БИОХИМИЯ, 2019, том 84, вып. 11, с. 1592–1609

УДК 576

Поиск внутриклеточных сенсоров, вовлеченных в функционирование одновалентных катионов как вторичных посредников

Обзор

© 2019 Е.А. Климанова 1 *,**, С.В. Сидоренко 1, А.М. Тверской 1 **, А.А. Шиян 1, Л.В. Смольянинова 1 **, Л.В. Капилевич 2, С.В. Гусакова 3, Г.В. Максимов 1, О.Д. Лопина 1 **, С.Н. Орлов 1,2,3

Московский государственный университет им. М.В. Ломоносова, биологический факультет, 119234 Москва, Россия; электронная почта: klimanova.ea@yandex.ru

Национальный исследовательский Томский государственный университет, 634050 Томск, Россия

Сибирский государственный медицинский университет Минздрава России, 634050 Томск, Россия

Поступила в редакцию 03.06.2019
После доработки 15.07.2019
Принята к публикации 16.07.2019

DOI: 10.1134/S032097251911006X

КЛЮЧЕВЫЕ СЛОВА: натрий, калий, транскрипция, трансляция.

Аннотация

Поддержание неравновесного распределения Na+ и K+ между цитоплазмой и внеклеточной средой предполагает наличие сенсоров, реагирующих конформационными переходами в ответ на изменение внутриклеточной концентрации этих одновалентных катионов. Молекулярная природа сенсоров одновалентных катионов была установлена при изучении структуры Na,K-АТPазы, рецепторов, сопряженных с GTP-связывающими белками, и белков теплового шока. В последнее время было обнаружено, что изменение внутриклеточной концентрации Na+ и K+ является ключевым фактором регуляции транскрипции и  трансляции соответственно. В данном обзоре мы суммируем основные результаты этих исследований, а также физиологическое и патофизиологическое значение Nai+,Ki+-чувствительного механизма регуляции экспрессии генов.

Текст статьи

Пожалуйста, введите код, чтобы получить PDF файл с полным текстом статьи:

captcha

Сноски

* Адресат для корреспонденции.

** Автор является выпускником кафедры биохимии биологического факультета МГУ им. М.В. Ломоносова.

Финансирование

Работа выполнена при финансовой поддержке Российского научного фонда (грант № 16-15-10026-п, раздел «Физиологическое и патофизиологическое значение Nai+,Ki+-чувствительного механизма регуляции экспрессии генов») и Российского фонда фундаментальных исследований (грант № 18-04-00063, разделы «Идентифицированные сенсоры одновалентных катионов», «Натрий как регулятор транскрипции» и «Калий как регулятор трансляции»).

Благодарности

Авторы выражают благодарность профессору медицинского колледжа г. Олбани (США) А.А. Монгину за прочтение обзора и сделанные критические замечания.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Соблюдение этических норм

Все применимые международные, национальные и/или институциональные принципы ухода и использования животных были соблюдены.

Список литературы

1. Sutherland, E.W. (1972) Studies on the mechanism of hormone action, Science, 177, 401–408.

2. Robison, G.A., Butcher, R.W., and Sutherland, E.W. (1971) Cyclic AMP, Academic Press, New York.

3. Lincoln, T.M., and Cornwell, T.L. (1993) Intracellular cyclic GMP receptor proteins, FASEB J., 7, 328–338.

4. Carafoli, E. (2002) Calcium signaling: a tale for all seasons, Proc. Natl. Acad. Sci. USA, 99, 1115–1122.

5. Berridge, M.J. (1993) Inositol triphosphate and calcium signalling, Nature, 361, 315–325.

6. Grinstein, S., Smith, J.D., Benedict, S.H., and Gelfand, E.W. (1989) Activation of sodium-hydrogen exchange by mitogens, Curr. Topics Membr. Transport, 34, 331–343.

7. Prasad, K.V.S., Severini, A., and Kaplan, J.G. (1987) Sodium ion fluxes in proliferating lymphocytes: an early component of mitogenic signal, Arch. Biochem. Biophys., 252, 515–525.

8. Wakabayashi, S., Shigekawa, M., and Poyssegur, J. (1997) Molecular physiology of vertebrate Na+/H+ exchanger, Physiol. Rev., 77, 51–74.

9. Marakhova, I.I., Vereninov, A.A., Toropova, F.V., and Vinogradova, T.A. (1998) Na,K,-ATPase pump in activated human lymphocytes: on the mechanisms of rapid and long-term increase in K influxes during the initiation of phytohemagglutinin-induced proliferation, Biochim. Biophys. Acta, 1368, 61–72.

10. Burns, C.P., and Rozengurt, E. (1984) Extracellular Na+ and initiation of DNA synthesis: role of intracellular pH and K+, J. Cell Biol., 98, 1082–1089.

11. Hamet, P., Orlov, S.N., DeBlois, D., Sun, Y., Kren, V., and Tremblay, J. (2004) Angiotensin as a cytokine implicated in accelerated cellular turnover, Springer Verlag, N.Y., pp. 71–98.

12. Bennekou, P. and Christophersen, P. (2003) Ion channels, Springer, Berlin, pp. 139–152.

13. Schneider, J., Nicolay, J.P., Foller, M., Wieder, T., and Lang, F. (2007) Suicidal erythrocyte death following cellular K+ loss, Cell Physiol. Biochem., 20, 35–44.

14. Rose, C.R., and Konnerth, A. (2001) NMDA-receptor-mediated Na+ signals in spines and dendrites, J. Neurosci., 21, 4207–4214.

15. Verkhratsky, A., Noda, M., Parpura, V., and Kirischuk, S. (2013) Sodium fluxes and astroglial function, Adv. Exp. Med. Biol., 961, 295–305.

16. Koltsova, S.V., Shilov, B., Burulina, J.G., Akimova, O.A., Haloui, M., Kapilevich, L.V., Gusakova, S. V., Tremblay, J., Hamet, P., and Orlov, S.N. (2014) Transcriptomic changes triggered by hypoxia: evidence for HIF-1a -independent, [Na+]i/[K+]i-mediated excitation-transcription coupling, PLoS One, 9, e110597.

17. Orlov, S.N., Birulina, Y.G., Smaglii, L.V., and Gusakova, S.V. (2017) Vascular smooth muscle as an oxygen sensor: role of elevation of the [Na+]i/[K+]i, in Hypoxia and Human Diseases (Zheng, J., and Zhou, C., eds.), IntechOpen, Vol. 4, pp. 73–90, doi: 10.5772/65384.

18. Kapilevich, L.V., Kironenko, T.A., Zaharova, A.N., Kotelevtsev, Yu.V., Dulin, N.O., and Orlov, S.N. (2015) Skeletal muscle as an endicrine organ: role of [Na+]i/[K+]i-mediated excitation–transcription coupling, Genes Dis., 2, 328–336.

19. Orlov, S.N., and Hamet, P. (2006) Intracellular monovalent ions as second messengers, J. Membr. Biol., 210, 161–172.

20. Shekarabi, M., Zhang, J., Khanna, A.R., Ellison, D.H., Delpire, E., and Kahle, K.T. (2017) WNK kinase signaling in ion homeostasis and human disease, Cell Metab., 25, 285–299.

21. Wilson, C.S., and Mongin, A.A. (2019) The signaling role for chloride in the bidirectional communication between neurons and astrocytes, Neurosci. Lett., 689, 33–44.

22. Page, M.J., and Di Cera, E. (2006) Role of Na+ and K+ in enzyme function, Physiol. Rev., 86, 1049–1092.

23. Linden, D.J., Smeyne, M., and Connor, J.A. (1993) Induction of cerebellar long-term depression in culture requires postsynaptic action of sodium ions, Neuron, 11, 1093–1100.

24. Kanai, R., Ogawa, H., Vilsen, B., Cornelius, F., and Toyoshima, C. (2013) Crystal structure of Na+-bound Na+,K+-ATPase preceding the E1P state, Nature, 502, 201–206.

25. Sweadner, K.J., and Donnet, C. (2001) Structural similarities of Na,K-ATPase and SERCA, the Ca2+-ATPase of the sarcoplasmic reticulum, Biochem. J., 356, 685–704, doi: 10.1042/0264-6021:3560685.

26. Toyoshima, C., Kanai, R., and Cornelius, F. (2011) First crystal structure of Na+,K+-ATPase: new light on the oldest ion pump, Structure, 19, 1732–1738, doi: 10.1016/j.str.2011.10.016.

27. Pert, C.B., Pasternak, G., and Snyder, S.H. (1973) Opiate agonists and antagonists discriminated by receptor binding in brain, Science, 182, 1359–1361.

28. Katritch, V., Fenalti, G., Abola, E.E., Roth, B.L., Cherezov, V., and Stevens, R.C. (2014) Allosteric sodium in class A GPCR signaling, Trends Biochem. Sci., 39, 233–244.

29. Strasser, A., Wittmann, H.-J., Schneider, E.H., and Seifert, R. (2015) Modulation of GPCRs by monovalent cations and anions, Naunyn Schmied. Arch. Pharmacol., 388, 363–380, doi: 10.1007/s00210-014-1073-2.

30. Liu, W., Chun, E., Thompson, A.A., Chubukov, P., Xu, F., Katritch, V., Han, G.W., Roth, C.B., Heitman, L.H., Ijzerman, A.P., Cherezov, V., and Stevens, R.C. (2012) Structural basis for allosteric regulation of GPCRs by sodium ions, Science, 337, 232–236.

31. Fenalti, G., Giguere, P.M., Katritch, V., Huang, X.P., Thompson, A.A., Cherezov, V., Roth, B.L., and Stevens, R.C. (2014) Molecular control of d-opioid receptor signalling, Nature, 506, 191–196.

32. Gutierrez-de-Teran, H., Massink, A., Rodriguez, D., Liu, W., Han, G.W., Joseph, J.S., Katritch, I., Heitman, L.H., Xia, L., Ijzerman, A.P., Cherezov, V., Katritch, V., and Stevens, R.C. (2013) The role of sodium ion binding site in the allosteric modulation of the A2A adenosine G protein-coupled receptor, Structure, 21, 2175–2185.

33. O’Brien, M.C., and McKay, D.B. (1995) How potassium affects the activity of the molecular chaperone Hsc70. I Potassium is required for optimal ATPase activity, J. Biol. Chem., 270, 2247–2250.

34. Arakawa, A., Handa, N., Shirouzu, M., and Yokoyama, S. (2011) Biochemical and structural studies on the high affinity of Hsp70 for ADP, Protein Sci., 20, 1367–1379.

35. Орлов С.Н. (1987) Кальмодулин, Общие проблемы физико-химической биологии. ВИНИТИ, 8, 5–212.

36. Permyakov, E.A., Uversky, V.N., and Permyakov, S.E. (2017) Parvalbumin as a pleomorphic protein, Curr. Protein Pept. Sci., 18, 780–794.

37. Heizmann, C.W., and Hunziker, W. (1991) Intracellular calcium-binding proteins: more sites than insights, Trends Biochem. Sci., 16, 98–103.

38. Okada, Y., Maeno, E., Shimizu, T., Dezaki, K., Wang, J., and Morishima, S. (2001) Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD), J. Physiol., 532, 3–16.

39. Orlov, S.N., Platonova, A.A., Hamet, P., and Grygorczyk, R. (2013) Cell volume and monovalent ion transporters: their role in the triggereing and progression of the cell death machinery, Am. J. Physiol. Cell Physiol., 305, C361–C372.

40. Orlov, S.N., Thorin-Trescases, N., Kotelevtsev, S.V., Tremblay, J., and Hamet, P. (1999) Inversion of the intracellular Na+/K+ ratio blocks apoptosis in vascular smooth muscle at a site upstream of caspase-3, J. Biol. Chem., 274, 16545–16552.

41. Zhou, X., Jiang, G., Zhao, A., Bondeva, T., Hirzel, P., and Balla, T. (2001) Inhibition of Na,K-ATPase activates PI3 kinase and inhibits apoptosis in LLC-PK1 cells, Biochem. Biophys. Res. Commun., 285, 46–51.

42. Isaev, N.K., Stelmashook, E.V., Halle, A., Harms, C., Lautenschlager, M., Weih, M., Dirnagl, U., Victorov, I.V., and Zorov, D.B. (2000) Inhibition of Na+,K+-ATPase activity in cultured cerebellar granule cells prevents the onset of apoptosis induced by low potassium, Neurosci. Lett., 283, 41–44.

43. Trevisi, L., Visentin, B., Cusinato, F., Pighin, I., and Luciani, S. (2004) Antiapoptotic effect of ouabain on human umbilical endothelial cells, Biochem. Biophys. Res. Commun., 321, 716–721.

44. Orlov, S.N., Taurin, S., Tremblay, J., and Hamet, P. (2001) Inhibition of Na+,K+ pump affects nucleic acid synthesis and smooth muscle cell proliferation via elevation of the [Na+]i/[K+]i ratio: possible implication in vascular remodeling, J. Hypertens., 19, 1559–1565.

45. Taurin, S., Seyrantepe, V., Orlov, S.N., Tremblay, T.-L., Thibaut, P., Bennett, M.R., Hamet, P., and Pshezhetsky, A.V. (2002) Proteome analysis and functional expression identify mortalin as an anti-apoptotic gene induced by elevation of [Na+]i/[K+]i ratio in cultured vascular smooth muscle cells, Circ. Res., 91, 915–922.

46. Orlov, S.N., and Hamet, P. (2004) Apoptosis vs oncosis: role of cell volume and intracellular monovalent cations, Adv. Exp. Med. Biol., 559, 219–233.

47. Taurin, S., Dulin, N.O., Pchejetski, D., Grygorczyk, R., Tremblay, J., Hamet, P., and Orlov, S.N. (2002) c-Fos expression in ouabain-treated vascular smooth muscle cells from rat aorta: evidence for an intracellular-sodium-mediated, calcium-independent mechanism, J. Physiol., 543, 835–847.

48. Orlov, S.N., Taurin, S., Thorin-Trescases, N., Dulin, N.O., Tremblay, J., and Hamet, P. (2000) Inversion of the intracellular Na+/K+ ratio blocks apoptosis in vascular smooth muscle cells by induction of RNA synthesis, Hypertension, 35, 1062–1068.

49. Schoner, W., and Scheiner-Bobis, G. (2007) Endogenous and exogenous cardiac glycosides: their role in hypertension, salt metabolism, and cell growth, Am. J. Physiol. Cell Physiol., 293, C509–C536.

50. Orlov, S.N., Klimanova, E.A., Tverskoi, A.M., Vladychenskaya, E.A., Smolyaninova, L.V., and Lopina, O.D. (2017) Na+i,K+i-dependent and -independent signaling triggered by cardiotonic steroids: facts and artifacts, Molecules, 22, E635, doi: 10.3390/molecules22040635.

51. Koltsova, S.V., Trushina, Y., Haloui, M., Akimova, O.A., Tremblay, J., Hamet, P., and Orlov, S.N. (2012) Ubiquitous [Na+]i/[K+]i-sensitive transcriptome in mammalian cells: evidence for Cai2+-independent excitation–transcription coupling, PLoS One, 7, e38032.

52. Klimanova, E.A., Sidorenko, S.V., Smolyaninova, L.V., Kapilevich, L.V., Gusakova, S.V., Lopina, O.D., and Orlov, S.N. (2019) Ubiquitous and cell type-specific transciptomic changes triggered by dissipation of monovalent cation gradients in rodent cells: physiological and pathophysiological implications, Curr. Top. Membr., 83, 107–149, doi: 10.1016/bs.ctm.2019.01.006.

53. Orlov, S.N., Thorin-Trescases, N., Pchejetski, D., Taurin, S., Farhat, N., Tremblay, J., Thorin, E., and Hamet, P. (2004) Na+/K+ pump and endothelial cell survival: [Na+]i/[K+]i-independent necrosis triggered by ouabain, and protection against apoptosis mediated by elevation of [Na+]i, Pflugers Arch., 448, 335–345.

54. Alonso, M.T., and Garcia-Sancho, J. (2011) Nuclear Ca2+ signalling, Cell Calcium, 49, 280–289.

55. Taurin, S., Hamet, P., and Orlov, S.N. (2003) Na/K pump and intracellular monovalent cations: novel mechanism of excitation–transcription coupling involved in inhibition of apoptosis, Mol. Biol., 37, 371–381.

56. Santana, L.F. (2008) NFAT-dependent excitation–transcription coupling in heart, Circ. Res., 103, 681–683.

57. Gundersen, K. (2011) Excitation–transcription coupling in skeletal muscle: the molecular pathways of exercise, Biol. Rev., 86, 564–600.

58. La, J., Reed, E.B., Koltsova, S.V., Akimova, O.A., Hamanaka, R.B., Mutlu, R.B., Orlov, S.N., and Dulin, N.O. (2016) Regulation of myofibroblast differentiation by cardiac glycosides, Am. J. Physiol. Lung Cell. Mol. Physiol., 310, L815–L823.

59. Smolyaninova, L.V., Koltsova, S.V., Sidorenko, S.V., and Orlov, S.N. (2017) Augemented gene expression triggered by Na+,K+-ATPase inhibition: role of Ca2+-mediated and -independent excitation–transcription coupling, Cell Calcium, 68, 5–13.

60. Orlov, S.N., Aksentsev, S.L., and Kotelevtsev, S.V. (2005) Extracellular calcium is required for the maintenance of plasma membrane integrity in nucleated cells, Cell Calcium, 38, 53–57.

61. Koltsova, S.V., Tremblay, J., Hamet, P., and Orlov, S.N. (2015) Transcriptomic changes in Ca2+-depleted cells: role of elevated intracellular [Na+]/[K+] ratio, Cell Calcium, 58, 317–324.

62. Matt, T., Martinez-Yamout, M.A., Dyson, H.J., and Wright, P.E. (2004) The CBP/p300 XAZ1 domain in its native state is not a binding patner of MDM2, Biochem. J., 381, 685–691.

63. Krishtal, O.A., Pidoplichko, V.I., and Shakhovalov, Y.A. (1981) Conductance of the calcium channel in the membrane of snail neurones, J. Physiol., 301, 423–434.

64. Nakagawa, Y., Rivera, V., and Larner, A.C. (1992) A role for Na/K-ATPase in the control of human c-fos and c-jun transcription, J. Biol. Chem., 267, 8785–8788.

65. Haloui, M., Taurin, S., Akimova, O.A., Guo, D.-F., Tremblay, J., Dulin, N.O., Hamet, P., and Orlov, S.N. (2007) Na+i-induced c-Fos expression is not mediated by activation of the 5’-promoter containing known transcriptional elements, FEBS J., 274, 3257–3267.

66. Ono, Y., Ojimam, K., Torii, F., Takaya, E., Doi, N., Nakagawa, K., Hata, S., Abe, K., and Sorimachi, H. (2010) Skeletal muscle-specific calpain is an intracellular Na+-dependent protease, J. Biol. Chem., 285, 22986–22998.

67. Herrera, R.E., Nordheim, A., and Stewart, A.F. (1997) Chromatin structure analysis of the human c-Fos promoter reveals a centrally positioned nucleosome, Chromosoma, 106, 284–292.

68. Chinsomboon, J., Ruas, J., Gupta, R.K., Thom, R., Shoag, J., Rowe, G.C., Sawada, N., Raghuram, S., and Arany, Z. (2009) The transcriptional coactivator PGC-1alpha mediates exercise-induced angiogenesis in skeletal muscle, Proc. Natl. Acad. Sci. USA, 106, 21401–21405.

69. Soyal, S.M., Felder, T.K., Auer, S., Hahne, P., Oberkofler, H., Witting, A., Paulmichl, M., Landwehrmeyer, G.B., Weydt, P., and Patsch, W. (2012) A greatly extended PPARGC1A genomic locus encodes several new brain-specific isoforms and influences Huntington disease age of onset, Hum. Mol. Genet., 21, 3461–3470.

70. Mechti, N., Piechaczyk, M., Blanchard, J.M., Jeanteur, P., and Lebleu, B. (1991) Sequence requirements for premature transcription arrest within the first intron of the mouse c-fos gene, Mol. Cell. Biol., 11, 2832–2841.

71. Coulon, V., Veyrune, J.-L., Tourkine, N., Vie, A., Hipskind, R.A., and Blanchard, J.-M. (1999) A novel calcium signaling pathway targets the c-fos intragenic transcriptional pausing site, J. Biol. Chem., 274, 30439–30446.

72. Lanctot, C., Cheutin, T., Cremer, M., Cavalli, G., and Cremer, T. (2007) Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions, Nature Rev. Genet., 8, 104–115.

73. Trinkle-Mulchany, L., and Lamond, A.I. (2008) Nuclear functions in space and time: Gene expression in a dynamic, constrained environment, FEBS Lett., 582, 1960–1970.

74. Maharana, S., Sharma, D., Shi, X., and Shivashankar, G.V. (2012) Dynamic organization of transcription comparments is dependent in functional nuclear architecture, Biophys. J., 103, 851–859.

75. Dolinnaya, N.G., Ogloblina, A.M., and Yakubovskaya, M.G. (2016) Structure, properties, and biological relevance of the DNA and RNA G-quadruplexes: overview 50 years after their discovery, Biochemistry (Moscow), 81, 1602–1649.

76. Lubin, M., and Ennis, H.L. (1964) On the role of intracellular potassium in protein synthesis, Biochim. Biophys. Acta, 80, 614–631.

77. Ledbetter, M.L.S., and Lubin, M. (1977) Control of protein synthesis in human fibroblasts by intracellular potassium, Exp. Cell Res., 105, 223–236.

78. Amarelle, L., Katzen, J., Shigemura, M., Welch, L.C., Cajigas, H., Peteranderl, C., Celli, D., Herold, S., Lecuona, E., and Sznajder, J.L. (2019) Cardiac glycosides decrease influenza virus replication by inhibiting cell protein translation machinery, Am. J. Physiol. Lung Cell. Mol. Physiol., 316, L1094–L1106, doi: 10.1152/ajplung.00173.2018.

79. Cahn, F., and Lubin, M. (1978) Inhibition of elongation steps of protein synthesis at reduced potassium concentrations in reticulocytes and reticulocyte lysate, J. Biol. Chem., 253, 7798–7803.

80. Austin, J., and First, E.A. (2002) Potassium functionally replaced the second lysine of the KMSKS signaure sequence in human tyrosyl-tRNA synthetase, J. Biol. Chem., 277, 20243–20248.

81. Jennings, M.D., and Pavitt, G.D. (2010) eIF5 is a dual function GAP and GDI for eukariotic translational control, Small GTPases, 1, 118–123.

82. Cao, J., He, L., Lin, G., Hu, C., Dong, R., Zhang, J., Zhu, H., Hu, Y., Wagner, C.R., He, Q., and Yang, B. (2014) Cap-dependent translation initiation factor,eIF4E, is the target for ouabain-mediated inhibition of HIF-1a, Biochem. Pharmacol., 89, 20–30.

83. Klimanova, E.A., Tverskoi, A.M., Koltsova, S.V., Sidorenko, S.V., Lopina, O.D., Tremblay, J., Hamet, P., Kapilevich, L.V., and Orlov, S.N. (2017) Time- and dose-dependent actions of cardiotonic steroids on transcriptome and intracellular content of Na+ and K+: a comparative analysis, Sci. Rep., 7, 45403, doi: 10.1038/srep45403.

84. Fisher, P.A., Goodman, J.G., and Kull, F.L. (1976) Thyroid ribonucelic acid-iodopeptides. Comparison of thyrosyl-complex II and thyrosyl-tRNA, Biochemistry, 15, 4065–4070.

85. Quivy, J.P., and Chroboczek, J. (1988) Tyrpsyl-tRNA synthetase from wheat germ, J. Biol. Chem., 263, 15277–15281.

86. Dever, T.E. (2002) Gene-specific regulation by general translation factors, Cell, 108, 545–556.

87. Pedersen, B.K., and Febbraio, M.A. (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6, Physiol. Rev., 88, 1379–1406.

88. Nikolic, N., Gordens, S.W., Thoresen, G.H., Aas, V., Eckel, J., and Eckardt, K. (2017) Electrical pulse stimulation of cultured skeletal muscle cells as a model for in vitro exercise – possibilities and limitations, Acta Physiol., 220, 310–331.

89. Murphy, K.T., Nielsen, O.B., and Clausen, T. (2008) Analysis of exercise-induced Na+-K+ exchange in rat skeletal muscle, Exp. Physiol., 93, 1249–1262.

90. Danilov, K., Sidorenko, S.V., Milovanova, K., Klimanova, E.A., Kapilevich, L.V., and Orlov, S.N. (2017) Electrical pulse stimulation decreases electrochemical Na+ and K+ gradients in C2C12 myotubes, Biochem. Biophys. Res. Commun., 493, 875–878.

91. Sidorenko, S.V., Klimanova, E.A., Milovanova, K., Lopina, O.D., Kapilevich, L.V., Chibalin, A.V., and Orlov, S.N. (2018) Transciptomic changes in C2C12 myotubes triggered by electrical stimulation: role of Cai2+-mediated and Cai2+-independent signaling and elevated [Na+]i/[K+]iratio, Cell Calcium, 76, 72–86.

92. Bakowski, D., and Parekh, A.B. (2002) Monovalent cation permeability and Ca2+ block of the store-operated Ca2+ current ICRAC in rat basophylic leukemia cells, Pfluger Arch. Eur. J. Physiol., 443, 892–902.

93. Hunt, S.P., Pini, A., and Evan, G. (1987) Induction of c-Fos-like protein in spinal cord neurons following sensory stimulation, Nature, 328, 632–634.

94. Cole, A.J., Saffen, D.W., Baraban, J.M., and Worley, P.F. (1989) Rapid increase of an immediate early gene meseenger RNA in hippocampal neurons by synaptic NMDA receptor activation, Nature, 340, 474–476.

95. Jones, M.W., Errington, M.L., French, P.J., Fine, P.J., Bliss, T.V.P., Garel, S., Charney, P., Bozon, B., Laroche, S., and Davis, S. (2001) A requirement for the immediate early response gene Zif268 in the expression of late LTP and long-term memories, Nat. Neurosci., 4, 289–296.

96. Thiel, G., Mayer, S.I., Muller, I., Stefano, L., and Rossler, O.G. (2010) Egr-1 – a Ca2+-regulated trabscription factor, Cell Calcium, 47, 397–403.

97. Alberini, C.A. (2009) Transcription factors in long-term memory and synaptic plasticity, Physiol. Rev., 89, 121–145.

98. Bennay, M., Langer, J., Meier, S.D., Kafitz, K.W., and Rose, C.R. (2008) Sodium signals in cerebellar Purkinje neurons and bergmann glial cells evoked by glutamatergic synaptic transmission, Glia, 56, 1138–1149.

99. Jaffe, D.B., Johnston, D., Lasser-Ross, N., Lisman, J.E., Miyakawa, H., and Ross, W.N. (1992) The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurones, Nature, 357, 244–246.

100. Baeza-Lehnert, F., Saab, A.S., Gutierrez, R., Larenas, V., Diaz, E., Horn, M., Vargas, M., Hosli, L., Stobart, J., Hirrlinger, J., Weber, B., and Barros, L.F. (2019) Non-canonical control of neuronal energy status by the Na+ pump, Cell Metab., 29, 1–13.

101. Smolyaninova, L.V., Shiyan, A.A., Kapilevich, L.V., Lopachev, A.V., Fedorova, T. N., Klementieva, T.S., Moskovtsev, A.A., Kubatiev, A.A., and Orlov, S.N. (2019) Transcriptomic changes triggered by ouabain in rat cerebellum granule cells: role of a3- and a1-mediated signaling, PLoS One, in press.

102. Coba, M.P., Valor, L.M., Kopanitsa, M.V., Afinowi, N.O., and Grant, S.G. (2008) Kinase networks integrate profiles of N-methyl-D-aspartate receptor-mediated gene expression in hippocampus, J. Biol. Chem., 283, 34101–34107.

103. Barry, D.N., and Commins, S. (2017) Temporal dynamics of emmediate early gene expression during cellular consolidation of spatial memory, Behav. Brain Res., 327, 44–53.

104. Zhu, S., Tai, C., MacVicar, B.A., Jia, W., and Cynader, M.S. (2009) Glutamatergic stimulation triggers rapid Krupple-Like factor 4 expression in neurons and the overexpression of KLF4 sensitizes neurons to NMDA-induced caspase-3 activity, Brain Res., 1250, 49–62.

105. Flavell, S.W., and Greenberg, M.E. (2008) Signaling mechanisms linking neuronal activity to gene expressoin and plasticity of the nervous system, Annu. Rev. Neurosci., 31, 563–590.

106. Malik, A.N., Vierbuchen, T., Hemberg, M., Rubin, A.A., Ling, E., Couch, C.H., Stroud, H., Spiegel, I., Farh, K.K., Harmin, D.A., and Greenberg, M.E. (2014) Genome-wide identification and characterization of functional activity-dependent enhancers, Nat. Neurosci., 17, 1330–1339.

107. Semenza, G.L. (2003) Targeting HIF-1 for cancer therapy, Nat. Rev. Cancer, 3, 721–732.

108. Wood, I.S., Perez de Heredia, F., Wang, B., and Trayhurn, P. (2009) Cellular hypoxia and adipose tisue dysfunction in obesity, Proc. Nutr. Soc., 68, 370–377, doi: 10.1017/S0029665109990206.

109. Orlov, S.N., La, J., Smolyaninova, L.V., and Dulin, N.O. (2019) Na+,K+-ATPase as a target for treatment of tissue fibrosis, Curr. Med. Chem., 26, doi: 10.2174/0929867324666170619105407.

110. Akimova, O.A., Tverskoi, A.M., Smolyaninova, L.V., Mongin, A.A., Lopina, O.D., La, J., Dulin, N.O., and Orlov, S.N. (2015) Critical role of the a1-Na+,K+-ATPase subunit in insensitivity of rodent cells to cytotoxic action of ouabain, Apoptosis, 20, 1200–1210.