БИОХИМИЯ, 2019, том 84, вып. 11, с. 1578–1591

УДК 577.151

Ингибиторы глицеральдегид-3-фосфатдегидрогеназы и неожиданные последствия снижения ее активности

Обзор

© 2019 В.И. Муронец 1,2*,**, А.К. Мельникова 2**, К.В. Баринова 1, Е.В. Шмальгаузен 1**

НИИ Физико-химической биологии им. А.Н. Белозерского, Московский государственный университет им. М.В. Ломоносова, 119234 Москва, Россия; электронная почта: vimuronets@belozersky.msu.ru

Московский государственный университет им. М.В. Ломоносова, факультет биоинженерии и биоинформатики, 119234 Москва, Россия

Поступила в редакцию 11.06.2019
После доработки 11.08.2019
Принята к публикации 14.08.2019

DOI: 10.1134/S0320972519110058

КЛЮЧЕВЫЕ СЛОВА: глицеральдегид-3-фосфатдегидрогеназа, ингибиторы, окисление, сульфгидрильные группы, гликирование, гликолиз.

Аннотация

В обзоре рассмотрено использование ингибиторов глицеральдегид-3-фосфатдегидрогеназы (ГАФД) для изучения этого фермента и подавления его активности в различных типах клеток. Основная проблема специфического ингибирования ГАФД заключается в высокой консервативности активного центра фермента и, особенно, окружения необходимой для катализа сульфгидрильной группы остатка Cys150. Многочисленные попытки найти ингибиторы спермоспецифичной ГАФД, а также ГАФД трипаносом (Trypanosoma sp.) и микобактерий (Mycobactérium tuberculósis), которые бы не оказывали существенного воздействия на фермент соматических клеток млекопитающих, не привели к практически важным результатам, что заставляет искать новые пути решения этой задачи. Отдельные разделы посвящены инактивации фермента активными формами кислорода, глутатионом и гликирующими соединениями. В заключительном разделе обсуждаются последствия, к которым приводит ингибирование, а также инактивация ГАФД. В частности, рассматривается влияние изменения активности ГАФД на эффективность гликолиза и на связанные с ним метаболические пути (пентозофосфатный путь, «футильный» цикл разобщения окисления и фосфорилирования в гликолизе и другие).

Текст статьи

Пожалуйста, введите код, чтобы получить PDF файл с полным текстом статьи:

captcha

Сноски

* Адресат для корреспонденции.

** Автор является выпускником кафедры биохимии биологического факультета МГУ им. М.В. Ломоносова.

Финансирование

Работа была поддержана Российским научным фондом (грант № 16-14-10027).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Соблюдение этических норм

Настоящая статья не содержит каких-либо исследований с использованием животных в качестве объектов, а также экспериментов с участием людей в качестве объектов исследований.

Список литературы

1. Nagradova, N.K. (1956) Mechanism of action of carnosine on glycolytic oxidation reduction combined with phosphorylation, Biochemistry (Moscow), 21, 17–25.

2. Nagradova, N.K. (1965) The effect of histidine and other chelating agents on the activity of 3-phosphoglyceraldehyde dehydrogenase from rabbit muscles, Biochemistry (Moscow), 30, 50–7.

3. Schmalhausen, E.V., Nagradova, N.K., Boschi-Muller, S., Branlant, G., and Muronetz, V.I. (1999) Mildly oxidized GAPDH: the coupling of the dehydrogenase and acyl phosphatase activities, FEBS Lett., 452, 219–222.

4. Danshina, P.V., Schmalhausen, E.V., Avetisyan, A.V., and Muronetz, V.I. (2001) Mildly oxidized glyceraldehyde-3-phosphate dehydrogenase as a possible regulator of glycolysis, IUBMB Life, 51, 309–314.

5. Dan’shina, P.V., Schmalhausen, E.V., Arutiunov, D.Y., Pleten’, A.P., and Muronetz, V.I. (2003) Acceleration of glycolysis in the presence of the non-phosphorylating and the oxidized phosphorylating glyceraldehyde-3-phosphate dehydrogenases, Biochemistry (Moscow), 68, 593–600.

6. Seidler, N.W. (2013) Basic biology of GAPDH, Adv. Exp. Med. Biol., 985, 1–36.

7. Sikand, K., Singh, J., Ebron, J.S., and Shukla, G.C. (2012) Housekeeping gene selection advisory: glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and β-actin are targets of miR-644a, PLoS One, 7, e47510.

8. Caradec, J., Sirab, N., Revaud, D., Keumeugni, C., and Loric, S. (2010) Is GAPDH a relevant housekeeping gene for normalisation in colorectal cancer experiments? Br. J. Cancer, 103, 1475–6.

9. Muronetz, V.I., Barinova, K.V., Stroylova, Y.Y., Semenyuk, P.I., and Schmalhausen, E.V. (2017) Glyceraldehyde-3-phosphate dehydrogenase: aggregation mechanisms and impact on amyloid neurodegenerative diseases, Int. J. Biol. Macromol., 100, 55–66.

10. Mazzola, J.L., and Sirover, M.A. (2002) Alteration of intracellular structure and function of glyceraldehyde-3-phosphate dehydrogenase: a common phenotype of neurodegenerative disorders? Neurotoxicology, 23, 603–609.

11. Tatton, W.G., Chalmers-Redman, R.M., Elstner, M., Leesch, W., Jagodzinski, F.B., Stupak, D.P., Sugrue, M.M., and Tatton, N.A. (2000) Glyceraldehyde-3-phosphate dehydrogenase in neurodegeneration and apoptosis signaling, J. Neural Transm. Suppl., 60, 77–100.

12. Cardon, J.W., and Boyer, P.D. (1982) Subunit interaction in catalysis. Some experimental and theoretical approaches with glyceraldehyde-3-phosphate dehydrogenase, J. Biol. Chem., 257, 7615–7622.

13. Koshland, D.E. (1977) The specificity of subunit interactions, Biochem. Soc. Trans., 5, 605–606.

14. Malhotra, O.P., and Bernhard, S.A. (1973) Activation of a covalent enzyme-substrate bond by noncovalent interaction with an effector, Proc. Natl. Acad. Sci. USA, 70, 2077–2081.

15. Byers, L.D., and Koshland, D.E. (1975) The specificity of induced conformational changes. The case of yeast glyceraldehyde-3-phosphate dehydrogenase, Biochemistry, 14, 3661–3669.

16. Levitzki, A., and Koshland, D.E. (1976) The role of negative cooperativity and half-of-the-sites reactivity in enzyme regulation, Curr. Top. Cell. Regul., 10, 1–40.

17. Nagradova, N.K., Ashmarina, L.I., Asryants, R.A., Cherednikova, T.V., Golovina, T.O., and Muronetz, V.I. (1980) Glyceraldehyde-3-phosphate dehydrogenase: the role of subunit interactions in enzyme functioning, Adv. Enzyme Regul., 19, 171–204.

18. Nagradova, N.K. (2001) Interdomain interactions in oligomeric enzymes: creation of asymmetry in homo-oligomers and role in metabolite channeling between active centers of hetero-oligomers, FEBS Lett., 487, 327–332.

19. Nagradova, N.K. (2001) Study of the properties of phosphorylating D-glyceraldehyde-3-phosphate dehydrogenase, Biochemistry (Moscow), 66, 1067–1076.

20. Asryants, R.A., Kuzminskaya, E.V., Tishkov, V.I., Douzhenkova, I.V., and Nagradova, N.K. (1989) An examination of the role of arginine residues in the functioning of D-glyceraldehyde-3-phosphate dehydrogenase, Biochim. Biophys. Acta, 997, 159–166.

21. Levashov, P.A., Schmalhausen, E.V., Muronetz, V.I., and Nagradova, N.K. (1995) E. coli D-glyceraldehyde-3-phosphate dehydrogenase modified by 2,3-butanedione: manifestation of a pairwise of non-equivalence of active centers, Biochem. Mol. Biol. Int., 37, 991–1000.

22. Nagradova, N.K., Schmalhausen, E.V., Levashov, P.A., Asryants, R.A., and Muronetz, V.I. (1996) D-glyceraldehyde-3-phosphate dehydrogenase. Properties of the enzyme modified at arginine residues, Appl. Biochem. Biotechnol., 61, 47–56.

23. Nagradova, N.K., Asryants, R.A., and Ivanov, M.V. (1971) Interaction of 1-anilino-8-naphthalene sulfonate with yeast glyceraldehyde-3-phosphate dehydrogenase, Experientia, 27, 1169–1170.

24. Nagradova, N.K., Asryants, R.A., and Ivanov, M.V (1972) I-Anilino-8-naphthalene sulfonate as a coenzyme-competitive inhibitor of yeast glyceraldehyde-3-phosphate dehydrogenase: multiple inhibition studies, Biochim. Biophys. Acta, 268, 622–628.

25. Golovina, T.O., Muronetz, V.I., and Nagradova, N.K. (1978) Half-of-the-sites reactivity of rat skeletal muscle D-glyceraldehyde-3-phosphate dehydrogenase, Biochim. Biophys. Acta, 524, 15–25.

26. Muronets, V.I., Golovina, T.O., and Nagradova, N.K. (1982) Use of immobilization for the study of glyceraldehyde 3-phosphate dehydrogenase. Immobilized dimers of the enzyme, Biochemistry (Moscow), 47, 3–12.

27. Soukri, A., Mougin, A., Corbier, C., Wonacott, A., Branlant, C., and Branlant, G. (1989) Role of the histidine 176 residue in glyceraldehyde-3-phosphate dehydrogenase as probed by site-directed mutagenesis, Biochemistry, 28, 2586–2592.

28. Clermont, S., Corbier, C., Mely, Y., Gerard, D., Wonacott, A., and Branlant, G. (1993) Determinants of coenzyme specificity in glyceraldehyde-3-phosphate dehydrogenase: role of the acidic residue in the fingerprint region of the nucleotide binding fold, Biochemistry, 32, 10178–10184.

29. Little, C., and O’Brien, P.J. (1969) Mechanism of peroxide-inactivation of the sulphydryl enzyme glyceraldehyde-3-phosphate dehydrogenase, Eur. J. Biochem., 10, 533–538.

30. Muronetz, V.I., Melnikova, A.K., Saso, L., and Schmalhausen, E.V (2018) Influence of oxidative stress on catalytic and non-glycolytic functions of glyceraldehyde-3-phosphate dehydrogenase, Curr. Med. Chem., doi: 10.2174/0929867325666180530101057.

31. You, K.S., Benitez, L.V., McConachie, W.A., and Allison, W.S. (1975) The conversion of glyceraldehyde-3-phosphate dehydrogenase to an acylphosphatase by trinitroglycerin and inactivation of this activity by azide and ascorbate, Biochim. Biophys. Acta, 384, 317–330.

32. Peralta, D., Bronowska, A.K., Morgan, B., Dóka, É., Van Laer, K., Nagy, P., Gräter, F., and Dick, T.P. (2015) A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation, Nat. Chem. Biol., 11, 156–163.

33. Leichert, L.I., Gehrke, F., Gudiseva, H.V, Blackwell, T., Ilbert, M., Walker, A.K., Strahler, J.R., Andrews, P.C., and Jakob, U. (2008) Quantifying changes in the thiol redox proteome upon oxidative stress in vivo, Proc. Natl. Acad. Sci. USA, 105, 8197–202.

34. Cremers, C.M., and Jakob, U. (2013) Oxidant sensing by reversible disulfide bond formation, J. Biol. Chem., 288, 26489–26496.

35. Roos, G., and Messens, J. (2011) Protein sulfenic acid formation: from cellular damage to redox regulation, Free Radic. Biol. Med., 51, 314–326.

36. Rehder, D.S., and Borges, C.R. (2010) Cysteine sulfenic acid as an intermediate in disulfide bond formation and nonenzymatic protein folding, Biochemistry, 49, 7748–7755.

37. Bedhomme, M., Adamo, M., Marchand, C.H., Couturier, J., Rouhier, N., Lemaire, S.D., Zaffagnini, M., and Trost, P. (2012) Glutathionylation of cytosolic glyceraldehyde-3-phosphate dehydrogenase from the model plant Arabidopsis thaliana is reversed by both glutaredoxins and thioredoxins in vitro, Biochem. J., 445, 337–347.

38. Barinova, K.V., Serebryakova, M.V., Muronetz, V.I., and Schmalhausen, E.V. (2017) S-glutathionylation of glyceraldehyde-3-phosphate dehydrogenase induces formation of C150-C154 intrasubunit disulfide bond in the active site of the enzyme, Biochim. Biophys. Acta, 1861, 3167–3177.

39. Gao, X.H., Bedhomme, M., Veyel, D., Zaffagnini, M., and Lemaire, S.D. (2009) Methods for analysis of protein glutathionylation and their application to photosynthetic organisms, Molecular Plant, 2, 218–235.

40. Newman, S.F., Sultana, R., Perluigi, M., Coccia, R., Cai, J., Pierce, W.M., Klein, J.B., Turner, D.M., and Butterfield, D.A. (2007) An increase in S-glutathionylated proteins in the Alzheimer’s disease inferior parietal lobule, a proteomics approach, J. Neurosci. Res., 85, 1506–1514.

41. Schuppe-Koistinen, I., Moldéus, P., Bergman, T., and Cotgreave, I.A. (1994) S-thiolation of human endothelial cell glyceraldehyde-3-phosphate dehydrogenase after hydrogen peroxide treatment, Eur. J. Biochem., 221, 1033–1037.

42. Davies, M.J. (2016) Protein oxidation and peroxidation, Biochem. J., 473, 805–825.

43. Elkina, Y.L., Kuravsky, M.L., El’darov, M.A., Stogov, S.V., Muronetz, V.I., and Schmalhausen, E.V. (2010) Recombinant human sperm-specific glyceraldehyde-3-phosphate dehydrogenase: structural basis for enhanced stability, Biochim. Biophys. Acta, 1804, 2207–2212.

44. Baty, J.W., Hampton, M.B., and Winterbourn, C.C. (2005) Proteomic detection of hydrogen peroxide-sensitive thiol proteins in Jurkat cells, Biochem. J., 389, 785–795.

45. Aronov, A.M., Verlinde, C.L., Hol, W.G., and Gelb, M.H. (1998) Selective tight binding inhibitors of trypanosomal glyceraldehyde-3-phosphate dehydrogenase via structure-based drug design, J. Med. Chem., 41, 4790–4799.

46. Ladame, S., Bardet, M., Périé, J., and Willson, M. (2001) Selective inhibition of Trypanosoma brucei GAPDH by 1,3-bisphospho-D-glyceric acid (1,3-diPG) analogues, Bioorg. Med. Chem., 9, 773–783.

47. Callens, M., and Hannaert, V. (1995) The rational design of trypanocidal drugs: selective inhibition of the glyceraldehyde-3-phosphate dehydrogenase in Trypanosomatidae, Ann. Trop. Med. Parasitol., 89, Suppl. 1, 23–30.

48. Haanstra, J.R., Gerding, A., Dolga, A.M., Sorgdrager, F.J.H., Buist-Homan, M., du Toit, F., Faber, K.N., Holzhütter, H.G., Szöör, B., Matthews, K.R., Snoep, J.L., Westerhoff, H.V., and Bakker, B.M. (2017) Targeting pathogen metabolism without collateral damage to the host, Sci. Rep., 7, 40406.

49. Pereira, J.M., Severino, R.P., Vieira, P.C., Fernandes, J.B., da Silva, M.F.G.F., Zottis, A., Andricopulo, A.D., Oliva, G., and Corrêa, A.G. (2008) Anacardic acid derivatives as inhibitors of glyceraldehyde-3-phosphate dehydrogenase from Trypanosoma cruzi, Bioor. Med. Chem., 16, 8889–8895.

50. Prokopczyk, I.M., Ribeiro, J.F.R., Sartori, G.R., Sesti-Costa, R., Silva, J.S., Freitas, R.F., Leitão, A., and Montanari, C.A. (2014) Integration of methods in cheminformatics and biocalorimetry for the design of trypanosomatid enzyme inhibitors, Fut. Med. Chem., 6, 17–33.

51. Chu, H., Puchulu-Campanella, E., Galan, J.A., Tao, W.A., Low, P.S., and Hoffman, J.F. (2012) Identification of cytoskeletal elements enclosing the ATP pools that fuel human red blood cell membrane cation pumps, Proc. Natl. Acad. Sci. USA, 109, 12794–12799.

52. Муронец В.И., Наградова Н.К. (1990) Взаимодействие глицеральдегид-3-фосфатдегидрогеназы со структурными элементами клеток, Успехи биологической химии, 31, 115–131.

53. Opperdoes, F.R., and Borst, P. (1977) Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei: the glycosome, FEBS Lett., 80, 360–364.

54. Van Calenbergh, S., Verlinde, C.L., Soenens, J., De Bruyn, A., Callens, M., Blaton, N.M., Peeters, O.M., Herdewijn, P., Rozenski, J., and Hol, W.G.J. (1995) Synthesis and structure-activity relationships of analogs of 2’-deoxy-2’-(3-methoxybenzamido)adenosine, a selective inhibitor of trypanosomal glycosomal glyceraldehyde-3-phosphate dehydrogenase, J. Med. Chem., 38, 3838–3849.

55. Link, A., Heidler, P., Kaiser, M., and Brun, R. (2009) Synthesis of a series of N6-substituted adenosines with activity against trypanosomatid parasites, Eur. J. Med. Chem., 44, 3665–3671.

56. Herrmann, F.C., Lenz, M., Jose, J., Kaiser, M., Brun, R., and Schmidt, T.J. (2015) In Silico Identification and in vitro activity of novel natural inhibitors of Trypanosoma brucei glyceraldehyde-3-phosphate-dehydrogenase, Molecules, 20, 16154–16169.

57. Uliassi, E., Fiorani, G., Krauth-Siegel, R.L., Bergamini, C., Fato, R., Bianchini, G., Carlos Menéndez, J., Molina, M.T., López-Montero, E., Falchi, F., Cavalli, A., Gul, S., Kuzikov, M., Ellinger, B., Witt, G., Moraes, C.B., Freitas-Junior, L.H., Borsari, C., Costi, M.P., and Bolognesi, M.L. (2017) Crassiflorone derivatives that inhibit Trypanosoma brucei glyceraldehyde-3-phosphate dehydrogenase (TbGAPDH) and Trypanosoma cruzi trypanothione reductase (TcTR) and display trypanocidal activity, Eur. J. Med. Chem., 141, 138–148.

58. Vinhote, J.F.C., Lima, D.B., Menezes, R.R.P.P.B., Mello, C.P., de Souza, B.M., Havt, A., Palma, M.S., Santos, R.P.D., Albuquerque, E.L., Freire, V.N., and Martins, A.M.C. (2017) Trypanocidal activity of mastoparan from Polybia paulista wasp venom by interaction with TcGAPDH, Toxicon, 137, 168–172.

59. Belluti, F., Uliassi, E., Veronesi, G., Bergamini, C., Kaiser, M., Brun, R., Viola, A., Fato, R., Michels, P.A., Krauth-Siegel, R.L., Cavalli, A., and Bolognesi, M.L. (2014) Toward the development of dual-targeted glyceraldehyde-3-phosphate dehydrogenase/trypanothione reductase inhibitors against Trypanosoma brucei and Trypanosoma cruzi, ChemMedChem, 9, 371–382.

60. Miki, K., Qu, W., Goulding, E.H., Willis, W.D., Bunch, D.O., Strader, L.F., Perreault, S.D., Eddy, E.M., and O’Brien, D.A. (2004) Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility, Proc. Natl. Acad. Sci. USA, 101, 16501–16506.

61. Lamson, D.R., House, A.J., Danshina, P. V, Sexton, J.Z., Sanyang, K., O’Brien, D.A., Yeh, L.A., and Williams, K.P. (2011) Recombinant human sperm-specific glyceraldehyde-3-phosphate dehydrogenase (GAPDHS) is expressed at high yield as an active homotetramer in baculovirus-infected insect cells, Protein Expr. Purif., 75, 104–113.

62. Chaikuad, A., Shafqat, N., Al-Mokhtar, R., Cameron, G., Clarke, A.R., Brady, R.L., Oppermann, U., Frayne, J., and Yue, W.W. (2011) Structure and kinetic characterization of human sperm-specific glyceraldehyde-3-phosphate dehydrogenase, GAPDS, Biochem. J., 435, 401–409.

63. Kuravsky, M., Barinova, K., Marakhovskaya, A., Eldarov, M., Semenyuk, P., Muronetz, V., and Schmalhausen, E. (2014) Sperm-specific glyceraldehyde-3-phosphate dehydrogenase is stabilized by additional proline residues and an interdomain salt bridge, Biochim. Biophys. Acta, 1844, 1820–1826.

64. Kuravsky, M.L., Barinova, K.V., Asryants, R.A., Schmalhausen, E.V., and Muronetz, V.I. (2015) Structural basis for the NAD binding cooperativity and catalytic characteristics of sperm-specific glyceraldehyde-3-phosphate dehydrogenase, Biochimie, 115, 28–34.

65. Frayne, J., Taylor, A., Cameron, G., and Hadfield, A.T. (2009) Structure of insoluble rat sperm glyceraldehyde-3-phosphate dehydrogenase (GAPDH) via heterotetramer formation with Escherichia coli GAPDH reveals target for contraceptive design, J. Biol. Chem., 284, 22703–22712.

66. Dan’shina, P.V., Qu, W., Temple, B.R., Rojas, R.J., Miley, M.J., Machius, M., Betts, L., and O’Brien, D.A. (2016) Structural analyses to identify selective inhibitors of glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, Mol. Hum. Reprod., 22, 410–426.

67. Sexton, J.Z., Danshina, P.V., Lamson, D.R., Hughes, M., House, A.J., Yeh, L.A., O’Brien, D.A., and Williams, K.P. (2011) Development and implementation of a high throughput screen for the human sperm-specific isoform of glyceraldehyde 3-phosphate dehydrogenase (GAPDHS), Curr. Chem. Genomics, 5, 30–41.

68. Sevostyanova, I.A., Kulikova, K.V., Kuravsky, M.L., Schmalhausen, E.V., and Muronetz, V.I. (2012) Sperm-specific glyceraldehyde-3-phosphate dehydrogenase is expressed in melanoma cells, Biochem. Biophys. Res. Commun., 427, 649–653.

69. Boradia, V.M., Malhotra, H., Thakkar, J.S., Tillu, V.A., Vuppala, B., Patil, P., Sheokand, N., Sharma, P., Chauhan, A.S., Raje, M., and Raje, C.I. (2014) Mycobacterium tuberculosis acquires iron by cell-surface sequestration and internalization of human holo-transferrin, Nat. Commun., 5, 4730.

70. Andries, K., Verhasselt, P., Guillemont, J., Göhlmann, H.W.H., Neefs, J.-M., Winkler, H., Van Gestel, J., Timmerman, P., Zhu, M., Lee, E., Williams, P., de Chaffoy, D., Huitric, E., Hoffner, S., Cambau, E., Truffot-Pernot, C., Lounis, N., and Jarlier, V. (2005) A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis, Science, 307, 223–227.

71. Koul, A., Vranckx, L., Dendouga, N., Balemans, W., Van den Wyngaert, I., Vergauwen, K., Göhlmann, H.W., Willebrords, R., Poncelet, A., Guillemont, J., Bald, D., and Andries, K. (2008) Diarylquinolines are bactericidal for dormant mycobacteria as a result of disturbed ATP homeostasis, J. Biol. Chem., 283, 25273–25280.

72. Pethe, K., Bifani, P., Jang, J., Kang, S., Park, S., et al. (2013) Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis, Nat. Med., 19, 1157–1160.

73. Forte, E., Borisov, V.B., Falabella, M., Colaço, H.G., Tinajero-Trejo, M., Poole, R.K., Vicente, J.B., Sarti, P., and Giuffrè, A. (2016) The terminal oxidase cytochrome bd promotes sulfide-resistant bacterial respiration and growth, Sci. Rep., 6, 23788.

74. Forte, E., Borisov, V.B., Vicente, J.B., and Giuffrè, A. (2017) Cytochrome bd and gaseous ligands in bacterial physiology, Adv. Microb. Physiol., 71, 171–234.

75. Malhotra, O.P., and Bernhard, S.A. (1981) Role of nicotinamide adenine dinucleotide as an effector in formation and reactions of acylglyceraldehyde-3-phosphate dehydrogenase, Biochemistry, 20, 5529–5538.

76. Muronetz, V.I., Melnikova, A.K., Seferbekova, Z.N., Barinova, K.V., and Schmalhausen, E.V. (2017) Glycation, glycolysis, and neurodegenerative diseases: is there any connection? Biochemistry (Moscow), 82, 874–886.

77. Lee, H.J., Howell, S.K., Sanford, R.J., and Beisswenger, P.J. (2005) Methylglyoxal can modify GAPDH activity and structure, Ann. NY Acad. Sci., 1043, 135–145.

78. Muronetz, V., Barinova, K., and Schmalhausen, E. (2017) Glycation of glyceraldehyde-3-phosphate dehydrogenase in the presence of glucose and glyceraldehyde-3-phosphate, J. Int. Soc. Antioxid., 2, 1–4.

79. Cornish-Bowden, A. (1981) Thermodynamic aspects of glycolysis, Biochem. Educ., 9, 133–137.

80. Veech, R.L., Raijman, L., Dalziel, K., and Krebs, H.A. (1969) Disequilibrium in the triose phosphate isomerase system in rat liver, Biochem. J., 115, 837–842.