БИОХИМИЯ, 2019, том 84, вып. 11, с. 1649–1667

УДК 616-008;577

Латентное воспаление и нарушение обновления жировых депо как механизм развития резистентности к инсулину при ожирении

Обзор

© 2019 А.В. Воротников 1 #*,**, Ю.С. Стафеев 1 #*,**, М.Ю. Меньшиков 1 **, М.В. Шестакова 2, Е.В. Парфенова 1

НИИ экспериментальной кардиологии, НМИЦ Кардиологии, 121552 Москва, Россия; электронная почта: a.vorotnikov@icloud.com; yuristafeev@gmail.com

Институт диабета, НМИЦ Эндокринологии, 117036 Москва, Россия

Поступила в редакцию 25.06.2019
После доработки 09.08.2019
Принята к публикации 10.08.2019

DOI: 10.1134/S0320972519110095

КЛЮЧЕВЫЕ СЛОВА: ожирение, воспаление, жировая ткань, обновление адипоцитов, инсулинорезистентность, сахарный диабет 2-го типа.

Аннотация

Ожирение является основным фактором риска развития сахарного диабета 2-го типа и метаболического синдрома, представляя важную медицинскую и социальную проблему. В первой части обзора кратко рассмотрены биохимические основы дисбаланса метаболизма при ожирении, а также эволюция научных взглядов на механизмы развития инсулиновой резистентности в инсулин-зависимых тканях. Поскольку ожирение связано с нарушением нормальной физиологии жировой ткани, вторая часть обзора сфокусирована на латентном воспалении, которое развивается при ожирении и поддерживается иммунными клетками. Наконец, в контексте патогенеза сахарного диабета 2-го типа обсуждается проблема гипертрофии адипоцитов, нарушения регенеративного потенциала прогениторных клеток жировой ткани и обновления жировых депо.

Текст статьи

Пожалуйста, введите код, чтобы получить PDF файл с полным текстом статьи:

captcha

Сноски

# Авторы внесли одинаковый вклад в работу.

* Адресат для корреспонденции.

** Автор является выпускником кафедры биохимии биологического факультета МГУ им. М.В. Ломоносова.

Финансирование

Исследования авторов и данная работа выполнены при поддержке Российского научного фонда (грант № 17-15-01435) и Российского фонда фундаментальных исследований (гранты № 17-04-02225а и № 18-015-00398а).

Благодарности

Авторы признают ключевой вклад академиков РАН И.И. Дедова и В.А. Ткачука в инициацию фундаментальных исследований по данной тематике, благодарны проф. Н.Б. Гусеву за важный вклад в формирование гипотезы о роли обновления жировых депо в развитии ИР, проф. В.П. Ширинскому за поддержку и критическое участие в обсуждении, С.С. Мичуриной, Н.В. Подкуйченко, И.А. Склянику и Е.А. Шестаковой за плодотворное сотрудничество и участие в обсуждении работы. Мы также приносим глубокие извинения авторам многих экспериментальных статей, которые не были процитированы в данном обзоре из-за ограничений объема рукописи.

Конфликт интересов

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

Соблюдение этических норм

Настоящая статья не содержит каких-либо исследований с участием людей или использованием животных в качестве объектов исследований.

Список литературы

1. Дедов И.И., Шестакова М.В., Викулова О.К., Железнякова А.В., Исаков М.А. (2018) Cахарный диабет в Российской Федерации: распространенность, заболеваемость, смертность, параметры углеводного обмена и структура сахароснижающей терапии по данным Федерального регистра сахарного диабета, статус 2017, Сахарный диабет, 21, 144–159.

2. Баланова Ю.А., Шальнова С.А., Деев А.Д., Имаева А.Э., Концевая А.В., Муромцева, Г.А., Капустина А.В., Евстифеева С.Е., Драпкина О.М. (2018) Ожирение в российской популяции – распространенность и ассоциации с факторами риска хронических неинфекционных заболеваний, Российский кардиологический журнал, 23, 123–130.

3. Saltiel, A.R. (2016) New therapeutic approaches for the treatment of obesity, Sci. Transl. Med., 8, 323rv322.

4. Reshef, L., Olswang, Y., Cassuto, H., Blum, B., Croniger, C.M., Kalhan, S.C., Tilghman, S.M., and Hanson, R.W. (2003) Glyceroneogenesis and the triglyceride/fatty acid cycle, J. Biol. Chem., 278, 30413–30416.

5. Nelson, D.L., and Cox, M.C. (2004) Lehninger: principles of biochemistry, W. H. Freeman & Co, 4th ed., New York. p. 1119.

6. Ghaben, A.L., and Scherer, P.E. (2019) Adipogenesis and metabolic health, Nat. Rev. Mol. Cell Biol., 20, 242–258.

7. Kowalski, G.M., and Bruce, C.R. (2014) The regulation of glucose metabolism: implications and considerations for the assessment of glucose homeostasis in rodents, Am. J. Physiol. Endocrinol. Metab., 307, E859–E871.

8. Marin, P., Rebuffe-Scrive, M., Smith, U., and Bjorntorp, P. (1987) Glucose uptake in human adipose tissue, Metabolism, 36, 1154–1160.

9. Leto, D., and Saltiel, A.R. (2012) Regulation of glucose transport by insulin: traffic control of GLUT4, Nat. Rev. Mol. Cell Biol., 13, 383–396.

10. Petersen, M.C., and Shulman, G.I. (2018) Mechanisms of insulin action and insulin resistance, Physiol. Rev., 98, 2133–2223.

11. Stafeev, I.S., Vorotnikov, A.V., Ratner, E.I., Menshikov, M.Y., and Parfyonova, Y.V. (2017) Latent inflammation and insulin resistance in adipose tissue, Int. J. Endocrinol., 2017, 5076732.

12. Copps, K.D., and White, M.F. (2012) Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2, Diabetologia, 55, 2565–2582.

13. Boura-Halfon, S., and Zick, Y. (2009) Phosphorylation of IRS proteins, insulin action, and insulin resistance, Am. J. Physiol. Endocrinol. Metab., 296, E581–E591.

14. Morino, K., Petersen, K.F., and Shulman, G.I. (2006) Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction, Diabetes, 55, Suppl 2, S9–S15.

15. Zick, Y. (2004) Uncoupling insulin signalling by serine/threonine phosphorylation: a molecular basis for insulin resistance, Biochem. Soc. Trans., 32, 812–816.

16. Hales, C.N., Walker, J.B., Garland, P.B., and Randle, P.J. (1965) Fasting plasma concentrations of insulin, non-esterified fatty acids, glycerol, and glucose in the early detection of diabetes mellitus, Lancet, 1, 65–67.

17. Arner, P., and Ryden, M. (2015) Fatty acids, obesity and insulin resistance, Obes. Facts, 8, 147–155.

18. Boden, G. (2008) Obesity and free fatty acids, Endocrinol. Metab. Clin. North Am., 37, 635–646.

19. Randle, P.J., Garland, P.B., Hales, C.N., and Newsholme, E.A. (1963) The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus, Lancet, 1, 785–789.

20. Randle, P.J. (1998) Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years, Diabetes Metab. Rev., 14, 263–283.

21. Randle, P.J., Kerbey, A.L., and Espinal, J. (1988) Mechanisms decreasing glucose oxidation in diabetes and starvation: role of lipid fuels and hormones, Diabetes Metab. Rev., 4, 623–638.

22. Boden, G. (1997) Role of fatty acids in the pathogenesis of insulin resistance and NIDDM, Diabetes, 46, 3–10.

23. Roden, M., Price, T.B., Perseghin, G., Petersen, K.F., Rothman, D.L., Cline, G.W., and Shulman, G.I. (1996) Mechanism of free fatty acid-induced insulin resistance in humans, J. Clin. Invest., 97, 2859–2865.

24. Petersen, K.F., Laurent, D., Rothman, D.L., Cline, G.W., and Shulman, G.I. (1998) Mechanism by which glucose and insulin inhibit net hepatic glycogenolysis in humans, J. Clin. Invest., 101, 1203–1209.

25. Shulman, G.I. (2014) Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease, N. Engl. J Med., 371, 1131–1141.

26. Hue, L., and Taegtmeyer, H. (2009) The Randle cycle revisited: a new head for an old hat, Am. J. Physiol. Endocrinol. Metab., 297, E578–E591.

27. Richter, E.A., and Hargreaves, M. (2013) Exercise, GLUT4, and skeletal muscle glucose uptake, Physiol. Rev., 93, 993–1017.

28. Kim, J.K., Fillmore, J.J., Chen, Y., Yu, C., Moore, I.K., Pypaert, M., Lutz, E.P., Kako, Y., Velez-Carrasco, W., Goldberg, I.J., Breslow, J.L., and Shulman, G.I. (2001) Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance, Proc. Natl. Acad. Sci. USA, 98, 7522–7527.

29. Ferreira, L.D., Pulawa, L.K., Jensen, D.R., and Eckel, R.H. (2001) Overexpressing human lipoprotein lipase in mouse skeletal muscle is associated with insulin resistance, Diabetes, 50, 1064–1068.

30. Pearce, L.R., Komander, D., and Alessi, D.R. (2010) The nuts and bolts of AGC protein kinases, Nat. Rev. Mol. Cell Biol., 11, 9–22.

31. Manning, B.D., and Cantley, L.C. (2007) AKT/PKB signaling: navigating downstream, Cell, 129, 1261–1274.

32. Yu, C., Chen, Y., Cline, G.W., Zhang, D., Zong, H., Wang, Y., Bergeron, R., Kim, J.K., Cushman, S.W., Cooney, G.J., Atcheson, B., White, M.F., Kraegen, E.W., and Shulman, G.I. (2002) Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle, J. Biol. Chem., 277, 50230–50236.

33. Li, Y., Soos, T.J., Li, X., Wu, J., Degennaro, M., Sun, X., Littman, D.R., Birnbaum, M.J., and Polakiewicz, R.D. (2004) Protein kinase C Theta inhibits insulin signaling by phosphorylating IRS1 at Ser(1101), J. Biol. Chem., 279, 45304–45307.

34. Szendroedi, J., Yoshimura, T., Phielix, E., Koliaki, C., Marcucci, M., Zhang, D., Jelenik, T., Muller, J., Herder, C., Nowotny, P., Shulman, G.I., and Roden, M. (2014) Role of diacylglycerol activation of PKCθ in lipid-induced muscle insulin resistance in humans, Proc. Natl. Acad. Sci. USA, 111, 9597–9602.

35. Petersen, M.C., Madiraju, A.K., Gassaway, B.M., Marcel, M., Nasiri, A.R., Butrico, G., Marcucci, M.J., Zhang, D., Abulizi, A., Zhang, X.M., Philbrick, W., Hubbard, S.R., Jurczak, M.J., Samuel, V.T., Rinehart, J., and Shulman, G.I. (2016) Insulin receptor Thr1160 phosphorylation mediates lipid-induced hepatic insulin resistance, J. Clin. Invest., 126, 4361–4371.

36. Arkan, M.C., Hevener, A.L., Greten, F.R., Maeda, S., Li, Z.W., Long, J.M., Wynshaw-Boris, A., Poli, G., Olefsky, J., and Karin, M. (2005) IKK-beta links inflammation to obesity-induced insulin resistance, Nat. Med., 11, 191–198.

37. Chiang, S.H., Bazuine, M., Lumeng, C.N., Geletka, L.M., Mowers, J., White, N.M., Ma, J.T., Zhou, J., Qi, N., Westcott, D., Delproposto, J.B., Blackwell, T.S., Yull, F.E., and Saltiel, A.R. (2009) The protein kinase IKKepsilon regulates energy balance in obese mice, Cell, 138, 961–975.

38. Hirosumi, J., Tuncman, G., Chang, L., Gorgun, C.Z., Uysal, K.T., Maeda, K., Karin, M., and Hotamisligil, G.S. (2002) A central role for JNK in obesity and insulin resistance, Nature, 420, 333–336.

39. Tuncman, G., Hirosumi, J., Solinas, G., Chang, L., Karin, M., and Hotamisligil, G.S. (2006) Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance, Proc. Natl. Acad. Sci. USA, 103, 10741–10746.

40. Lee, Y.H., Giraud, J., Davis, R.J., and White, M.F. (2003) c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade, J. Biol. Chem., 278, 2896–2902.

41. Copps, K.D., Hancer, N.J., Opare-Ado, L., Qiu, W., Walsh, C., and White, M.F. (2010) Irs1 serine 307 promotes insulin sensitivity in mice, Cell Metab., 11, 84–92.

42. Copps, K.D., Hancer, N.J., Qiu, W., and White, M.F. (2016) Serine 302 phosphorylation of mouse insulin receptor substrate 1 (IRS1) is dispensable for normal insulin signaling and feedback regulation by hepatic S6 kinase, J. Biol. Chem., 291, 8602–8617.

43. Bianchi, M.E. (2007) DAMPs, PAMPs and alarmins: all we need to know about danger, J. Leukoc. Biol., 81, 1–5.

44. Lackey, D.E., and Olefsky, J.M. (2016) Regulation of metabolism by the innate immune system, Nat. Rev. Endocrinol., 12, 15–28.

45. Chalubinski, M., Luczak, E., Wojdan, K., Gorzelak-Pabis, P., and Broncel, M. (2016) Innate lymphoid cells type 2 – emerging immune regulators of obesity and atherosclerosis, Immunol. Lett., 179, 43–46.

46. Boulenouar, S., Michelet, X., Duquette, D., Alvarez, D., Hogan, A.E., Dold, C., O’Connor, D., Stutte, S., Tavakkoli, A., Winters, D., Exley, M.A., O’Shea, D., Brenner, M.B., von Andrian, U., and Lynch, L. (2017) Adipose type one innate lymphoid cells regulate macrophage homeostasis through targeted cytotoxicity, Immunity, 46, 273–286.

47. O’Sullivan, T.E., Rapp, M., Fan, X., Weizman, O.E., Bhardwaj, P., Adams, N.M., Walzer, T., Dannenberg, A.J., and Sun, J.C. (2016) Adipose-resident group 1 innate lymphoid cells promote obesity-associated insulin resistance, Immunity, 45, 428–441.

48. Priceman, S.J., Kujawski, M., Shen, S., Cherryholmes, G.A., Lee, H., Zhang, C., Kruper, L., Mortimer, J., Jove, R., Riggs, A.D., and Yu, H. (2013) Regulation of adipose tissue T cell subsets by Stat3 is crucial for diet-induced obesity and insulin resistance, Proc. Natl. Acad. Sci. USA, 110, 13079–13084.

49. Bertola, A., Ciucci, T., Rousseau, D., Bourlier, V., Duffaut, C., Bonnafous, S., Blin-Wakkach, C., Anty, R., Iannelli, A., Gugenheim, J., Tran, A., Bouloumie, A., Gual, P., and Wakkach, A. (2012) Identification of adipose tissue dendritic cells correlated with obesity-associated insulin-resistance and inducing Th17 responses in mice and patients, Diabetes, 61, 2238–2247.

50. Jung, C., Lichtenauer, M., Strodthoff, D., Winkels, H., Wernly, B., Burger, C., Kamchybekov, U., Lutgens, E., Figulla, H.R., and Gerdes, N. (2017) Alterations in systemic levels of Th1, Th2, and Th17 cytokines in overweight adolescents and obese mice, Pediatr. Diabetes, 18, 714–721.

51. Jounai, N., Kobiyama, K., Takeshita, F., and Ishii, K.J. (2012) Recognition of damage-associated molecular patterns related to nucleic acids during inflammation and vaccination, Front. Cell Infect. Microbiol., 2, 168.

52. Lee, B.C., Kim, M.S., Pae, M., Yamamoto, Y., Eberle, D., Shimada, T., Kamei, N., Park, H.S., Sasorith, S., Woo, J.R., You, J., Mosher, W., Brady, H.J., Shoelson, S.E., and Lee, J. (2016) Adipose natural killer cells regulate adipose tissue macrophages to promote insulin resistance in obesity, Cell Metab., 23, 685–698.

53. Satoh, M., and Iwabuchi, K. (2018) Role of natural killer T cells in the development of obesity and insulin resistance: insights from recent progress, Front. Immunol., 9, 1314.

54. Dominguez, P.M., and Ardavin, C. (2010) Differentiation and function of mouse monocyte-derived dendritic cells in steady state and inflammation, Immunol. Rev., 234, 90–104.

55. Stefanovic-Racic, M., Yang, X., Turner, M.S., Mantell, B.S., Stolz, D.B., Sumpter, T.L., Sipula, I.J., Dedousis, N., Scott, D.K., Morel, P.A., Thomson, A.W., and O’Doherty, R.M. (2012) Dendritic cells promote macrophage infiltration and comprise a substantial proportion of obesity-associated increases in CD11c+ cells in adipose tissue and liver, Diabetes, 61, 2330–2339.

56. Sica, A., and Mantovani, A. (2012) Macrophage plasticity and polarization: in vivo veritas, J. Clin. Invest., 122, 787–795.

57. Stafeev, I.S., Menshikov, M.Y., Tsokolaeva, Z.I., Shestakova, M.V., and Parfyonova, Y.V. (2015) Molecular mechanisms of latent inflammation in metabolic syndrome. possible role of sirtuins and peroxisome proliferator-activated receptor type gamma, Biochemistry (Moscow), 80, 1217–1226.

58. Stafeev, I.S., Michurina, S.S., Podkuychenko, N.V., Menshikov, M.Y., Parfyonova, Y.V., and Vorotnikov, A.V. (2019) Chemical inducers of obesity-associated metabolic stress activate inflammatory pathways and reduce insulin sensitivity in 3T3-L1 adipocytes, Biochemistry (Moscow), 84, 553–561.

59. Hotamisligil, G.S. (2006) Inflammation and metabolic disorders, Nature, 444, 860-867.

60. Stafeev, I.S., Michurina, S.S., Podkuychenko, N.V., Vorotnikov, A.V., Menshikov, M.Y., and Parfyonova, Y.V. (2018) Interleukin-4 restores insulin sensitivity in lipid-induced insulin-resistant adipocytes, Biochemistry (Moscow), 83, 498–506.

61. Shimobayashi, M., Albert, V., Woelnerhanssen, B., Frei, I.C., Weissenberger, D., Meyer-Gerspach, A.C., Clement, N., Moes, S., Colombi, M., Meier, J.A., Swierczynska, M.M., Jeno, P., Beglinger, C., Peterli, R., and Hall, M.N. (2018) Insulin resistance causes inflammation in adipose tissue, J. Clin. Invest., 128, 1538–1550.

62. Spalding, K.L., Arner, E., Westermark, P.O., Bernard, S., Buchholz, B.A., Bergmann, O., Blomqvist, L., Hoffstedt, J., Naslund, E., Britton, T., Concha, H., Hassan, M., Ryden, M., Frisen, J., and Arner, P. (2008) Dynamics of fat cell turnover in humans, Nature, 453, 783–787.

63. Stafeev, I., Podkuychenko, N., Michurina, S., Sklyanik, I., Panevina, A., Shestakova, E., Yah’yaev, K., Fedenko, V., Ratner, E., Vorotnikov, A., Menshikov, M., Yashkov, Y., Parfyonova, Y., and Shestakova, M. (2019) Low proliferative potential of adipose-derived stromal cells associates with hypertrophy and inflammation in subcutaneous and omental adipose tissue of patients with type 2 diabetes mellitus, J. Diabetes Complications, 33, 148–159.

64. Karpe, F., Dickmann, J.R., and Frayn, K.N. (2011) Fatty acids, obesity, and insulin resistance: time for a reevaluation, Diabetes, 60, 2441–2449.

65. Zhao, S., and Scherer, P.E. (2018) TLR4-induced local adipose inflammation critically regulates glucose homeostasis, Diabetes, 67 (Suppl. 1), doi: 10.2337/db18-2032-P.

66. Deng, Z., Xu, H., Zhang, J., Yang, C., Jin, L., Liu, J., Song, H., Chen, G., Han, W., and Si, Y. (2018) Infusion of adipose-derived mesenchymal stem cells inhibits skeletal muscle mitsugumin 53 elevation and thereby alleviates insulin resistance in type 2 diabetic rats, Mol. Med. Rep., 17, 8466–8474.

67. Pincu, Y., Huntsman, H.D., Zou, K., De Lisio, M., Mahmassani, Z.S., Munroe, M.R., Garg, K., Jensen, T., and Boppart, M.D. (2016) Diet-induced obesity regulates adipose-resident stromal cell quantity and extracellular matrix gene expression, Stem Cell Res., 17, 181–190.

68. Conley, S.M., Zhu, X.Y., Eirin, A., Tang, H., Lerman, A., van Wijnen, A.J., and Lerman, L.O. (2018) Metabolic syndrome alters expression of insulin signaling-related genes in swine mesenchymal stem cells, Gene, 644, 101–106.

69. Eljaafari, A., Robert, M., Chehimi, M., Chanon, S., Durand, C., Vial, G., Bendridi, N., Madec, A.M., Disse, E., Laville, M., Rieusset, J., Lefai, E., Vidal, H., and Pirola, L. (2015) Adipose tissue-derived stem cells from obese subjects contribute to inflammation and reduced insulin response in adipocytes through differential regulation of the Th1/Th17 balance and monocyte activation, Diabetes, 64, 2477–2488.

70. Kornicka, K., Houston, J., and Marycz, K. (2018) Dysfunction of mesenchymal stem cells isolated from metabolic syndrome and type 2 diabetic patients as result of oxidative stress and autophagy may limit their potential therapeutic use, Stem Cell Rev., 14, 337–345.

71. Dzhoyashvili, N.A., Efimenko, A.Y., Kochegura, T.N., Kalinina, N.I., Koptelova, N.V., Sukhareva, O.Y., Shestakova, M.V., Akchurin, R.S., Tkachuk, V.A., and Parfyonova, Y.V. (2014) Disturbed angiogenic activity of adipose-derived stromal cells obtained from patients with coronary artery disease and diabetes mellitus type 2, J. Transl. Med., 12, 337.

72. Efimenko, A., Dzhoyashvili, N., Kalinina, N., Kochegura, T., Akchurin, R., Tkachuk, V., and Parfyonova, Y. (2014) Adipose-derived mesenchymal stromal cells from aged patients with coronary artery disease keep mesenchymal stromal cell properties but exhibit characteristics of aging and have impaired angiogenic potential, Stem Cells Transl. Med., 3, 32–41.

73. Efimenko, A.Y., Kochegura, T.N., Akopyan, Z.A., and Parfyonova, Y.V. (2015) Autologous stem cell therapy: how aging and chronic diseases affect stem and progenitor cells, Biores. Open Access, 4, 26–38.

74. Ofei, F., Hurel, S., Newkirk, J., Sopwith, M., and Taylor, R. (1996) Effects of an engineered human anti-TNF-alpha antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM, Diabetes, 45, 881–885.

75. Dominguez, H., Storgaard, H., Rask-Madsen, C., Steffen Hermann, T., Ihlemann, N., Baunbjerg Nielsen, D., Spohr, C., Kober, L., Vaag, A., and Torp-Pedersen, C. (2005) Metabolic and vascular effects of tumor necrosis factor-alpha blockade with etanercept in obese patients with type 2 diabetes, J. Vasc. Res., 42, 517–525.

76. Bernstein, L.E., Berry, J., Kim, S., Canavan, B., and Grinspoon, S.K. (2006) Effects of etanercept in patients with the metabolic syndrome, Arch. Intern. Med., 166, 902–908.

77. Stanley, T.L., Zanni, M.V., Johnsen, S., Rasheed, S., Makimura, H., Lee, H., Khor, V.K., Ahima, R.S., and Grinspoon, S.K. (2011) TNF-alpha antagonism with etanercept decreases glucose and increases the proportion of high molecular weight adiponectin in obese subjects with features of the metabolic syndrome, J. Clin. Endocrinol. Metab., 96, E146–E150.

78. Faghihimani, E., Aminorroaya, A., Rezvanian, H., Adibi, P., Ismail-Beigi, F., and Amini, M. (2013) Salsalate improves glycemic control in patients with newly diagnosed type 2 diabetes, Acta Diabetol., 50, 537–543.

79. Goldfine, A.B., Conlin, P.R., Halperin, F., Koska, J., Permana, P., Schwenke, D., Shoelson, S.E., and Reaven, P.D. (2013) A randomised trial of salsalate for insulin resistance and cardiovascular risk factors in persons with abnormal glucose tolerance, Diabetologia, 56, 714–723.

80. Goldfine, A.B., Fonseca, V., Jablonski, K.A., Chen, Y.D., Tipton, L., Staten, M.A., and Shoelson, S.E. (2013) Targeting inflammation using salsalate in type 2 diabetes study team salicylate (salsalate) in patients with type 2 diabetes: a randomized trial, Ann. Intern. Med., 159, 1–12.

81. Ridker, P.M., Everett, B.M., Thuren, T., MacFadyen, J.G., Chang, et al. (2017) Antiinflammatory therapy with canakinumab for atherosclerotic disease, N. Engl. J. Med., 377, 1119–1131.

82. Everett, B.M., Donath, M.Y., Pradhan, A.D., Thuren, T., Pais, P., Nicolau, J.C., Glynn, R.J., Libby, P., and Ridker, P.M. (2018) Anti-inflammatory therapy with canakinumab for the prevention and management of diabetes, J. Am. Coll. Cardiol., 71, 2392–2401.

83. Odegaard, J.I., and Chawla, A. (2015) Type 2 responses at the interface between immunity and fat metabolism, Curr. Opin. Immunol., 36, 67–72.

84. Odegaard, J.I., Lee, M.W., Sogawa, Y., Bertholet, A.M., Locksley, R.M., Weinberg, D.E., Kirichok, Y., Deo, R.C., and Chawla, A. (2016) Perinatal licensing of thermogenesis by IL-33 and ST2, Cell, 166, 841–854.

85. Lee, M.W., Odegaard, J.I., Mukundan, L., Qiu, Y., Molofsky, A.B., Nussbaum, J.C., Yun, K., Locksley, R.M., and Chawla, A. (2015) Activated type 2 innate lymphoid cells regulate beige fat biogenesis, Cell, 160, 74–87.

86. Lee, S.E., Kang, S.G., Choi, M.J., Jung, S.B., Ryu, M.J., Chung, H.K., Chang, J.Y., Kim, Y.K., Lee, J.H., Kim, K.S., Kim, H.J., Lee, H.K., Yi, H.S., and Shong, M. (2017) Growth differentiation factor 15 mediates systemic glucose regulatory action of T-helper type 2 cytokines, Diabetes, 66, 2774–2788.