McClean, D.R., Ikram, H., Garlick, A.H., Richards, A.M., Nicholls, M.G., and Crozier, I.G. (2000) The clinical, cardiac, renal, arterial and neurohormonal effects of omapatrilat, a vasopeptidase inhibitor, in patients with chronic heart failure, J. Am. Coll. Cardiol., 36, 479–486.

68. Rouleau, J.L., Pfeffer, M.A., Stewart, D.J., Isaac, D., Sestier, F., Kerut, E.K., Porter, C.B., Proulx, G., Qian, C., and Block, A.J. (2000) Comparison of vasopeptidase inhibitor, omapatrilat, and lisinopril on exercise tolerance and morbidity in patients with heart failure: IMPRESS randomised trial, Lancet, 356, 615–620.

69. Packer, M., Califf, R.M., Konstam, M.A., Krum, H., McMurray, J.J., Rouleau, J.L., and Swedberg, K. (2002) Comparison of omapatrilat and enalapril in patients with chronic heart failure: the Omapatrilat Versus Enalapril Randomized Trial of Utility in Reducing Events (OVERTURE), Circulation, 106, 920–926.

70. Kostis, J.B., Packer, M., Black, H.R., Schmieder, R., Henry, D., and Levy, E. (2004) Omapatrilat and enalapril in patients with hypertension: the Omapatrilat Cardiovascular Treatment vs. Enalapril (OCTAVE) trial, Am. J. Hypertens, 17, 103–111.

71. Fryer, R.M., Segreti, J., Banfor, P.N., Widomski, D.L., Backes, B.J., Lin, C.W., Ballaron, S.J., Cox, B.F., Trevillyan, J.M., Reinhart, G.A., and von Geldern, T.W. (2008) Effect of bradykinin metabolism inhibitors on evoked hypotension in rats: rank efficacy of enzymes associated with bradykinin-mediated angioedema, Br. J. Pharmacol., 153, 947–955.

72. McMurray, J.J., Packer, M., Desai, A.S., Gong, J., Lefkowitz, M.P., Rizkala, A.R., Rouleau, J.L., Shi, V.C., Solomon, S.D., Swedberg, K., Zile, M.R., PARADIGM-HF Investigators, and Committees (2014) Angiotensin-neprilysin inhibition versus enalapril in heart failure, N. Engl. J. Med., 371, 993–1004.

73. Velazquez, E.J., Morrow, D.A., DeVore, A.D., Duffy, C.I., Ambrosy, A.P., McCague, K., Rocha, R., Braunwald, E., and PIONEER-HF Investigators (2019) Angiotensin-neprilysin inhibition in acute decompensated heart failure, N. Engl. J. Med., 380, 539–548.

74. Solomon, S.D., Rizkala, A.R., Gong, J., Wang, W., Anand, I.S., Ge, J., Lam, C.S.P., Maggioni, A.P., Martinez, F., Packer, M., Pfeffer, M.A., Pieske, B., Redfield, M.M., Rouleau, J.L., Van Veldhuisen, D.J., Zannad, F., Zile, M.R., Desai, A.S., Shi, V.C., Lefkowitz, M.P., and McMurray, J.J. V. (2017) Angiotensin receptor neprilysin inhibition in heart failure with preserved ejection fraction: rationale and design of the PARAGON-HF trial, JACC Heart Fail., 5, 471–482.

75. Solomon, S.D., Rizkala, A.R., Lefkowitz, M.P., Shi, V.C., Gong, J., et al. (2018) Baseline characteristics of patients with heart failure and preserved ejection fraction in the PARAGON-HF trial, Circ. Heart Fail., 11, e004962.

76. Howell, S., Nalbantoglu, J., and Crine, P. (1995) Neutral endopeptidase can hydrolyze beta-amyloid(1-40) but shows no effect on beta-amyloid precursor protein metabolism, Peptides, 16, 647–652.

77. Iwata, N., Tsubuki, S., Takaki, Y., Watanabe, K., Sekiguchi, M., Hosoki, E., Kawashima-Morishima, M., Lee, H.J., Hama, E., Sekine-Aizawa, Y., and Saido, T.C. (2000) Identification of the major Abeta1-42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition, Nat. Med., 6, 143–150.

78. Takaki, Y., Iwata, N., Tsubuki, S., Taniguchi, S., Toyoshima, S., Lu, B., Gerard, N.P., Gerard, C., Lee, H.J., Shirotani, K., and Saido, T.C. (2000) Biochemical identification of the neutral endopeptidase family member responsible for the catabolism of amyloid beta peptide in the brain, J. Biochem., 128, 897–902.

79. Selkoe, D.J., and Hardy, J. (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years, EMBO Mol. Med., 8, 595–608.

80. Hardy, J.A., and Higgins, G.A. (1992) Alzheimer’s disease: the amyloid cascade hypothesis, Science, 256, 184–185.

81. Hernandez-Zimbron, L.F., and Rivas-Arancibia, S. (2014) Deciphering an interplay of proteins associated with amyloid beta 1-42 peptide and molecular mechanisms of Alzheimer’s disease, Rev. Neurosci., 25, 773–783.

82. Lambert, M.P., Barlow, A.K., Chromy, B.A., Edwards, C., Freed, R., Liosatos, M., Morgan, T.E., Rozovsky, I., Trommer, B., Viola, K.L., Wals, P., Zhang, C., Finch, C.E., Krafft, G.A., and Klein, W.L. (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins, Proc. Natl. Acad. Sci. USA, 95, 6448–6453.

83. Yoon, S.S., and Jo, S.A. (2012) Mechanisms of amyloid-beta peptide clearance: potential therapeutic targets for Alzheimer’s disease, Biomol. Ther. (Seoul.), 20, 245–255.

84. Bateman, R.J., Munsell, L.Y., Morris, J.C., Swarm, R., Yarasheski, K.E., and Holtzman, D.M. (2006) Human amyloid-beta synthesis and clearance rates as measured in cerebrospinal fluid in vivo, Nat. Med., 12, 856–861.

85. Mawuenyega, K.G., Sigurdson, W., Ovod, V., Munsell, L., Kasten, T., Morris, J.C., Yarasheski, K.E., and Bateman, R.J. (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease, Science, 330, 1774.

86. Grimm, M.O., Mett, J., Stahlmann, C.P., Haupenthal, V.J., Zimmer, V.C., and Hartmann, T. (2013) Neprilysin and abeta clearance: impact of the APP intracellular domain in NEP regulation and implications in Alzheimer’s disease, Front. Aging Neurosci., 5, 98.

87. Eckman, E.A., Adams, S.K., Troendle, F.J., Stodola, B.A., Kahn, M.A., Fauq, A.H., Xiao, H.D., Bernstein, K.E., and Eckman, C.B. (2006) Regulation of steady-state beta-amyloid levels in the brain by neprilysin and endothelin-converting enzyme but not angiotensin-converting enzyme, J. Biol. Chem., 281, 30471–30478.

88. Madani, R., Poirier, R., Wolfer, D.P., Welzl, H., Groscurth, P., Lipp, H.P., Lu, B., El Mouedden, M., Mercken, M., Nitsch, R.M., and Mohajeri, M.H. (2006) Lack of neprilysin suffices to generate murine amyloid-like deposits in the brain and behavioral deficit in vivo, J. Neurosci. Res., 84, 1871–1878.

89. Caccamo, A., Oddo, S., Sugarman, M.C., Akbari, Y., and LaFerla, F.M. (2005) Age- and region-dependent alterations in Abeta-degrading enzymes: implications for Abeta-induced disorders, Neurobiol. Aging, 26, 645–654.

90. Iwata, N., Mizukami, H., Shirotani, K., Takaki, Y., Muramatsu, S., Lu, B., Gerard, N.P., Gerard, C., Ozawa, K., and Saido, T.C. (2004) Presynaptic localization of neprilysin contributes to efficient clearance of amyloid-beta peptide in mouse brain, J. Neurosci., 24, 991–998.

91. Marr, R.A., Rockenstein, E., Mukherjee, A., Kindy, M.S., Hersh, L.B., Gage, F. H., Verma, I.M., and Masliah, E. (2003) Neprilysin gene transfer reduces human amyloid pathology in transgenic mice, J. Neurosci., 23, 1992–1996.

92. Hong, C.S., Goins, W.F., Goss, J.R., Burton, E.A., and Glorioso, J.C. (2006) Herpes simplex virus RNAi and neprilysin gene transfer vectors reduce accumulation of Alzheimer’s disease-related amyloid-beta peptide in vivo, Gene Ther., 13, 1068–1079.

93. Hemming, M.L., Patterson, M., Reske-Nielsen, C., Lin, L., Isacson, O., and Selkoe, D.J. (2007) Reducing amyloid plaque burden via ex vivo gene delivery of an Abeta-degrading protease: a novel therapeutic approach to Alzheimer’s disease, PLoS Med., 4, e262.

94. Lin, C.Y., Perche, F., Ikegami, M., Uchida, S., Kataoka, K., and Itaka, K. (2016) Messenger RNA-based therapeutics for brain diseases: an animal study for augmenting clearance of beta-amyloid by intracerebral administration of neprilysin mRNA loaded in polyplex nanomicelles, J. Control. Release, 235, 268–275.

95. Nalivaeva, N.N., and Turner, A.J. (2019) Targeting amyloid clearance in Alzheimer’s disease as a therapeutic strategy, Br. J. Pharmacol., 176, 3447–3463, doi: 10.1111/bph.14593.

96. Park, M.H., Lee, J.K., Choi, S., Ahn, J., Jin, H. K., Park, J.S., and Bae, J.S. (2013) Recombinant soluble neprilysin reduces amyloid-beta accumulation and improves memory impairment in Alzheimer’s disease mice, Brain. Res., 1529, 113–124.

97. Vodovar, N., Paquet, C., Mebazaa, A., Launay, J.M., Hugon, J., and Cohen-Solal, A. (2015) Neprilysin, cardiovascular, and Alzheimer’s diseases: the therapeutic split? Eur. Heart J., 36, 902–905.

98. Langenickel, T.H., Tsubouchi, C., Ayalasomayajula, S., Pal, P., Valentin, M.A., Hinder, M., Jhee, S., Gevorkyan, H., and Rajman, I. (2016) The effect of LCZ696 (sacubitril/valsartan) on amyloid-beta concentrations in cerebrospinal fluid in healthy subjects, Br. J. Clin. Pharmacol., 81, 878–890.

99. Cannon, J.A., Shen, L., Jhund, P.S., Kristensen, S.L., Kober, L., Chen, F., Gong, J., Lefkowitz, M.P., Rouleau, J.L., Shi, V.C., Swedberg, K., Zile, M.R., Solomon, S.D., Packer, M., McMurray, J.J., PARADIGM-HF Investigators, and Committees (2017) Dementia-related adverse events in PARADIGM-HF and other trials in heart failure with reduced ejection fraction, Eur. J. Heart Fail., 19, 129–137.

100. Karnik, A.A., Gopal, D.M., Ko, D., Benjamin, E.J., and Helm, R.H. (2019) Epidemiology of atrial fibrillation and heart failure: a growing and important problem, Cardiol. Clin., 37, 119–129.

101. Savarese, G., and Lund, L.H. (2017) Global public health burden of heart failure, Card. Fail. Rev., 3, 7–11.

102. Seronde, M.F., and Mebazaa, A. (2015) Neprilysin: biotarget and biomarker in heart failure, JACC Heart Fail., 3, 645–646.

103. Bayes-Genis, A., Barallat, J., Galan, A., de Antonio, M., Domingo, M., Zamora, E., Urrutia, A., and Lupon, J. (2015) Soluble neprilysin is predictive of cardiovascular death and heart failure hospitalization in heart failure patients, J. Am. Coll. Cardiol., 65, 657–665.

104. Bayes-Genis, A., Barallat, J., Galan, A., de Antonio, M., Domingo, M., Zamora, E., Gastelurrutia, P., Vila, J., Penafiel, J., Galvez-Monton, C., and Lupon, J. (2015) Multimarker strategy for heart failure prognostication. Value of neurohormonal biomarkers: neprilysin vs NT-proBNP, Rev. Esp. Cardiol. (Engl. Ed.), 68, 1075–1084.

105. Goliasch, G., Pavo, N., Zotter-Tufaro, C., Kammerlander, A., Duca, F., Mascherbauer, J., and Bonderman, D. (2016) Soluble neprilysin does not correlate with outcome in heart failure with preserved ejection fraction, Eur. J. Heart Fail., 18, 89–93.

106. Bayes-Genis, A., Barallat, J., Pascual-Figal, D., Nunez, J., Minana, G., Sanchez-Mas, J., Galan, A., Sanchis, J., Zamora, E., Perez-Martinez, M. T., and Lupon, J. (2015) Prognostic value and kinetics of soluble neprilysin in acute heart failure: a pilot study, JACC Heart Fail., 3, 641–644.

107. Bayes-Genis, A., Barallat, J., and Richards, A.M. (2016) A test in context: neprilysin: function, inhibition, and biomarker, J. Am. Coll. Cardiol., 68, 639–653.

108. Vodovar, N., Seronde, M.F., Laribi, S., Gayat, E., Lassus, J., Januzzi, J.L., Jr., Boukef, R., Nouira, S., Manivet, P., Samuel, J.L., Logeart, D., Cohen-Solal, A., Richards, A.M., Launay, J.M., Mebazaa, A., and Network, G. (2015) Elevated plasma B-type natriuretic peptide concentrations directly inhibit circulating neprilysin activity in heart failure, JACC Heart Fail., 3, 629–636.

109. Emrich, I.E., Vodovar, N., Feuer, L., Untersteller, K., Nougue, H., Seiler-Mussler, S., Fliser, D., Launay, J.M., and Heine, G.H. (2019) Do plasma neprilysin activity and plasma neprilysin concentration predict cardiac events in chronic kidney disease patients? Nephrol. Dial. Transplant., 34, 100–108.

110. Zhuravin, I.A., Nalivaeva, N.N., Kozlova, D.I., Kochkina, E.G., Fedorova, Y.B., and Gavrilova, S.I. (2015) The activity of blood serum cholinesterases and neprilysin as potential biomarkers of mild-cognitive impairment and Alzheimer’s disease, Zh. Nevrol. Psikhiatr. Im. S. S. Korsakova, 115, 110–117, doi: 10.17116/jnevro2015115112110-117.

111. Medeiros, M.A., Franca, M.S., Boileau, G., Juliano, L., and Carvalho, K.M. (1997) Specific fluorogenic substrates for neprilysin (neutral endopeptidase, EC 3.4.24.11) which are highly resistant to serine- and metalloproteases, Braz. J. Med. Biol. Res., 30, 1157–1162.

112. Takahashi, G., Tabata, M., Taguchi, K., and Chikuma, T. (2015) Fluorimetric assay for measuring neprilysin activity using HPLC, Chromatographia, 78, 593–597.

113. Feygina, E.E., Artemieva, M., Postnikov, A.B., Tamm, N.N., Bloshchitsyna, M.N., Medvedeva, N.A., Katrukha, A.G., and Semenov, A.G. (2019) Detection of neprilysin-derived BNP fragments in the circulation: possible insights for targeted neprilysin inhibition therapy for heart failure, Clin. Chem., doi: 10.1373/clinchem.2019.303438.

114. Burrell, M., Henderson, S.J., Ravnefjord, A., Schweikart, F., Fowler, S.B., Witt, S., Hansson, K.M., and Webster, C.I. (2016) Neprilysin inhibits coagulation through proteolytic inactivation of fibrinogen, PLoS One, 11, e0158114.